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Abstract. We give general conditions on certain families of Douglas algebras that imply
that the minimal envelope of the given algebra is the algebra itself. We also prove that the
minimal envelope of the intersection of two Douglas algebras is the intersection of their
minimal envelope.
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1. Introduction. Let D denote the open unit disk in the complex plane, and T the

unit circle. By L∞ we mean the space of essential bounded measurable functions on T
with respect to the normalized Lebesgue measurement. We denote by H∞ the space

of all bounded analytic functions in D. Via identification with boundary functions,

H∞ can be considered as a uniformly closed subalgebra of L∞. Any uniformly closed

subalgebra B strictly between H∞ and L∞ is called a Douglas algebra B. If C is the

set of all continuous functions on T , we set H∞+C = {h+g : h ∈ H∞, g ∈ C}. Then

H∞+C becomes the smallest Douglas algebra containing H∞ properly.

The function

q(z)=
∞∏

n=1

∣∣zn
∣∣

zn
z−zn

1− z̄nz
(1.1)

is called a Blaschke product if
∑∞
n=1(1−|zn|) converges. The set {zn} is called the

zero set of q in D. Here |zn|/zn = 1 is understood whenever zn = 0. We call q an

interpolating Blaschke product if

inf
n

∏
m:m≠n

∣∣∣∣
zm−zn

1− z̄nzm

∣∣∣∣> 0. (1.2)

An interpolating Blaschke product q is called sparse (or thin) if

lim
n→∞

∏
m:m≠n

∣∣∣∣
zm−zn

1− z̄nzm

∣∣∣∣= 1. (1.3)

The set Z(q)= {x ∈M(H∞)\D : q(x)= 0} is called the zero set of q in M(H∞+C).
Any function h in H∞ with |h| = 1 a.e. on T is called an inner function. Since |q| = 1

for any Blaschke product, Blaschke products are inner functions. LetQC = (H∞+C)∩
H∞∩C and for x ∈M(H∞+C), set

Qx =
{
y ∈M(L∞) : f(x)= f(y) ∀f ∈QC}. (1.4)
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Then Qx is called the QC-level set for x. For x ∈ M(H∞ +C), we denote by µx the

representing measure for x, and its support set by suppµx . By H∞[q̄] we mean the

Douglas algebra generated by H∞ and the complex conjugate of the function q. Since

M(L∞) is the Shilov boundary for every Douglas algebra, a closed set E contained in

M(L∞) is called a peak set for a Douglas algebra B if there is a function f in B with

f = 1 on E and |f | < 1 on M(L∞)\E. A closed set E is a weak peak set for B if E
is the intersection of a family of peak sets. If the set E is a weak peak set for H∞

and we define

H∞
E =

{
f ∈ L∞ : f |E ∈H∞|E

}
, (1.5)

then H∞
E is a Douglas algebra. For a Douglas algebra B, we define BE similarly.

For an interpolating Blaschke product q we put N(q̄) the closure of

∪{suppµx : x ∈M(H∞+C),
∣∣q(x)

∣∣< 1
}
. (1.6)

Then N(q̄) is a weak peak set for H∞. By N0(q̄) we denote the closure of ∪{suppµx :

x ∈ Z(q)}. In general N0(q̄) does not equal N(q̄), but in this paper N0(q̄) = N(q̄).
For x ∈ M(H∞), we let Ex = {y ∈ M(H∞) : suppµy = suppµx} and call Ex the level

set of x. Since the sets suppµx and N(q̄) are weak peak sets forH∞, bothH∞
suppµx and

H∞
N(q̄) are Douglas algebras. For the interpolating Blaschke product q, set

A=
⋂

x∈M(H∞+C)

{
H∞

suppµx : q(x) < 1
}
, A0 =

⋂{
H∞

suppµx : x ∈ Z(q)}. (1.7)

Our assumptions on q throughout imply that H∞
N(q̄) =A=A0 (see [8]). For x and y in

