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SOME CONDITIONS ON DOUGLAS ALGEBRAS THAT IMPLY
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ABSTRACT. We give general conditions on certain families of Douglas algebras that imply
that the minimal envelope of the given algebra is the algebra itself. We also prove that the
minimal envelope of the intersection of two Douglas algebras is the intersection of their
minimal envelope.
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1. Introduction. Let D denote the open unit disk in the complex plane, and T the
unit circle. By L* we mean the space of essential bounded measurable functions on T
with respect to the normalized Lebesgue measurement. We denote by H® the space
of all bounded analytic functions in D. Via identification with boundary functions,
H* can be considered as a uniformly closed subalgebra of L®. Any uniformly closed
subalgebra B strictly between H* and L® is called a Douglas algebra B. If C is the
set of all continuous functions on T, we set H*+C = {h+g:h € H®, g € C}. Then
H* + C becomes the smallest Douglas algebra containing H* properly.

The function

az)=]] 20| 2= 20 (1.1)

is called a Blaschke product if >, _; (1 —|z,|) converges. The set {z,} is called the
zero set of g in D. Here |z,|/z, = 1 is understood whenever z,, = 0. We call g an
interpolating Blaschke product if
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- > 0. (1.2)
1-Zuzm

An interpolating Blaschke product g is called sparse (or thin) if

=1. (1.3)

[S]
mm#+n

The set Z(q) = {x e M(H*)\D : q(x) = 0} is called the zero set of g in M(H® + C).
Any function h in H® with |h| =1 a.e. on T is called an inner function. Since |g| =1
for any Blaschke product, Blaschke products are inner functions. Let QC = (H* +C) N
H>NC and for x € M(H® +C), set

Qx={y eM(L®): f(x) = f(y) Vf€QC}. (1.4)
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Then Q is called the QC-level set for x. For x € M(H® + C), we denote by p, the
representing measure for x, and its support set by supp px. By H*[§] we mean the
Douglas algebra generated by H* and the complex conjugate of the function q. Since
M (L®) is the Shilov boundary for every Douglas algebra, a closed set E contained in
M(L®) is called a peak set for a Douglas algebra B if there is a function f in B with
f=1onEand|f] <1on M(L*)\E. A closed set E is a weak peak set for B if E
is the intersection of a family of peak sets. If the set E is a weak peak set for H®
and we define

HE ={feL”: flg € H"|g}, (1.5)

then Hp’ is a Douglas algebra. For a Douglas algebra B, we define Bg similarly.
For an interpolating Blaschke product g we put N(q) the closure of

U{suppux:x € M(H®+C), |q(x)]| <1}. (1.6)

Then N(gG) is a weak peak set for H®. By Ny(g4) we denote the closure of U{supp px :
x € Z(q)}. In general Ny(g) does not equal N(4), but in this paper No(q) = N(g).
For x € M(H*), we let Ex = {yy € M(H*) : supp i, = supp ly} and call E, the level
set of x. Since the sets supp uy and N(g) are weak peak sets for H*, both Hg,,,, and
HY ;) are Douglas algebras. For the interpolating Blaschke product g, set

A= () AHgppue:a(x) <1}, A= {Hgppu : X € Z(@)}. (1.7)
XEM(H®+C)

Our assumptions on g throughout imply that Hy g =A=A (see [8]). For x and y in
M (H>), the pseudohyperbolic distance p is defined by

p(x,y) =supp{lh(y)|:lhll~ <1, h€ H®, h(x) = 0}. (1.8)
For x and y in D, we have
()= |32 (1.9)
p !y - 1—j/x - -
For x € M(H®), we define the Gleason part Py of x by
Py={yeM(H”):p(x,y)<1}. (1.10)

If P, # {x}, then x is said to be a nontrivial point. Let G = {x € M(H® + C) : Py is
a nontrivial part}. We say that an interpolating Blaschke product g is of type G if
the modules is 1 on every trivial part, that is, {x €e M(H* +C) : |q(x)| <1} C G. An
interpolating Blaschke product g of type G is said to be of finite type G if for every
x € Z(q), the set Z(q) NPy is a finite set.

