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ON THE SPECTRUM OF THE DISTRIBUTIONAL KERNEL
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Abstract. We study the spectrum of the distributional kernel Kα,β(x), where α and β are
complex numbers and x is a point in the space Rn of the n-dimensional Euclidean space.
We found that for any nonzero point ξ that belongs to such a spectrum, there exists the

residue of the Fourier transform (−1)k ̂K2k,2k(ξ), where α = β = 2k, k is a nonnegative
integer and ξ ∈Rn.
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1. Introduction. Gel’fand and Shilov [2, pages 253–256] have studied the general-

ized function Pλ, where

P =
p∑
i=1

x2
i −

p+q∑
j=p+1

x2
j (1.1)

is a quadratic form, λ is a complex number, and p+q = n is the dimension of Rn.

They found that Pλ has two sets of singularities, namely λ = −1,−2, . . . ,−k,. . . and

λ = −n/2,−n/2−1, . . . ,−n/2−k,. . . , where k is a positive integer. For the singular

point λ=−k, the generalized function Pλ has a simple pole with residue

(−1)k

(k−1)!
δ(k−1)

1 (P) or resλ=−k Pλ = (−1)k

(k−1)!
δ(k−1)

1 (P) (1.2)

for p+q =n is odd with p odd and q even. Also, for the singular point λ=−n/2−k
they obtained

resλ=−n/2−k Pλ = (−1)q/2Lkδ(x)
22kk!Γ

(
(n/2)+k) (1.3)

for p+q =n is odd with p odd and q even.

Now, let Kα,β(x) be the convolution of the functions RHα (u) and R�β(v), that is,

Kα,β(x)= RHα (u)∗R�β(v), (1.4)

where RHα (u) and R�β(v) are defined by (2.1) and (2.3), respectively. Since RHα (u) and

R�β(v) are tempered distributions, see [4, pages 30–31], thusKα,β(x) is also a tempered

distribution and is called the distributional kernel.

In this paper, we use the idea of Gel’fand and Shilov to find the residue of the

Fourier transform (−1)k ̂K2k,2k(ξ), where K2k,2k is defined by (1.4) with α = β = 2k
and k is a nonnegative integer. We found that for any nonzero point ξ that belongs

to the spectrum of (−1)kK2k,2k(x), there exists the residue of the Fourier transform
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(−1)k ̂K2k,2k(ξ). Actually (−1)kK2k,2k(x) is an elementary solution of the operator �k
iterated k times, that is,�k[(−1)kK2k,2k(x)]=δ, whereδ is the Dirac-delta distribution.

The operator �k was first introduced by Kananthai [4] and named as the Diamond

operator defined by

�k =
[(

∂2

∂x2
1

+ ∂2

∂x2
2

+···+ ∂2

∂x2
p

)2

−
(

∂2

∂x2
p+1

+ ∂2

∂x2
p+2

+···+ ∂2

∂x2
p+q

)2]k
, (1.5)

where p+q =n is the dimension of Rn.

Moreover, the operator �k can be expressed as the product of the operators �k and

�k, that is,

�k =�k�k =�k�k, (1.6)

where �k is an ultra-hyperbolic operator iterated k times defined by

�k =
( p∑
i=1

∂2

∂x2
i
−

p+q∑
j=p+1

∂2

∂x2
j

)k
, (1.7)

where p+q =n. The operator �k is an elliptic operator or Laplacian iterated k times

defined by

�k =
(
∂2

∂x2
1

+ ∂2

∂x2
2

+···+ ∂2

∂x2
n

)k
. (1.8)

Trione [7, page 11] has shown that the function RH2k(u) defined by (2.1) with α = 2k
is an elementary solution of the operator �k. Also, Aguirre Téllez [1, pages 147–148]

has proved that the solution RH2k(u) exists only for odd n with p odd and q even

(p+q = n). Moreover, we can show that the function (−1)kR�2k(v) is an elementary

solution of the operator �k, where R�2k(v) is defined by (2.3) with β= 2k.

