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contraction type single-valued and set-valued compatible mappings.
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1. Introduction. Jungck [1] generalized the Banach contraction principle using the
commuting map concept, which is extended by Sessa [4] giving weakly commuting
map concept; this again modified in [2] by compatibility condition. Several authors [3,
5, 6] discussed various results on coincidence and fixed point theorem for compatible
single-valued and multi-valued maps. Here we develop some coincidence and fixed
point theorems for compatible single-valued and multi-valued maps satisfying some
generalized contraction type condition. Henceforth, we denote by N and R, the set
of naturals and nonnegative reals, respectively, and w = NuU {0} and (X,d), a metric
space, unless otherwise stated.

2. Preliminaries

DEFINITION 2.1 (see [3]). Two mappings f,g: X — X are compatible if and only if
aA(fgxn,gfxn) — 0 whenever {x,} is a sequence in X such that fx, — t, gx, — t,
teX.

Let C(X) = class of closed subsets of X, CB(X) = class of closed bounded subsets
of X, co(K) = convex hull of K c X. The Hausdorff metric H on CB(X) is defined as
H(A,B) =max{sup,c4D(x,B),supycz D(x,A)}, forall A,B € CB(X), where D(x,A) =
infyead(x,y).

DEFINITION 2.2 (see [3]). The maps f:X — X and T : X — CB(X) are compatible if
and only if fTx € CB(X) for all x € X and H(fTx,,Tfx,) — 0 whenever {x,} is a
sequence in X such that Tx,, — M € CB(X), fx, — t € M, where H is the Hausdorff
metric on X.

We now recall the following lemmas.

LEMMA 2.3 (see [7]). Let h: R, — R, be a nondecreasing upper semi-continuous
(u.s.c.) function. Then h(t) < t if and only if h" (t) — O for each t > 0 where h™ denotes
the composition of h with itself n times.

LEMMA 2.4 (see [3]). Let T:X — CB(X) and f : X — X be compatible. If fz € Tz for
some z € X, then fTz=Tfz.
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3. Coincidence and fixed point theorems for single-valued maps

THEOREM 3.1. Let X be any nonempty set and (Y,d) be a complete metric space.
Let f,g,T:X =Y satisfy
0 f(X),9(X)cTX);
(i) T(X) isclosedinY;
(iii) forall x,y € X,

d(fx,gy) < e[max{d(Tx,Ty),d(Tx, fx),d(Tx,gy),d(Ty, fx),d(Ty,g»)}],
(3.1
where h(t) = @[max{t,t,at,bt,t}] <t, foreach t > 0, a,b € {0,1,2} with
a+b=2and p:R, — R, is nondecreasing u.s.c function. Then f,g,T have a
coincidence point in X.
Further if
(iv) f or g is injective, then the coincidence point is unique in X.

PROOF. Choose any xy € X. From (i), we define an iteration vy, = fx2n = TXon+1,

YVon+l = 9Xon+1 = T Xops2. Let dy = d(Txy, TXy11). Then from (iii), we have

dons1 = A(Txon+1, TXons2) = A(Von, Yons1) = A(fXon,9X2n+1)

=@ [max {d(TXZns Tx2n+1)7d(Tx2nsfx2n)s

(3.2)
d(TxZn;gX2n+l)yd(TxZnJrlyfon):d(Tx2n+1:gX2n+l)}:|

<@ [max {dZnstns (don +d2n+1),0,d2n}]-

If do1 > doy, then contradiction arises; so taking do,.+1 < do2n, We have doy 1 <
h(doy). Similarly, doyni2 <don+1,don+2 <h(don+1).Hencedy 1 <dyandd, <h(dp-1) <

- < h™(dy), forall n € w.