A point x € Z(q), where q is interpolating Blaschke product, is called a minimal
element (or a minimal support point) for the Douglas algebra H*[4] if there areno y ¢
M(H*[q]) such that supp u, < supp py; thatis, if yy ¢ M(H>[4]) then either supp py, N
SUPPHx = O Or Supppyx S sUppU,. We let F = {x € G : x € Z(q), q is finite type}.
A point x € M(H®) is called locally thin if there is an interpolating Blaschke product
q such that g(x) =0 and

(1= 1 Znw 1*) 14 (Znw) | — 1 (1.11)
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whenever Z, () is a subnet of the zero sequence {Z,} of g in D converging to x. A
point x € M(H>) is called locally thin if there exists a Blaschke product g which
is locally thin at x. Since for locally thin points P, is nontrivial, x € G. Let L =
{x € G : x is a locally thin point}, we will show that F C L. Finally, we let m; = {x €
M(H® +C)|x is a minimal support point of H*[]}.

Let B a Douglas algebra. The Bourgain algebra Bj, of B relative to L™ is the set of
fin L* such that ||ff, + Bll« — 0 for every sequence {f,} in B with f,, — 0 weakly
in B. An algebra B is called a minimal superalgebra of an algebra A if A C B and
supp p, = supp Uy for all x, y € M(A)\M (B). The minimal envelope B,, of a Douglas
algebra B is defined to be the smallest Douglas algebra that contains all the minimal
superalgebra of B. The mapping that assigns to B the Douglas algebra B,, is called the
minimal envelope map and the mapping that assigns to B the Douglas algebra By, is
called the Bourgain map.

Let Ewnin=[H® : 4 | q is a thin interpolating Blaschke product], Esn=[H> : b | b is of
finite type G], and Egc =[H® : @ | @ is of type G]. Then it is clear that Ewi, S Efn < Eg.

2. Some Douglas algebra B with the property B,,, = B. We begin with the following
theorems.

THEOREM 2.1. Let q be an interpolating Blaschke product of type G. Let B=H j{,"@.
Then B,, = B.

PROOF. Let b be an interpolating Blaschke product with b ¢ B. Then there is an
m € M(B) such that b(m) = 0. Since B = (\yez(q) Happy, thenthereisay € Z(q) such
that b ¢ Hgppy, - We can assume that supp pm, < supp p,. This implies |b(y)| < 1. Let
{Z,} be the zero sequence of g in D. Since Z(q) = {Z,}\{Z,} and y € Z(q), there is
a subsequence {Z,g} such that Z,g — y as B — co. Since |b(Z,ug)| — |[b(y)| as B — oo,
there is a positive integer N and an € with 0 < € < 1 such that |b(Z,g)| < 1 —€ for all
ng = N.Let @ be the factor of g such that Z(p) = {Znﬁ}:BzN\{Zﬂﬁ};LoBzN' Then |b| <1
on Z (). By [12, Theorem 1], there are uncountable infinitely many x,y € Z(¢g) such
that supp px Nsupp i, = 0. This implies that there are infinitely many x,y € Z(@)
such that Ex NE, = 0 and Uyez(p) Ex € {m € M(B) : |b(m)| < 1}. By [9, Theorem 3]
we have that b ¢ B,,. This proves our theorem. O

THEOREM 2.2. [Efinlm = Efin.

PROOF. Let g be any interpolating Blaschke product such that g ¢ Eun. Then g is
not of finite type G (nor the product of a finite number of finite type G). Hence by [10,
Theorem 3.1], there are x and y in M(H® + C) such that |g(x)| <1, |q(y)| <1 and
SUpp Hx < SUPP Uy .

CASE 1. Suppose ¥ € M (Exyn). Then by [8, Theorem 2] there is an uncountable
infinite index set I such that (a) for each & € I, there is an x4 € M(H* + C) with
SUPP My, S SUPP Uy; (b) X« € Z(q); and (¢) for &, B € I, & + B, SUPP L, N SUPP Hxg = 0.
Since y € M (Es,) we have that x, € M (Epy) for all @ € I. Thus UygerEx, C {m €
M (Egin) | g(m) < 1}. By [9, Theorem 3], q & [EfinIm-

CASE 2. If v ¢ M(Egy,). Then again for each o« € I, we have that x4 € M (Egy). This
follows from [11, Theorem 9] which states that every invertible interpolating Blaschke
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product in Egy, is the product of a finite number of interpolating Blaschke product of
finite type G. So if b is invertible in Egyn, and |b(y)| < 1, then |b(xy)| =1 forall x ¢ I
by [9, Theorem 3.1]. Thus x« € M (Epn) for all @ € I, and so Uyej Ex, C {m € M (Efin) |
|q(y)| < 1}. This implies that § ¢ [Egin]m. Therefore Egn = [Efinlim- O