2. Preliminaries

Definition 2.1. Let x = (x1,x2, . . . ,xn) be a point of Rn, and write u = x2
1 +

x2
2 +···+x2

p−x2
p+1−···−x2

p+q, p+q = n. Denote by Γ+ = {x ∈ Rn : x1 > 0, u > 0}
the set of an interior of the forward cone, and Γ+ denotes the closure of Γ+. For any

complex number α, define

RHα (u)=



u(α−n)/2

Kn(α)
, for x ∈ Γ+,

0, for x �∈ Γ+,
(2.1)

where the constant Kn(α) is given by the formula

Kn(α)= π
(n−1)/2Γ

(
(2+α−n)/2)Γ((1−α)/2)Γ(α)

Γ
(
(2+α−p)/2)Γ((p−α)/2) . (2.2)

The function RHα (u) is called the ultra-hyperbolic kernel of Marcel Riesz and was

introduced by Nozaki [6, page 72]. The function RHα is an ordinary function or classical

function if Re(α) ≥ n and is a distribution of α if Re(α) < n. Let suppRHα (u) ⊂ Γ+,

where suppRHα (u) denotes the support of RHα (u).
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Definition 2.2. Let x = (x1,x2, . . . ,xn) be a point of Rn, and write v = x2
1 +

x2
2+···+x2

n. For any complex number β, define

R�β(v)=
2−βπ−n/2Γ

(
(n−β)/2)v(β−n)/2
Γ(β/2)

. (2.3)

The function R�β(v) is called the elliptic kernel of Marcel Riesz and is an ordinary

function for Re(β)≥n and is a distribution of β for Re(β) < n.

Definition 2.3. Let f be a continuous function, then the Fourier transform of f ,

denoted by �f or f̂ (ξ), is defined by

�f = f̂ (ξ)= 1
(2π)n/2

∫
Rn
e−i(ξ,x)f (x)dx, (2.4)

where x = (x1,x2, . . . ,xn) ∈ Rn, ξ = (ξ1,ξ2, . . . ,ξn) ∈ Rn, and (ξ,x) = ξ1x1+ξ2x2+
···+ξnxn. From (2.4), the inverse Fourier transform of f̂ (ξ) is defined by

f(x)=�−1f̂ (ξ)= 1
(2π)n/2

∫
Rn
ei(ξ,x)f̂ (ξ)dx. (2.5)

If f is a distribution with compact support, by [8, Theorem 7.4.3, page 187] (2.5) can

be written as

�f = f̂ (ξ)= 1
(2π)n/2

〈
f(x),e−i(ξ,x)

〉
. (2.6)

Lemma 2.4. Given the equation

�ku(x)= δ, (2.7)

where �k is the operator defined by (1.5), and δ is the Dirac-delta distribution, u(x) is

an unknown, k is a nonnegative integer and x ∈Rn, where n is odd with p odd, q even

(n= p+q). Then u(x)= (−1)kK2k,2k(x) is an elementary solution of the operator �k.
Here K2k,2k(x)= RH2k(u)∗R�2k(v) from (1.4) with α= β= 2k.

Proof. See [4, page 33].

In this paper, we study the spectrum of (−1)kK2k,2k(x), relate to the residue of the

Fourier transform (−1)k ̂K2k,2k(ξ).

Lemma 2.5. The Fourier transform

K̂α,β(ξ)= (2π)n/2�RHα (u)�R�β(v)

= (i)q2α+βπn

(2π)n/2Kn(α)Hn(β)
.

Γ(α/2)Γ(β/2)
Γ
(
(n−α)/2)Γ((n−β)/2)

×



√√√√√ p∑
i=1

ξ2
i −

p+q∑
j=p+1

ξ2
j



−α 


√√√√ n∑
i=1

ξ2
i



−β

, i=
√
−1.

(2.8)
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In particular, if α= β= 2k, k is a nonnegative integer,

(−1)k ̂K2k,2k(ξ)= 1
(2π)n/2

1((
ξ2

1+ξ2
2+···+ξ2

p
)2−(

ξ2
p+1+ξ2

p+2+···+ξ2
p+q

)2)k , (2.9)

where RHα (u) and R�β(v) are defined by (2.1) and (2.3), respectively.