M(H∞), the pseudohyperbolic distance ρ is defined by

ρ(x,y)= supp
{|h(y)| : ‖h‖∞ ≤ 1, h∈H∞, h(x)= 0

}
. (1.8)

For x and y in D, we have

ρ(x,y)=
∣∣∣∣
x−y
1−ȳx

∣∣∣∣. (1.9)

For x ∈M(H∞), we define the Gleason part Px of x by

Px =
{
y ∈M(H∞) : ρ(x,y) < 1

}
. (1.10)

If Px ≠ {x}, then x is said to be a nontrivial point. Let G = {x ∈ M(H∞ +C) : Px is

a nontrivial part}. We say that an interpolating Blaschke product q is of type G if

the modules is 1 on every trivial part, that is, {x ∈M(H∞+C) : |q(x)| < 1} ⊂ G. An

interpolating Blaschke product q of type G is said to be of finite type G if for every

x ∈ Z(q), the set Z(q)∩Px is a finite set.

A point x ∈ Z(q), where q is interpolating Blaschke product, is called a minimal

element (or a minimal support point) for the Douglas algebraH∞[q̄] if there are noy ∉
M(H∞[q̄]) such that suppµy ⊆ suppµx ; that is, ify ∉M(H∞[q̄]) then either suppµy∩
suppµx = θ or suppµx ⊆ suppµy . We let F = {x ∈ G : x ∈ Z(q), q is finite type}.
A point x ∈M(H∞) is called locally thin if there is an interpolating Blaschke product

q such that q(x)= 0 and
(
1−

∣∣Zn(α)
∣∣2
)∣∣q′(Zn(α)

)∣∣ �→ 1 (1.11)
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whenever Zn(α) is a subnet of the zero sequence {Zn} of q in D converging to x. A

point x ∈ M(H∞) is called locally thin if there exists a Blaschke product q which

is locally thin at x. Since for locally thin points Px is nontrivial, x ∈ G. Let L =
{x ∈ G : x is a locally thin point}, we will show that F ⊂ L. Finally, we let mq = {x ∈
M(H∞+C)|x is a minimal support point of H∞[q̄]}.

Let B a Douglas algebra. The Bourgain algebra Bb of B relative to L∞ is the set of

f in L∞ such that ‖ffn+B‖∞ → 0 for every sequence {fn} in B with fn → 0 weakly

in B. An algebra B is called a minimal superalgebra of an algebra A if A ⊂ B and

suppµy = suppµx for all x, y ∈M(A)\M(B). The minimal envelope Bm of a Douglas

algebra B is defined to be the smallest Douglas algebra that contains all the minimal

superalgebra of Ḃ. The mapping that assigns to B the Douglas algebra Bm is called the

minimal envelope map and the mapping that assigns to B the Douglas algebra Bb is

called the Bourgain map.

Let Ethin=[H∞ : q̄ | q is a thin interpolating Blaschke product], Efin=[H∞ : b̄ | b is of

finite type G], and EG=[H∞ : ϕ̄ |ϕ is of type G]. Then it is clear that Ethin ⊆ Efin ⊆ EG.

2. Some Douglas algebra B with the property Bm = B. We begin with the following

theorems.

Theorem 2.1. Let q be an interpolating Blaschke product of type G. Let B =H∞
N(q̄).

Then Bm = B.