THEOREM 2.3. Ewin = [Ethin lm-

PROOF. Let @ be an interpolating Blaschke product such that ¢ ¢ [Ewmin]. Since
Ewin S Efin, we have that [Ewinlm S [Efinlm = Efin. We can assume that ¢ € Exn. We
will show that there is an infinite set F = Z(¢) such that for any x,m € F, supp px N
supp py, = 0 and Uyer C {w € M(Ewmin) | |@(w)| < 1}. By [9, Theorem 3.1] this will
show that @ ¢ [Ein]m. Hence will show that [Ein]m = Ethin- Since @ ¢ Ewin there is
an xo € M (Emin) such that @ (xo) = 0. Let {Z,} be the zero sequence of @ in D. Since
@ is interpolating and Z (@) = {Z,}\{Z,}, there exists a subsequence {Z,z} such that
Znp — xo. We will show that the set {Zug3\{Znn} € M(Emin). Let g be any interpolating
Blachke product such that § € Ewgin (then g is the product of a finite number of thin
interpolating Blaschke product). Since xo € M (Ewin), we have that |q(xo)| = 1. Thus
|a(Zup)| — 1 as B — . This shows that |g| =1 on {Z_ng}\{ZnB}. Since this is true for
any q with g € Ewin, we have

{Znp}\{1Zng} € M (Ein)- (2.1)

Since { Z_nﬁ}\{znﬁ} is homeomorphic to the compactification of the integer, we have
that {Z,g}\{Znp} is uncountably infinite and by [12, Theorem 1], there are infinite
many X, € {Zug}\{Zng} such that suppunsuppy, = 0. Thus if F = {Z,g}\{Zng},
then we have

U Em C {w € M(Egin) | @(w) <1}. (2.2)
meF
Hence @ ¢ [Ein]m. This proves our theorem. O

We are unable to give solutions to the following two problems.
PROBLEM 2.4. Let g be an interpolating Blaschke product that is not of type G. Is it
true that (Hy ;) m = Hy)?

Let B be any Douglas algebra, B + H* + C, and let W be a weak peak set for B.
Mortini and Younis have shown that the restricted algebra Hj; has the property that
[Hylm = [Hy 1y = Hyy, if W is a weak peak set for H®.

PROBLEM 2.5. What conditions must be imposed on the Douglas algebra B such
that By = [Bw]m? For example, if B = H*[4], where g is an interpolating Blaschke
product of type G, and W is a weak peak set for B, then is By = [By ] ?

PROBLEM 2.6. Is [Eglm = Eg?

We also have the following theorem. The case for the Bourgain algebra B, has been
proven in [15]. The proof used here is quite different from theirs, and can be used to
show that his result also holds for the Bourgain algebras.

THEOREM 2.7. Let A and B be Douglas algebras. Then (ANB),,, = Ay N By,.
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PROOF. Since AN B is contained in both A and B by [9, Proposition 6], (AN B),, is
contained in both A,, and B,,. Hence (ANB)y C Ay NByy,.

To show that A, "By, € (AN B)y, let @ be an interpolating Blaschke product such
that @ € A, " B,,. We show that @ € (ANB),,. By [9, Theorem D] we can assume that
there is an x € M(A) and a v € M(B) such that {A € M(A) : |¢(y)| < 1} = Ex and
{neM@B):|py(u)| <1} =E,. Thus

M(ANB) =M(A)UM(B) = M(A[¢1nBl[@]) UEXVE,

_ 2.3
=M((AnB)[¢]) UEx UE,. (2.3)

Hence {w € (ANB)y : l@(w)| <1} = ExUE,,. By [9, Theorem 3] we have ¢y € (ANB)p,.

Then our theorem follows. O

The following corollaries are immediate consequences of the theorem.

COROLLARY 2.8. Let A and B be Douglas algebras with A = A,, and B = By,. Then
ANB=(ANB)y.

COROLLARY 2.9. Let By be a Douglas algebra with (By)m = By and B be a Dou-
glas algebra such that there is an interpolating Blaschke product q with M (By) N
M(H®*[q]) = M(B)nM(H>[4]). If A is a Douglas algebra with the property A,, = A,
then (B[@] N A)y = B[] N A. In particular, H*[@]n A = (H®[@]N A)y, for every
interpolating Blaschke product @.