Proof. See [2, page 194] and [5, pages 156–157].

Definition 2.6. The spectrum of the distributional kernel Kα,β(x) is the support

of the Fourier transform K̂α,β(ξ) or the spectrum of Kα,β(x) = suppK̂α,β(ξ). Now,

from Lemma 2.5 we obtain

suppK̂α,β(ξ)=
(
supp�RHα (u)

)∩(
supp�R�β(v)

)
. (2.10)

In particular, from (2.9) the spectrum of

(−1)kK2k,2k(x)= supp

[
1

(2π)n/2
((∑p

i=1ξ
2
i
)2−(∑p+q

j=p+1ξ
2
j
)2)k

]
. (2.11)

Lemma 2.7. Let P(x1,x2, . . . ,xn) be a quadratic form of positive definite, and is de-

fined by

P = P(x1,x2, . . . ,xn
)=


 p∑
i=1

x2
i




2

−

 p+q∑
j=p+1

x2
j




2

, (2.12)

then for any testing function ϕ(x) ∈ D, the space of infinitely differentiable function

with compact support,

〈
δ(k)(P),ϕ

〉=
∫∞

0

[(
∂

4s3∂s

)k(
sq−4ψ(r ,s)

4

)]
s=r
rp−1dr, (2.13)

〈
δ(k)(P),ϕ

〉= (−1)k
∫∞

0

[(
∂

4r 3∂r

)k(
rp−4ψ(r ,s)

4

)]
r=s
sq−1ds, (2.14)

where r 2 = x2
1+x2

2+···+x2
p , s2 = x2

p+1+x2
p+2+···+x2

p+q, and

ψ(r ,s)=
∫
ϕdΩpdΩq, (2.15)

where dΩp and dΩq are the elements of surface area on the unit sphere in Rp and

Rq, respectively. Both integrals (2.13) and (2.14) converge if k < (1/4)(p+q−4) for

any ϕ(x) ∈ D. If k ≥ (1/4)(p + q − 4), these integrals must be understood in the

sense of their regularization and (2.13) defined as 〈δ(k)1 (p),ϕ〉 and (2.14) defined as

〈δ(k)2 (p),ϕ〉. Moreover, if we put u= r 2, v = s2, thus (2.13) and (2.14) become

〈
δ(k)(p),ϕ

〉= 1
16

∫∞
0

[
∂k

∂vk
(
v(q−4)/4ψ1(u,v)

)]
v=u

u(1/4)(p−4) du, (2.16)

〈
δ(k)(p),ϕ

〉= (−1)k

16

∫∞
0

[
∂k

∂uk
(
u(p−4)/4ψ1(u,v)

)]
u=v

v(1/4)(q−4) dv, (2.17)

where ψ1(u,v)=ψ(r ,s).
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Proof. See [2, pages 247–251].

Lemma 2.8. LetGb = {ξ ∈Rn : |ξ1| ≤ b1, |ξ2| ≤ b2, . . . ,|ξn| ≤ bn} be a parallelepiped

in Rn and bi (1≤ i≤n) is a real constant and the inverse Fourier transform of K̂α,β(ξ)
is defined by

Kα,β(x)=�−1K̂α,β(ξ)= 1
(2π)n/2

∫
Gb
ei(ξ,x)K̂α,β(ξ)dξ, (2.18)

where Kα,β is defined by (1.4) and x,ξ ∈Rn, then Kα,β(x) can be extended to the entire

function Kα,β(z) and be analytic for all z = (z1,z2, . . . ,zn)∈ Cn, where Cn is then-tuple

space of complex number and

∣∣Kα,β(z)∣∣≤ C exp
(
b
∣∣ Im(z)

∣∣), (2.19)

where exp(b| Im(z)|) = exp[b1| Im(z1)| + b2| Im(z2)| + ··· + bn| Im(zn)|] and C =
(1/(2π)n/2)

∫
Gb |K̂α,β(ξ)|dξ is a constant. Moreover, Kα,β(x) has a spectrum contained

in Gb.