Proof. Let b be an interpolating Blaschke product with b̄ ∉ B. Then there is an

m∈M(B) such that b(m)= 0. Since B =⋂x∈Z(q)H∞
suppµx then there is ay ∈ Z(q) such

that b̄ ∉H∞
suppµy . We can assume that suppµm ⊆ suppµy . This implies |b(y)|< 1. Let

{Zn} be the zero sequence of q in D. Since Z(q) = {Z̄n}\{Zn} and y ∈ Z(q), there is

a subsequence {Znβ} such that Znβ → y as β→∞. Since |b(Znβ)| → |b(y)| as β→∞,

there is a positive integer N and an ε with 0< ε < 1 such that |b(Znβ)|< 1−ε for all

nβ ≥N . Letϕ be the factor of q such that Z(ϕ)= {Znβ}∞nβ≥N\{Znβ}∞nβ≥N . Then |b|< 1

on Z(ϕ). By [12, Theorem 1], there are uncountable infinitely many x,y ∈ Z(ϕ) such

that suppµx ∩ suppµy = θ. This implies that there are infinitely many x,y ∈ Z(ϕ)
such that Ex∩Ey = θ and

⋃
x∈Z(ϕ) Ex ⊂ {m ∈M(B) : |b(m)| < 1}. By [9, Theorem 3]

we have that b ∉ Bm. This proves our theorem.

Theorem 2.2. [Efin]m = Efin.

Proof. Let q be any interpolating Blaschke product such that q̄ ∉ Efin. Then q is

not of finite type G (nor the product of a finite number of finite type G). Hence by [10,

Theorem 3.1], there are x and y in M(H∞+C) such that |q(x)| < 1, |q(y)| < 1 and

suppµx ⊆ suppµy .

Case 1. Suppose y ∈ M(Efin). Then by [8, Theorem 2] there is an uncountable

infinite index set I such that (a) for each α ∈ I, there is an xα ∈ M(H∞ +C) with

suppµxα ⊆ suppµy ; (b) xα ∈ Z(q); and (c) for α,β∈ I, α≠ β, suppµxα∩suppµxβ = θ.

Since y ∈ M(Efin) we have that xα ∈ M(Efin) for all α ∈ I. Thus
⋃
α∈I Exα ⊂ {m ∈

M(Efin) | q(m) < 1}. By [9, Theorem 3], q ∉ [Efin]m.

Case 2. If y ∉M(Efin). Then again for each α ∈ I, we have that xα ∈M(Efin). This

follows from [11, Theorem 9] which states that every invertible interpolating Blaschke
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product in Efin is the product of a finite number of interpolating Blaschke product of

finite type G. So if b is invertible in Efin, and |b(y)|< 1, then |b(xα)| = 1 for all α ∉ I
by [9, Theorem 3.1]. Thus xα ∈M(Efin) for all α∈ I, and so

⋃
α∈I Exα ⊂ {m∈M(Efin) |

|q(y)|< 1}. This implies that q̄ ∉ [Efin]m. Therefore Efin = [Efin]m.

Theorem 2.3. Ethin = [Ethin]m.

Proof. Let ϕ be an interpolating Blaschke product such that ϕ̄ ∉ [Ethin]. Since

Ethin ⊆ Efin, we have that [Ethin]m ⊆ [Efin]m = Efin. We can assume that ϕ̄ ∈ Efin. We

will show that there is an infinite set F ⊆ Z(ϕ) such that for any x,m ∈ F , suppµx∩
suppµm = θ and

⋃
x∈F ⊂ {w ∈ M(Ethin) | |ϕ(w)| < 1}. By [9, Theorem 3.1] this will

show that ϕ̄ ∉ [Ethin]m. Hence will show that [Ethin]m = Ethin. Since ϕ̄ ∉ Ethin there is

an x0 ∈M(Ethin) such that ϕ(x0)= 0. Let {Zn} be the zero sequence of ϕ in Ḋ. Since

ϕ is interpolating and Z(ϕ)= {Z̄n}\{Zn}, there exists a subsequence {Znβ} such that

Znβ→ x0. We will show that the set {Z̄nB}\{Znh} ⊂M(Ethin). Let q be any interpolating

Blachke product such that q̄ ∈ Ethin (then q is the product of a finite number of thin

interpolating Blaschke product). Since x0 ∈M(Ethin), we have that |q(x0)| = 1. Thus

|q(Znβ)| → 1 as β→∞. This shows that |q| = 1 on {Z̄nβ}\{Znβ}. Since this is true for

any q with q̄ ∈ Ethin, we have

{
Z̄nβ

}\{Znβ
}⊂M(Ethin

)
. (2.1)