PROOF. Our hypothesisimplies that Bo[G] = B[4], hence [B[G]];» = B[G].SoB[g]n
A = (B[] n A), follows from our theorem. By [2, Theorem 1] we have H;;, = H* +C,

so by our theorem H; [G]1NA =[H*+C][g]lnA. O

THEOREM 2.10. Let By be a Douglas algebra such that (By),, = Bo. Let B be any
other Douglas algebra such that there is an interpolating Blaschke product @ with
M(By)"M(H®[@]) = M(B)nM(H*[@]). For an interpolating Blaschke product q set
By =Bl@lnHgpp,, foreach x € Z(q). Put B, = N{Bx :x € Z(q)}. Then if q is of type
G, then (B.)m = Be.

PROOF. We show that B, =B[@p]NH ,‘(}’(q). By an unpublished result of D. Sarason,

M(Be)=M( N Bx>= U MB) = U MBI@INHsppu)
xe€Z(q) xeZ(q) xeZ(q)

(2.4)

= U [MBI®]) M (Hsppu ) =MBI@I)U |J MHZppu,
x€Z(q) x€Z(q)

Now, if g is of type G, [7, Proposition 1] and [10, Theorem 3.2(i)] implies
Nxez@) Haippux = Hy(q)- Thus

U M(Hppux) = M(Hy ), (2.5)
xeZ(q)



620 CARROLL GUILLORY

and we get
M(B.) = M(B[@]) UM (H5 ;) = M(BI®1NHY 4)- (2.6)
So by the Chang-Marshall theorem [1, 13] we have B, = B[] me\,"@.

The condition M (By) nM(H®[@]) = M(B)nM(H*[@]), implies that B[] = Bo[P].
Hence [B[®]1]lm = [Bo[@]1lm = [Bolm[®] = Bol®@] = B[], where the middle equality
follows from [9, Theorem 4]. By Theorem 2.1 (and its proof) we have (Hﬁw Yim = Hﬁ(q)
if g is of type G. Thus

(Be)w = (BLOINHR ) = BIOINHR ) = Be. 2.7)

This proves our theorem. O

THEOREM 2.11. Let {qn} be a sequence of interpolating Blaschke product that are
not invertible in a Douglas algebra A. Suppose for each n there is a Douglas algebra Ay,
with [Aplm = Ap and M(A) "M (H*[qn]) = M(Ap) "M (H*[qn]). Let B = ﬂi:lA[Qn]-
Then B,,, = B.

PROOF. Since B A[g,]forn=1,2,...,by[9, Proposition 6] we have B,, € (A[Gn])m
for all n. Since M(A)NnM(H*[3]) = M(A,) "M(H>[3]), we have A[Gn] = AnlGn]. SO
using [9, Theorem 4] we have

[A[Qn]]m = [A"[q"]]m = [An]m[‘Zn] = An[éln] = A[Qn]- (2.8)
Thus By, < ﬂ::1 [Algn]lm = m:lO:lA[Qn] =B. O
COROLLARY 2.12. IfB=(\,,_; H*[gn], then By, = B.

Before we prove our next theorem, we have the following related lemmas. Lemma
2.13 shows that the set F C L.

LEMMA 2.13. Let q be an interpolating Blaschke product that is of finite type G. Then
each x € Z(q) is a locally thin point. That is F C L.

PROOF. Since q is of finite type G, the set Z(q) N Py is a finite set, hence there is a

factor go of q such that Z(q) NPy = {x}. Hence Hgppux [do] is a minimal superalgebra

of Hgppu,- Hence Hgypp o C Hgpp i [do]. By [14, Theorem 5] we have that x is a locally
thin point. O

LEMMA 2.14. LetB = H;;;ppuy, where y is a trivial point. If B C By,, then there is an

interpolating Blaschke product q and an x € Z(q) such that supp py = sSupp Hy.

PROOF. If B C By, then, by [8, Theorem D], there is an interpolating Blaschke prod-
uct g such that B[4] is a minimal superalgebra of B. Hence supp u, is a minimal sup-
port set of H*[4]. By [6, Theorem 2] there is an x € Z(q) such that supp ux = supp .

O

THEOREM 2.15. Let q be an interpolating Blaschke product and set g = {y € my:

supp U, = supp H, t is a trivial point}. Set T = ﬂyemq Hso:lppuy' ThenT, =T.