Proof. Since the integral of (2.18) converges for all ξ ∈ Gb, thus Kα,β(x) can be

extended to the entire function Kα,β(z) and be analytic for all z ∈ Cn. Thus (2.18) can

be written as

Kα,β(z)= 1
(2π)n/2

∫
Gb
ei(ξ,z)K̂α,β(ξ)dξ. (2.20)

Now,

∣∣Kα,β(z)∣∣≤ 1
(2π)n/2

∫
Gb

∣∣K̂α,β(ξ)∣∣∣∣exp
(
iξ1z1+iξ2z2+···+iξnzn

)∣∣dξ

= 1
(2π)n/2

∫
Gb

∣∣K̂α,β(ξ)∣∣∣∣exp
(
iξ1σ1+iξ2σ2+···+iξnσn

−ξ1µ1−ξ2µ2−···−ξnµn
)∣∣dξ,

(2.21)

where

zj = σ +iµj (j = 1,2, . . . ,n), (2.22)

thus

∣∣Kα,β(z)∣∣≤ 1
(2π)n/2

∫
Gb

∣∣K̂α,β(ξ)∣∣dξ exp
(
b1|µ1|+b2|µ2|+···+bn|µn|

)
(2.23)

for |ξj| ≤ bj , or |Kα,β(z)| ≤ C exp(b1| Im(z1)| + b2| Im(z2)| + ··· + bn| Im(zn)|), or

|Kα,β(z)| ≤ C exp(b| Im(z)|), where C = (1/(2π)n/2)
∫
Gb |K̂α,β(ξ)|dξ is a constant.

We must show that the support of K̂α,β(ξ) is contained in Gb. Since Kα,β(z) is an

analytic function that satisfies the inequality (2.19) and is called an entire function of

order of growth ≤ 1 and of type ≤ b, then by Paley-Wiener-Schartz theorem, see [3,

page 162], K̂α,β(ξ) has a support contained in Gb, that is the spectrum of Kα,β(x) is

contained in Gb.
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In particular, forα= β= 2k, the spectrum of (−1)kK2k,2k(x) is also contained inGb,

that is supp[(−1)k ̂K2k,2k(ξ)]⊂Gb, where (−1)kK2k,2k(x) is an elementary solution of

the Diamond operator �k by Lemma 2.4, and the Fourier transform (−1)k ̂K2k,2k(ξ)
given by (2.9) can be defined as follows.

Definition 2.9. The Fourier transform

(−1)k ̂K2k,2k(ξ)=




1

(2π)n/2
[(∑p

i=1ξ
2
i
)2−(∑p+q

j=p+1ξ
2
j
)2]k , for ξ ∈Gb,

0, for ξ ∈ CGb,
(2.24)

where ξ = (ξ1,ξ2, . . . ,ξn)∈Rn and CGb is the complement of Gb.

3. Main results

Theorem 3.1. For any nonzero point ξ∈M whereM is a spectrum of (−1)kK2k,2k(x),
and (−1)kK2k,2k(x) is an elementary solution of the operator �k by Lemma 2.4. Then

there exists the residue of the Fourier transform (−1)k ̂K2k,2k(ξ) at the singular point

λ=−k and such a residue is

(−1)k−1

(2π)n/2(k−1)!
δ(k−1)(p)

1 or resλ=−k(−1)k ̂K2k,2k(ξ)= (−1)k−1

(2π)n/2(k−1)!
δ(k−1)(p),

(3.1)

where

P = (
ξ2

1+ξ2
2+···+ξ2

p
)2−(

ξ2
p+1+ξ2

p+2+···+ξ2
p+q

)
, (3.2)

p+q = n and δ(k−1)
1 (P) is defined by (2.16) with δ(k−1)(P) = δ(k−1)

1 (P) and n is odd

with p odd, q even.