Since {Z̄nβ}\{Znβ} is homeomorphic to the compactification of the integer, we have

that {Z̄nβ}\{Znβ} is uncountably infinite and by [12, Theorem 1], there are infinite

many x,y ∈ {Z̄nβ}\{Znβ} such that suppµ∩ suppµy = θ. Thus if F = {Z̄nβ}\{Znβ},
then we have ⋃

m∈F
Em ⊂

{
w ∈M(Ethin

) |ϕ(w) < 1
}
. (2.2)

Hence ϕ̄ ∉ [Ethin]m. This proves our theorem.

We are unable to give solutions to the following two problems.

Problem 2.4. Let q be an interpolating Blaschke product that is not of type G. Is it

true that (H∞
N(q̄))m =H∞

N(q̄)?

Let B be any Douglas algebra, B ≠ H∞ +C , and let W be a weak peak set for B.

Mortini and Younis have shown that the restricted algebra H∞
W has the property that

[H∞
W]m = [H∞

W]b =H∞
W , if W is a weak peak set for H∞.

Problem 2.5. What conditions must be imposed on the Douglas algebra B such

that BW = [BW]m? For example, if B = H∞[q̄], where q is an interpolating Blaschke

product of type G, and W is a weak peak set for B, then is BW = [BW]m?

Problem 2.6. Is [EG]m = EG?

We also have the following theorem. The case for the Bourgain algebra Bb has been

proven in [15]. The proof used here is quite different from theirs, and can be used to

show that his result also holds for the Bourgain algebras.

Theorem 2.7. Let A and B be Douglas algebras. Then (A∩B)m =Am∩Bm.
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Proof. Since A∩B is contained in both A andB by [9, Proposition 6], (A∩B)m is

contained in both Am and Bm. Hence (A∩B)m ⊂Am∩Bm.

To show that Am∩Bm ⊂ (A∩B)m, let ϕ be an interpolating Blaschke product such

that ϕ̄ ∈Am∩Bm. We show that ϕ̄ ∈ (A∩B)m. By [9, Theorem D] we can assume that

there is an x ∈ M(A) and a y ∈ M(B) such that {λ ∈ M(A) : |ψ(γ)| < 1} = Ex and

{µ ∈M(B) : |ψ(µ)|< 1} = Ey . Thus

M(A∩B)=M(A)∪M(B)=M(A[ψ̄]∩B[ψ̄])∪Ex∪Ey
=M((A∩B)[ψ̄])∪Ex∪Ey.

(2.3)

Hence {w ∈ (A∩B)m : |ψ(w)|< 1} = Ex∪Ey . By [9, Theorem 3] we have ψ̄∈ (A∩B)m.

Then our theorem follows.

The following corollaries are immediate consequences of the theorem.

Corollary 2.8. Let A and B be Douglas algebras with A = Am and B = Bm. Then

A∩B = (A∩B)m.

Corollary 2.9. Let B0 be a Douglas algebra with (B0)m = B0 and B be a Dou-

glas algebra such that there is an interpolating Blaschke product q with M(B0) ∩
M(H∞[q̄]) =M(B)∩M(H∞[q̄]). If A is a Douglas algebra with the property Am = A,

then (B[ϕ̄]∩A)m = B[q̄]∩A. In particular, H∞[ϕ̄]∩A = (H∞[ϕ̄]∩A)m for every

interpolating Blaschke product ϕ.

Proof. Our hypothesis implies that B0[q̄]= B[q̄], hence [B[q̄]]m = B[q̄]. So B[q̄]∩
A = (B[q̄]∩A)m follows from our theorem. By [2, Theorem 1] we have H∞

m =H∞+C ,

so by our theorem H∞
m[q̄]∩A= [H∞+C][q̄]∩A.