PROOF. Suppose T # Tp. Then by [9, Theorem C] there is an interpolating Blaschke
product C such that Z(C) "M (T) = {v}. By [7, Theorem 1] we have M(T) = M(T[C]) U
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P, and y is a minimal support point of H*[C]. By [14, Proposition 6], (Hsuppuy)b =
Hgpp “y[C ]. So by [14, Theorem 5], v is a locally thin point. We show that this is
not the case by showing that there is x € 71, with supp iy = supp u,.. By the remark
following the proof of [14, Theorem 5], this will lead to a contradiction. Suppose that
supp Hy * supp x for all x € my,. Then for each x € M, one of the following must
occur. (i) supp px C supp i, (properly contained in); (ii) supp px Nsupp u, = 6; or (iii)
supp My C supp Uy (properly contained in). We show that none of these can happen.

Suppose (i) is true. Then |C(x)| = 1 which implies that C € Hgppuy» SiNCE ¥ is a
minimal support point of C. Thus (i) cannot hold for any x € m,. If (ii) holds for all
X € My, then again C e T. Hence neither (i) or (ii) can hold for all x € my.

Now if (iii) holds for some x € 1, then by [8, Theorem 2] there is an uncountable
set T ¢ Z(C) such that supp ux S supp ux (properly contained in) for all x € T and
supp px Nsupp pg = 0 for all &, €T and « # B. Since x € M(T) we have x € M(T),
hencel’ c M(T)nZ(C). This implies that Z(C)nM(T) + {y}. This leads to a contradic-
tion. Thus (iii) cannot hold for any x € 1. So if there is a y € M(T)n Z(C) such that
T[C] is a minimal superalgebra for T, then there is a x € Mg with supp p, = supp Uy.
This implies that x is a locally thin point, which is impossible. Thus T, = T. O

Is it true that F = L? That is, every locally thin point is the zero of an interpolating
Blaschke product of finite type G.

PROBLEM 2.16. What if F is properly contained in L. Suppose x € L\F. Is it true
that supp uy is maximal?

Both B, and B,, are generated by a special type of minimal superalgebras (deter-
mined by the character of the minimal support point).

Under certain conditions we can determine the Bourgain algebra and the minimal
envelope algebras of maximal subalgebras of a Douglas algebra B (here B will have a
maximal subalgebra).

THEOREM 2.17. Let B be a Douglas algebra such that B,[q] = B[q] or B, [q] = B[q]
for some interpolating Blaschke product q. Let Ay be the max1mal subalgebra of B[ 3]
for which x is the corresponding minimal support point of B[ G]. Then either

(i) Ax C (Ax)p and (Ax)p = (Ax)m = B[4], or
(i) Ay = (Ax)p and (Ax)m = B[q].

PROOF. By [14, Theorem 3], [5, Theorem 3], and [9, Theorem 4], our hypothesis
implies that B[g] = (B[@])y = (B[gDm-

Now let A, be any maximal subalgebra of B[j] associated with the minimal support
point x. First we assume that x is a locally thin point (see [14, Theorem 5]). Then the
maximal ideal space of B[g] and A, are related by the equation

M(Ax) = M(B[q]) UPy. (2.9)

Then B[4] is a minimal superalgebra of Ay, hence B[4] C (Ax)p. Now using [14, The-
orem 3] again, we get

B[q] = (B[4]), = (Ax[@]), = (Ax)p[d] = (Ax), since g € (Ay),. (2.10)
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Similarly B[] = (Ax)m = (Ax)p if x is a locally thin point. This proves (i).
Now suppose that x is not a locally thin point (e.g., Py is not a homeomorphic disk,
see [3]). Then M(Ay) and M (B[q]) are related by

M(Ax) = M(B[q]) VEx (2.11)

with Py, < Eyx (or Z(q) n Py has infinitely many points). Using [9, Theorem 4] we
have

Blal = (Bl4l),, = (Ax[al),
= (Ax),,[d] Dy [6, Theorem 4] (2.12)
= (Ay),, since g€ (Ay),,.
Now, for any Douglas algebra A we have that A < A, < A;,. Thus

Ax € (Ay), € B[4] = (Ax) (2.13)

m-
Since A, is a maximal subalgebra of B[4], we have that Ay = (Ay)p if x is not locally
thin. This proves (ii). O

COROLLARY 2.18. Let g be any interpolating Blaschke product and set B = H®[4].
Let Ay be any maximal subalgebra of B that corresponds to the minimal support point
of B. Then either

(i) Ax C (Ax)p and (Ax)p = (Ax)m = B, or
(i) Ax = (Ax)p and (Ax)m = B.