Proof. We define the generalized function Pλ, where P is given by (3.2) and λ is a

complex number, by 〈
Pλ,ϕ

〉=
∫
P>0

Pλ(ξ)ϕ(ξ)dξ, (3.3)

where ξ = (ξ1,ξ2, . . . ,ξn) and dξ = dξ1dξ2 ···dξn and ϕ(ξ)∈D, the space of contin-

uous infinitely differentiable function with compact support. Now,

〈
Pλ,ϕ

〉=
∫
P>0

[(
ξ2

1+ξ2
2+···+ξ2

p
)2−(

ξ2
p+1+ξ2

p+2+···+ξ2
p+q

)]λϕ(ξ)dξ. (3.4)

We transform to bipolar coordinates defined by

ξ1 = rw1, ξ2 = rw2, . . . , ξp = rwp,

ξp+1 = swp+1, ξp+2 = swp+2, . . . , ξp+q = swp+q, p+q =n, (3.5)

where
∑p
i=1w

2
i = 1 and

∑p+q
j=p+1w

2
j = 1. Thus

r =

√√√√√ p∑
i=1

ξ2
i , s =

√√√√√ p+q∑
j=p+1

ξ2
j . (3.6)
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We have 〈Pλ,ϕ〉 =
∫
[r 4−s4]λϕ(ξ)dξ. Since the volume dξ = rp−1sq−1dr dsdΩp dΩq

where dΩp and dΩq are the elements of surface area on the unit sphere in Rp and Rq,

respectively. Thus

〈
Pλ,ϕ

〉=
∫
p>0

(
r 4−s4)λϕrp−1sq−1dr dsdΩp dΩq

=
∫∞

0

∫ r
0

(
r 4−s4)λψ(r ,s)rp−1sq−1dsdr ,

(3.7)

where ψ(r ,s)=
∫
ϕdΩp dΩq.

Since ϕ(ξ) is in D, then ψ(r ,s) is an infinitely differentiable function of r 4 and

s4 with bounded support. We now make the change of variable u = r 4, v = s4, and

writing ψ(r ,s)=ψ1(u,v). Thus we obtain

〈
Pλ,ϕ

〉= 1
16

∫∞
u=0

∫ u
v=0

(u−v)λψ1(u,v)u(p−4)/4v(q−4)/4dvdu. (3.8)

Write v =ut. We obtain

〈
Pλ,ϕ

〉= 1
16

∫∞
0
uλ+(1/4)(p+q)−1du

∫ 1

0
(1−t)λt(q−4)/4ψ1(u,ut)dt. (3.9)

Let the function

Φ(λ,u)= 1
16

∫ 1

0
(1−t)λt(q−4)/4ψ1(u,ut)dt. (3.10)

Thus Φ(λ,u) has singularity at λ = −k where it has simple poles. By Gel’fand and

Shilov [2, page 254, equation (12)] we obtain the residue of Φ(λ,u) at λ=−k, that is,

resλ=−kΦ(λ,u)= 1
16
(−1)k−1

(k−1)!

[
∂k−1

∂tk−1

{
t(q−4)/4ψ1(u,ut)

}]
t=1
. (3.11)

Thus, resλ=−kΦ(λ,u) is a functional concentrated on the surface P = 0 (t = 1, u= v ,

p =u−v = 0). On the other hand, from (3.9) and (3.10) we have

〈
Pλ,ϕ

〉=
∫∞

0
uλ+(1/4)(p+q)−1Φ(λ,u)du. (3.12)

Thus 〈Pλ,ϕ〉 in (3.12) has singularities at λ = −n/4,−n/4−1, . . . ,−n/4−k. At these

points,

resλ=−n/4−k
〈
Pλ,ϕ

〉= 1
k!