Theorem 2.10. Let B0 be a Douglas algebra such that (B0)m = B0. Let B be any

other Douglas algebra such that there is an interpolating Blaschke product ϕ with

M(B0)∩M(H∞[ϕ̄])=M(B)∩M(H∞[ϕ̄]). For an interpolating Blaschke product q set

Bx = B[ϕ̄]∩H∞
suppµx for each x ∈ Z(q). Put Be =∩{Bx : x ∈ Z(q)}. Then if q is of type

G, then (Be)m = Be.

Proof. We show that Be = B[ϕ̄]∩H∞
N(q̄). By an unpublished result of D. Sarason,

M
(
Be
)=M


 ⋂

x∈Z(q)
Bx


=

⋃

x∈Z(q)
M
(
Bx
)=

⋃

x∈Z(q)
M
(
B[ϕ̄]∩H∞

suppµx
)

=
⋃

x∈Z(q)

[
M
(
B[ϕ̄]

)∩M(H∞
suppµx

)]=M(B[ϕ̄])∪
⋃

x∈Z(q)
MH∞

suppµx

(2.4)

Now, if q is of type G, [7, Proposition 1] and [10, Theorem 3.2(i)] implies⋂
x∈Z(q)H∞

suppµx =H∞
N(q̄). Thus

⋃

x∈Z(q)
M
(
H∞

suppµx
)=M(H∞

N(q̄)
)
, (2.5)
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and we get

M
(
Be
)=M(B[ϕ̄])∪M(H∞

N(q̄)
)=M(B[ϕ̄]∩H∞

N(q̄)
)
. (2.6)

So by the Chang-Marshall theorem [1, 13] we have Be = B[ϕ̄]∩H∞
N(q̄).

The conditionM(B0)∩M(H∞[ϕ̄])=M(B)∩M(H∞[ϕ̄]), implies that B[ϕ̄]= B0[ϕ̄].
Hence [B[ϕ̄]]m = [B0[ϕ̄]]m = [B0]m[ϕ̄] = B0[ϕ̄] = B[ϕ̄], where the middle equality

follows from [9, Theorem 4]. By Theorem 2.1 (and its proof) we have (H∞
N(q̄))m =H∞

N(q̄)
if q̄ is of type G. Thus

(
Be
)
m =

(
B[ϕ̄]∩H∞

N(q̄)
)
m = B[ϕ̄]∩H∞

N(q̄) = Be. (2.7)

This proves our theorem.

Theorem 2.11. Let {qn} be a sequence of interpolating Blaschke product that are

not invertible in a Douglas algebraA. Suppose for each n there is a Douglas algebraAn
with [An]m =An andM(A)∩M(H∞[q̄n])=M(An)∩M(H∞[q̄n]). Let B =⋂∞n=1A[q̄n].
Then Bm = B.

Proof. Since B⊆A[q̄n] forn=1,2, . . . , by [9, Proposition 6] we have Bm⊆(A[q̄n])m
for all n. Since M(A)∩M(H∞[q̄])=M(An)∩M(H∞[q̄]), we have A[q̄n]=An[q̄n]. So

using [9, Theorem 4] we have

[
A
[
q̄n
]]
m =

[
An[q̄n]

]
m =

[
An
]
m
[
q̄n
]=An

[
q̄n
]=A[q̄n

]
. (2.8)

Thus Bm ⊆
⋂∞
n=1[A[q̄n]]m =

⋂∞
n=1A[q̄n]= B.

Corollary 2.12. If B =⋂∞n=1H∞[q̄n], then Bm = B.

Before we prove our next theorem, we have the following related lemmas. Lemma

2.13 shows that the set F ⊂ L.

Lemma 2.13. Let q be an interpolating Blaschke product that is of finite type G. Then

each x ∈ Z(q) is a locally thin point. That is F ⊂ L.