COROLLARY 2.19. Let A be any interpolating Douglas algebra such that A = Ay or
A = Ay, and let q be any interpolating Blaschke product such that G ¢ A. Set B = A[4]
and let B, be any maximal subalgebra of B corresponding to the minimal support point
of A[q]. Then either

(i) Bx C (Bx)p and (Bx)p = (Bx)m = B, or
(i) By = (Bx)p and (Bx)m = B.

THEOREM 2.20. Let B be a Douglas algebra that has a maximal subalgebra A,
where x is the minimal support point of B corresponding to Ax. Then (Ax) = By,.

PROOF. By [9, Theorem 4] we have that (Ay)m, S By, since Ay < B. Since Ay is a
maximal subalgebra of B there is an xy € M(A)\M (B) and an interpolating Blaschke
product g such that

M(Ax) = M(A[{0]) UEx, = M(B) UEx,. (2.14)

So by [9, Theorem D] we have B < (A ). If By is another superalgebra containing A,
then there is some )y, € M(Ay) such that M(A,) = M(By) UE,,. Hence we have that
By € (Ax)m and yo € M(B), otherwise E,,, = Ex,. To show that By, € (Ax)m, let ¢ be
any interpolating Blaschke product such that ¢y € By,. Then by [9, Theorem D] we can
assume that

{AeM@B):|ly)| <1} =Ey (2.15)
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for some x € M(B). But
fmeM(Ax):p(m) <1} =Exu{m e M(Ay) : [ (m)| <1} NEy,. (2.16)

The set on the right-hand side is either Ex or Ex U Ey,. Hence by [9, Theorem 4] we
have that ¢ € (A)m.- O

For (Ax)p we have the following special result if we assume an additional assump-
tion.

THEOREM 2.21. Let B be a Douglas algebra that has a maximal subalgebra Ay,
where x is the minimal support point of B corresponding to Ax. Assume that Py is a
nonhomeomorphic disk. Then (Ax)p < Bp.

PROOF. Since B < By, and (Ay)p S By, it suffices to show that B ¢ (Ax)p. Since Ay
is a minimal subalgebra of B corresponding to x, by [7, Theorem 1] we have

M(Ay) = M(B) UEx. (2.17)

Note that P, C E,. Hence if y is any interpolating Blaschke product with ¢ € B, but
Y ¢ Ayx. Then we have, by [5, Corollary 1.5], the set M(Ax)NZ(Y) 2 PN Z(Y) is an
infinite set. Then ¢ ¢ (Ax)p. Hence B & (Ay)p. (See [4, Theorem 2].) O

The following two propositions on minimal support points seem to indicate that
the sets given in them are smaller in some sense than the set in the following two
well-known facts.

FACT 1. Let B be any Douglas algebra. Then an interpolating Blaschke product g is
invertible in B if and only if Z(q) nM(B) = 0.

FACT 2. For any Douglas algebra B we have

B= () Hgppus- (2.18)
xXeM(B)

PROPOSITION 2.22. An interpolating Blaschke product q is invertible in a Douglas
algebra B if and only if M(B) nm, = 0.

PROOF. We have that m,; < Z(q), hence if m; " M(B) # 6 then g ¢ B. (See [7,
Theorem 2].)

To prove the converse, suppose that g ¢ B. Then by Fact 1, Z(q) "M (B) # 0. There is
a o € Z(q) such that supp iy, < supp Uy for any x € Z(q) N M (B) and yo € m,. (See
[7, Theorem 2].) Since x € M (B) we have that M(Hgppu,) € M(B). Since M(Hgy,y,,,,.) C
M(L®)U{A € M(H* + C) : supp 4a S supp iy}, we have that y, € M(B). Hence m,n

M(B) # 0. O

Let B be any Douglas algebra and set m,(B) = my N M (B). Let Mg = U{m,(B) :
q is an interpolating Blaschke product, g ¢ B}. Let I'(B) = {X«}«ea be the family of all
minimal support points for Mg such that supp p« Nsupp g = 6 if « # . Then

PROPOSITION 2.23. B =y er) Heauppua-
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PROOF. If x € Mg, then there is an x4 € I'(B) such that supp pix, = Supp px. So it
suffices to show that
B= () Hyppus- (2.19)
X€EMp
Set By = ﬂXGMB Hgppuy- Since Mg = M(B), by Fact 2 we have that B < By. Suppose
B < By. Then by the Chang-Marshall theorem [1, 13] there is an interpolating Blaschke
product g such that G € By but g ¢ B. Hence there is a v € (B) such that g(y) = 0.

Hence g ¢ Hg,pp, yy? SO 4 cannot be invertible in By. Thus By = B. O
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