This yields, by Lemma 2.3, lim,, d,, = 0 = lim,, (Y, Yn+1). Now, the sequence {y,}
is a Cauchy sequence in f(X), which can be proved using the same technique as used
in [6, Theorem 2.1] so from (ii), 3u € X > lim, v, = Tu, that is, lim, Tx, = Tu and
limy, fx2, = Tu = limy, gxo,+1. Suppose that fu = Tu + gu. Then

d(fu,Tu) <d(fu,gxon+1) +d(gxons1, Tu)

< @| max {d(Tu, Txons1),d(Tu, fu),d(Tu,gxzn1),d(TX2n11, fU),

d(TxZn+1,gxzn+1)}] +d(gxona, Tu) = d(fu,Tu)

<@ _max {O,d(Tu,fu),O,d(Tu,fu),O}],
) (3.3)

as n — o; hence d(fu,Tu) < d(fu,Tu) which is absurd. Hence fu = Tu. Similarly,
gu = Tu. Thus, fu = Tu = gu and uniqueness of u follows from (iii) and (@iv). O
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LEMMA 3.2. Let f,g : X — X be compatible. If fz=gz forsomez € X, then fgz=gfz.
PROOF. The proof is similar to that of Kaneko and Sessa [3]. O

THEOREM 3.3. Let (X,d,d) be a bimetric space such that X is complete with respect
tod. Let f,g,T : X — X satisfy conditions (i)-(iii) of Theorem 3.1 with respect to d, and
) (f,T) and (g,T) are compatible pairs;
i) 6(x,y) <k(d(x,y)) forall x,y € X,
where k : R, — R, is continuous with k(0) = 0. Then f,g,T have a unique common
fixed point in X.

PROOF. By Theorem 3.1, {Tx,} is Cauchy with respect to d and hence from (vi) it is
Cauchy with respect to §. Since X is complete with respect to 8, from Theorem 3.1(ii),
there exists z € X o fz = Tz = gz. Thus, by Lemma 3.2 and (v), Tfz = fTz and
gTz=Tgz.So TTz=Tfz= fTz=ffz=fgz=9fz=9ggz =9gTz = Tgz. Now,
from Theorem 3.1(iii) it is easy to show that fz = gfz. Thus, fz = gfz=Tfz =
ffz is a common fixed point of f,T and g in X. The uniqueness part follows from
Theorem 3.1(iii). O

COROLLARY 3.4. Let (X,d) be a complete metric space f,g,T : X — X satisfying
(i)-(iv) of Theorem 3.1 and (v) of Theorem 3.3. Then f,g, and T have a unique common
fixed point in X.

COROLLARY 3.5. Let (X,d) be a complete metric space and let 3 be a family of self
maps of X. If there is a map T in 3 such that for each pair f,g in 3 satisfying (i)-(iv) of
Theorem 3.1 and (v) of Theorem 3.3, then each member of 3 has a unique fixed point
in X which is a unique common fixed point of the family 3.

THEOREM 3.6. Let (X,d) be a complete metric space. Then f,g,T : X — X satisfying
Theorem 3.1(iii) have a unique common fixed point if and only if there is u € X such
that fu = gu = Tu and f?u = g°u = T?u.

PROOF. The necessary part is trivial. To prove the sufficient part, let there be a
ueX>s@ fu=gu=Tu, b fou=g%u=T?u.Let y = fu = gu = Tu. Then from
Theorem 3.1(iii) and (b), we can show that v = fy = Ty = gy, that is, v is a common
fixed point of f,g,T in X. Further, from (iii) of Theorem 3.1, the uniqueness of y
follows at once. O

THEOREM 3.7. Let X be a set and Y a Banach space. Let f,g:X — Y be such that
(1) co(f(X)) Ccg(X);

(i) g(X) isclosedinY;

@ii) [Ifx - fyll < plmax{llgx —gxl,llgx — fxIl,lgy — f¥II}] for all x,y € X
where @ : R, — R, is nondecreasing u.s.c. function with @ (qt) <t,1<q < 2.
Then there is a u € X such that fu = gu. Further, if f or g is injective, then u
is unique.