Proof. Since q is of finite type G, the set Z(q)∩Px is a finite set, hence there is a

factor q0 of q such that Z(q)∩Px = {x}. Hence H∞
suppµx [q̄0] is a minimal superalgebra

ofH∞
suppµx . HenceH∞

suppµx ⊂H∞
suppµx [q̄0]. By [14, Theorem 5] we have that x is a locally

thin point.

Lemma 2.14. Let B =H∞
suppµy , where y is a trivial point. If B ⊂ Bm, then there is an

interpolating Blaschke product q and an x ∈ Z(q) such that suppµx = suppµy .

Proof. If B ⊂ Bm then, by [8, Theorem D], there is an interpolating Blaschke prod-

uct q such that B[q̄] is a minimal superalgebra of B. Hence suppµy is a minimal sup-

port set of H∞[q̄]. By [6, Theorem 2] there is an x∈Z(q) such that suppµx=suppµy .

Theorem 2.15. Let q be an interpolating Blaschke product and set m̃q = {y ∈mq :

suppµy = suppµt, t is a trivial point}. Set T =⋂y∈m̃q H
∞
suppµy . Then Tb = T .

Proof. Suppose T ≠ Tb. Then by [9, Theorem C] there is an interpolating Blaschke

product C such that Z(C)∩M(T)={y}. By [7, Theorem 1] we haveM(T)=M(T[C̄])∪
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Py and y is a minimal support point of H∞[C̄]. By [14, Proposition 6], (H∞
suppµy )b =

H∞
suppµy [C̄]. So by [14, Theorem 5], y is a locally thin point. We show that this is

not the case by showing that there is x ∈ m̃q with suppµx = suppµy . By the remark

following the proof of [14, Theorem 5], this will lead to a contradiction. Suppose that

suppµy ≠ suppµx for all x ∈ m̃q. Then for each x ∈ m̃q one of the following must

occur. (i) suppµx ⊂ suppµy (properly contained in); (ii) suppµx∩suppµy = θ; or (iii)

suppµy ⊂ suppµx (properly contained in). We show that none of these can happen.

Suppose (i) is true. Then |C(x)| = 1 which implies that C̄ ∈ H∞
suppµx , since y is a

minimal support point of C . Thus (i) cannot hold for any x ∈ m̃q. If (ii) holds for all

x ∈ m̃q, then again C̄ ∈ T . Hence neither (i) or (ii) can hold for all x ∈ m̃q.

Now if (iii) holds for some x ∈ m̃q, then by [8, Theorem 2] there is an uncountable

set Γ ⊂ Z(C) such that suppµα ⊆ suppµx (properly contained in) for all α ∈ Γ and

suppµα∩suppµβ = θ for all α,β ∈ Γ and α ≠ β. Since x ∈M(T) we have α ∈M(T),
hence Γ ⊂M(T)∩Z(C). This implies thatZ(C)∩M(T)≠ {y}. This leads to a contradic-

tion. Thus (iii) cannot hold for any x ∈ m̃q. So if there is a y ∈M(T)∩Z(C) such that

T[C̄] is a minimal superalgebra for T , then there is a x ∈ m̃q with suppµy = suppµx .

This implies that x is a locally thin point, which is impossible. Thus Tb = T .

Is it true that F = L? That is, every locally thin point is the zero of an interpolating

Blaschke product of finite type G.

Problem 2.16. What if F is properly contained in L. Suppose x ∈ L\F . Is it true

that suppµx is maximal?

Both Bb and Bm are generated by a special type of minimal superalgebras (deter-

mined by the character of the minimal support point).

Under certain conditions we can determine the Bourgain algebra and the minimal

envelope algebras of maximal subalgebras of a Douglas algebra B (here B will have a

maximal subalgebra).

Theorem 2.17. Let B be a Douglas algebra such that Bb[q̄]= B[q̄] or Bm[q̄]= B[q̄]
for some interpolating Blaschke product q. Let Ax be the maximal subalgebra of B[q̄]
for which x is the corresponding minimal support point of B[q̄]. Then either

(i) Ax ⊂ (Ax)b and (Ax)b = (Ax)m = B[q̄], or

(ii) Ax = (Ax)b and (Ax)m = B[q̄].