[
∂k

∂uk
Φ
(
− n

4
−k,u

)]
u=0

. (3.13)

Thus the residue of 〈Pλ,ϕ〉 at λ = (−1/2)n−k is a functional concentrated on the

vertex of the surface P . Now consider the case when the singular point λ=−k. Write

(3.10) in the neighborhood of λ = −k in the form Φ(λ,u) = Φ0(u)/(λ+k)+Φ1(λ,u)
where Φ0(u) = resλ=−kΦ(λ,u) and Φ1(λ,u) is regular at λ = −k. Substitute Φ(λ,u)
into (3.12) we obtain

〈
Pλ,ϕ

〉= 1
λ+k

∫∞
0
uλ+(1/4)(p+q)−1Φ0(u)du+

∫∞
0
uλ+(1/4)(p+q)−1Φ1(λ,u)du. (3.14)
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Thus resλ=−k〈Pλ,ϕ〉 =
∫∞
0 u−k+(1/4)(p+q)−1Φ0(u)du. By substituting Φ0(u) and (3.11),

we obtain

resλ=−k
〈
Pλ,ϕ

〉= (−1)k

16(k−1)!

∫∞
0

[
∂k−1

∂tk−1

{
t1(q−4)/4ψ1(u,ut)

}]
t=1
u−k+(1/4)(p+q)−1du

(3.15)

since, we put v =ut. Thus ∂k−1/∂tk−1 =uk−1(∂k−1/∂vk−1), by substituting ∂k−1/∂tk−1

we obtain

resλ=−k
〈
Pλ,ϕ

〉= (−1)k

16(k−1)!

∫∞
0

[
∂k−1

∂tk−1

{
v1(q−4)/4ψ1(u,v)

}]
u=v

u(1/4)p−1du. (3.16)

Now, by (2.16)

resλ=−k
〈
Pλ,ϕ

〉= (−1)k−1

(k−1)!
δ(k−1)

1 (P). (3.17)

Since, by Definition 2.9 we have

(−1)k ̂K2k,2k(ξ)= 1
(2π)n/2

Pλ for λ=−k, (3.18)

and ξ ∈ Gb. Let M be a spectrum of (−1)kK2k,2k(x) and M ⊂ Gb by Lemma 2.8. Thus

for any nonzero ξ ∈M we can find the residue of (−1)k ̂K2k,2k(ξ), that is,

resλ=−k
〈
(−1)k ̂K2k,2k(ξ),ϕ(ξ)

〉= 1
(2π)n/2

resλ=−k
〈
Pλ,ϕ

〉

= (−1)k−1

(2π)n/2(k−1)!
〈
δ(k−1)

1 (P),ϕ
〉 (3.19)

or resλ=−k(−1)k ̂K2k,2k(ξ)= ((−1)k−1/(2(π)n/2(k−1)!))δ(k−1)
1 (P) for ξ ∈M and ξ �= 0.

Now consider the case ξ = 0. We have from (3.13) that, the residue of 〈Pλ,ϕ〉 occurs

at the point λ= (−1/2)n−k that is resλ=−(1/2)n−k〈Pλ,ϕ〉 is a functional concentrated

on the vertex of surface P . Since u= 0 and v =ut, then u= v = 0, that implies

√
ξ2

1+ξ2
2+···+ξ2

p =
√
ξ2
p+1+ξ2

p+2+···+ξ2
p+q = 0. (3.20)

It follows that ξ1 = ξ2 = ··· = ξp+q = 0, p+q = n. Thus, the residue of 〈Pλ,ϕ〉 is

concentrated on the point ξ = 0.

Since, from Definition 2.9, (1/(2π)n/2)Pλ = (−1)k ̂K2k,2k(ξ) if λ=−k. Thus we only

consider the residue of (−1)k ̂K2k,2k(ξ) at λ=−k. From (3.12), we consider the residue

of 〈Pλ,ϕ〉 only at λ = −k. That implies (1/4)(p+q)− 1 = 0 or n = 4 (p+q = n).
Since n = 4 is an even dimension which contradicts Lemma 2.4, the existence of the

elementary solution (−1)kK2k,2k(x) that exists for odd n. Thus cases (3.12) and (3.13)

do not occur. This implies that the case ξ = 0 does not happen. It follows that

resλ=−k(−1)k ̂K2k,2k(ξ)= (−1)k−1

(2π)n/2(k−1)!
δ(k−1)

1 (P) (3.21)

for nonzero point ξ ∈M concentrated on the surface P = 0, whereM is a spectrum of

(−1)kK2k,2k(x).
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