PROOF. Choose x € X.From (i) of Theorem 3.7, we define {x, } in X as fx, =gxn1,
for all n € w. Writing d,, = || fxn — fXn+1l and using (iii) of Theorem 3.7, we get

dp<dp-1, dp<@(dy1)<---<@"(dy), Vneuw. (3.4)
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Now, for each p € N,

p-1
[ fxn = fxnipll < Z [[fxXnsi = fxnirvll

i=1

N i " @F(do) -1 .

Z (0 =" G | 0

as n — oo by Lemma 2.3 implies {fx,} is Cauchy in Y and by assumption, lim,, fx,
exists finitely in Y. From (i), define gy, = afx, + (1—a)fxn+1,0<a <1in g(X). We
have

||fyn_gynH = a||fxn_fyn||+(l _a)fonﬂ —fynH

(3.5)

< ag| max{llgxn gl 9%  Fxall l93n ~ 0} |
+(1-a)@| max g% - g7all |91~ fxwaall lgyn =Sl |
(3.6)
Also,
g0 =gl = ILf X1 £l |+ (1= @£ X1 = Ftnen
<@" N (do)+(1-a)@™(do) < (2—a)p" ' (do) (using @ (do) < do),

l|gxni1—gynll = A=a)||fxn— fxnall < 1-a)@™(do).

(3.7)
Thus, from (3.4) and (3.7), (3.6) reduces to
fyn—gyull < acp[maX{(Z—a>¢>”‘1(do),cp"‘l(do),nyn—gynll}]
+(1—a)cp[maX{(l—a)cp"(do),cp”(do),||fyn—gyn||}]
< acp[maX{(Zfa)cp"’l(do),llfynfgynH}]
3.8
+(1- a)cp[maX{Q a)e" ! (do), gyn\l}] 68
as @(dg) <dp,1<2-a<?2
cp[ ax{(2-a)@" ! (do). || fyn - gynll}]
<@[2-a)e" " (do) | < " (do),
otherwise, if || f vy, — gyxll is maximum then a contradiction arises.
Now, for any p € N, writing K, = (¥ (do) —1)/(@(dop) —1) we get
llgyn —gynﬂaH <allfxn —fxn+p|| +(1-a)|[fxna —fxn+1+p||
(3.9)

< [acp"(do) +(1—a)cp"*1(d0)]K,, — 0 asn— o = {gyn}
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is Cauchy in g(X) C Y, and from (ii) of Theorem 3.7 there exists u € X > lim, gy,
gu. So, from (3.4), (3.7), and (3.8) we have, || fx, — fyull < | fxXn — gxunll + lgxn —
9ynll +1gyn — fyull — 0 as n — oo. Hence, lim, fx, = lim, fy, = lim,gy,
lim, gx, = gu.

Now, let fu # gu. Then from (iii) of Theorem 3.7, we have | fu — fx,ll
@[max{llgu — gxull, llgu — full, lgxn — fxull}]; taking limit as n — c, we have
lfu-gull < p[max{0,| fu—gull,0}] < ||fu — gull which is a contradiction. Hence
fu = gu. The second part follows from (iii) of Theorem 3.7 and injectiveness of f
or g. O

IA

4. Coincidence point for multivalued mappings

THEOREM 4.1. Let X be a Banach space; and let S, T : X — CB(X) and f : X — X be
such that

) SXUTX) < f(X) € C(X),

(i) for all x,y € X, H(Sx,Ty) = @{llfx — fyl, D(fx,Sx), D(fy,Ty),
D(fx,Ty), D(fy,Sx)} where @ : R2 — R, is u.s.c. and nondecreasing in
each coordinate variable with y(t) = max[@(t,t,t,at,bt) :a+b =2, a,b €
{0,1,2}1 <qt,0<q<1,t >0. Then f,S and T have a coincidence point in X.