Proof. By [14, Theorem 3], [5, Theorem 3], and [9, Theorem 4], our hypothesis

implies that B[q̄]= (B[q̄])b = (B[q̄])m.

Now letAx be any maximal subalgebra of B[q̄] associated with the minimal support

point x. First we assume that x is a locally thin point (see [14, Theorem 5]). Then the

maximal ideal space of B[q̄] and Ax are related by the equation

M
(
Ax
)=M(B[q̄])∪Px. (2.9)

Then B[q̄] is a minimal superalgebra of Ax , hence B[q̄]⊂ (Ax)b. Now using [14, The-

orem 3] again, we get

B[q̄]= (B[q̄])b =
(
Ax[q̄]

)
b =

(
Ax
)
b[q̄]=

(
Ax
)
b since q̄ ∈ (Ax

)
b. (2.10)
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Similarly B[q̄]= (Ax)m = (Ax)b if x is a locally thin point. This proves (i).

Now suppose that x is not a locally thin point (e.g., Px is not a homeomorphic disk,

see [3]). Then M(Ax) and M(B[q̄]) are related by

M
(
Ax
)=M(B[q̄])∪Ex (2.11)

with Px ⊆ Ex (or Z(q) ∩ Px has infinitely many points). Using [9, Theorem 4] we

have

B[q̄]= (B[q̄])m =
(
Ax[q̄]

)
m

= (Ax
)
m[q̄] by [6, Theorem 4]

= (Ax
)
m since q̄ ∈ (Ax

)
m.

(2.12)

Now, for any Douglas algebra A we have that A⊆Ab ⊆Am. Thus

Ax ⊆
(
Ax
)
b ⊆ B[q̄]=

(
Ax
)
m. (2.13)

Since Ax is a maximal subalgebra of B[q̄], we have that Ax = (Ax)b if x is not locally

thin. This proves (ii).

Corollary 2.18. Let q be any interpolating Blaschke product and set B = H∞[q̄].
Let Ax be any maximal subalgebra of B that corresponds to the minimal support point

of B. Then either

(i) Ax ⊂ (Ax)b and (Ax)b = (Ax)m = B, or

(ii) Ax = (Ax)b and (Ax)m = B.

Corollary 2.19. Let A be any interpolating Douglas algebra such that A = Ab or

A=Am, and let q be any interpolating Blaschke product such that q̄ ∉A. Set B =A[q̄]
and let Bx be any maximal subalgebra of B corresponding to the minimal support point

of A[q̄]. Then either

(i) Bx ⊂ (Bx)b and (Bx)b = (Bx)m = B, or

(ii) Bx = (Bx)b and (Bx)m = B.

Theorem 2.20. Let B be a Douglas algebra that has a maximal subalgebra Ax ,

where x is the minimal support point of B corresponding to Ax . Then (Ax)= Bm.

Proof. By [9, Theorem 4] we have that (Ax)m ⊆ Bm since Ax ⊆ B. Since Ax is a

maximal subalgebra of B there is an x0 ∈M(A)\M(B) and an interpolating Blaschke

product ψ0 such that

M
(
Ax
)=M(A[ψ̄0]

)∪Ex0 =M(B)∪Ex0 . (2.14)

So by [9, Theorem D] we have B ⊆ (Ax)m. If B0 is another superalgebra containing Ax ,

then there is some y0 ∈M(Ax) such that M(Ax) =M(B0)∪Ey0 . Hence we have that

B0 ⊆ (Ax)m and y0 ∈M(B), otherwise Ey0 = Ex0 . To show that Bm ⊆ (Ax)m, let ψ be

any interpolating Blaschke product such that ψ̄∈ Bm. Then by [9, Theorem D] we can

assume that {
λ∈M(B) : |ψ(λ)|< 1

}= Ex (2.15)
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for some x ∈M(B). But

{
m∈M(Ax

)
:ψ(m) < 1

}= Ex∪
{
m∈M(Ax

)
: |ψ(m)|< 1

}∩Ex0 . (2.16)

The set on the right-hand side is either Ex or Ex ∪Ex0 . Hence by [9, Theorem 4] we

have that ψ̄∈ (Am)m.