PROOF. Choose a € (0,1) such that g'=* < 1. Let x¢ € X. Form (i), we define a
sequence {x,} in X as fxoni1 € SXon, fXon+2 € TX2n41 such that
[[fXone1 — fXons2|l <@ *H(SXon, TXon+1),
(4.1)
| fX2ons2 = fXons3|l <@ *H(TXon+1,SX2n+2),

for all n € w, writing d,, = ||fxn — fxn+1ll, we have from (ii) by routine calcula-
tions that dons1 < dop and dony1 < @' %doy. Similarly, dopio < dons1 and dopio <
q'%don 1. Thus, combining these we can write

Aps1 <dn, dn<q' dp1<---<q"Ydy, Vnew,0=<q'%<1. 4.2)

This shows that {fx,} is Cauchy in f(X) and from (i) of Theorem 4.1, there exists
zeXalimfx, = fz,

D(fz,Sz) < ||fz = fxons2||+ D(fXon+2,52) <||fz— fXons2|| + H(Sz, Txon11)
= (p{HfZ7fx2n+1||,D(nySZ)yD(fx2n+lyTx2n+1):D(fZ-TX2n+l),

D(fx2n:1,52)} +|fz = fXonsa|| 4.3)

< (p{HfZ_fX2n+1||,D(stSZ)y||fX2n+1_fX2n+2||v||f7—_fx2n+2H,
(||fx2n+1—fZ||+D(nySZ))}+||f2—fX2n+2||-
Asn — oo,wehave D(fz,5z) < {0,D(fz,52),0,0,D(fz,5z)} < @p{t,t,t,t,t} <qt

(where t = D(fz,5z)) which implies that fz € Sz = Sz. Similarly fz € Tz.
Hence z is a coincidence point of f,S and T in X. O
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In [3, Theorem 2] the continuity of the involved maps are taken; but in Theorem 4.1
instead of the continuity condition of the maps we take only f(X) € C(X) for the
existence of a coincidence point; to support this we give the following example.

EXAMPLE 4.2. Let X =[0,1]. Define S,T: X — CB(X) and f: X — X as follows:

1 1 0, Osxs%,
{0}, Osxsi, {0}, Osxsg, 11 -1
o {l} ox< e {l} L ox=1 fx=qa 25%%%
43 2 - 4) 2 - 2
§, x=1

(4.4)
Then SX = {0,1/4} =TX, fX =1{0,1/4,2/3} € C(X); S,T, and f are discontinuous.
Let @ : R — R, be given by @(t1,t2,t3,t4,t5) = +/t1/2, t; > 0; then y(t) = /t1/2.
Clearly S,T, f and @, y satisfy all the conditions of Theorem 4.1 with g = 1/2 and
0= f0€ S0=TO, that is, 0 is a coincidence point of S, T, and f.

THEOREM 4.3. Let X be a Banach space and f : X — X, S, T : X — C(X) satisfy (i)-(ii)
of Theorem 4.1 and (iii) (f,S) and (f,T) are compatible pairs. Then there is a point
z € X such that fz € Szn Tz. Suppose that {z,, = f"z} is a sequence of iterate in X
for z and {S,},{T,} are sequences of multifunctions on X where S,z =Sf" 1z,

Thoz=Tf" 'z, fr'zeS,znTyz, VYneN. (4.5)

If zy — z and {S,},{Ty,} converge, respectively, to S and T on X pointwise, then z is a
common fixed point of S and T.

PROOF. From Theorem 4.1, there is z € X 5 fz € Szn Tz. Again from (ii) of
Theorem 4.1, it is easy to show that Sz = Tz. Again, from (iii) of Theorem 4.3 and
Lemma 2.4, we have fz € Sz = Tz = f?z € fSz = Sfz, f°z € fTz = Tfz, and
Sfz = Tfz. Continuing this process, we get S,z = Sf* 'z = Tf" 1z = T,z where
zZy = fze Sf" 1z =Tf" 1z By hypothesis, S,z — Sz and T,,z — Tz. Then

D(z,5z) < ||z—znl||+D(2n,52)

<|lz=zu||+H(Snz,Sz) — 0 as n — oo, which implies that z € Sz = Sz.
(4.6)

As Sz = Tz, hence z is a common fixed point of S and T in X. O
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