For (Ax)b we have the following special result if we assume an additional assump-

tion.

Theorem 2.21. Let B be a Douglas algebra that has a maximal subalgebra Ax ,

where x is the minimal support point of B corresponding to Ax . Assume that Px is a

nonhomeomorphic disk. Then (Ax)b ⊆ Bb.

Proof. Since B ⊆ Bb and (Ax)b ⊆ Bb, it suffices to show that B � (Ax)b. Since Ax
is a minimal subalgebra of B corresponding to x, by [7, Theorem 1] we have

M
(
Ax
)=M(B)∪Ex. (2.17)

Note that Px ⊂ Ex . Hence if ψ is any interpolating Blaschke product with ψ̄ ∈ B, but

ψ̄ ∉ Ax . Then we have, by [5, Corollary 1.5], the set M(Ax)∩Z(ψ) ⊇ Px∩Z(ψ) is an

infinite set. Then ψ̄ ∉ (Ax)b. Hence B � (Ax)b. (See [4, Theorem 2].)

The following two propositions on minimal support points seem to indicate that

the sets given in them are smaller in some sense than the set in the following two

well-known facts.

Fact 1. Let B be any Douglas algebra. Then an interpolating Blaschke product q is

invertible in B if and only if Z(q)∩M(B)= θ.

Fact 2. For any Douglas algebra B we have

B =
⋂

x∈M(B)
H∞

suppµx . (2.18)

Proposition 2.22. An interpolating Blaschke product q is invertible in a Douglas

algebra B if and only if M(B)∩mq = θ.

Proof. We have that mq ⊆ Z(q), hence if mq ∩M(B) ≠ θ then q̄ ∉ B. (See [7,

Theorem 2].)

To prove the converse, suppose that q̄ ∉ B. Then by Fact 1, Z(q)∩M(B)≠ θ. There is

a y0 ∈ Z(q) such that suppµy0 ⊆ suppµx for any x ∈ Z(q)∩M(B) and y0 ∈mq. (See

[7, Theorem 2].) Since x ∈M(B) we have thatM(H∞
suppµx )⊂M(B). SinceM(H∞

suppµx )⊂
M(L∞)∪{λ ∈M(H∞+C) : suppµλ ⊆ suppµx}, we have that y0 ∈M(B). Hence mq∩
M(B)≠ θ.

Let B be any Douglas algebra and set mq(B) = mq ∩M(B). Let MB = ∪{mq(B) :

q is an interpolating Blaschke product, q̄ ∉ B}. Let Γ(B)= {xα}α∈Λ be the family of all

minimal support points for MB such that suppµα∩suppµβ = θ if α≠ β. Then

Proposition 2.23. B =⋂xα∈Γ(B)H∞
suppµα .
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Proof. If x ∈MB , then there is an xα ∈ Γ(B) such that suppµxα = suppµx . So it

suffices to show that

B =
⋂

x∈MB
H∞

suppµx . (2.19)

Set B0 =
⋂
x∈MB H

∞
suppµx . Since MB ⊆ M(B), by Fact 2 we have that B ⊆ B0. Suppose

B ⊆ B0. Then by the Chang-Marshall theorem [1, 13] there is an interpolating Blaschke

product q such that q̄ ∈ B0 but q̄ ∉ B. Hence there is a y ∈ (B) such that q(y) = 0.

Hence q̄ ∉H∞
suppµy0

, so q̄ cannot be invertible in B0. Thus B0 = B.
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