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ABSTRACT. We construct and study finitely generated graded subalgebras of the Lie algebra
of a smooth manifold.
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1. Introduction. Let M be a smooth manifold of dimension n > 1. Embed M in R™
for some m > n so that the resulting point set forms an analytic manifold with no
boundary. That this is possible follows from Whitney [1]. Let (M) be the Lie algebra
of smooth vector fields on M that smoothly go to zero at infinity if M is not compact.

We will look at two types of finitely generated graded subalgebras of ¥(M). In one
type we look at the Lie algebra generated by n analytic vector fields that span the
tangent space at some point of M and such that no subset generates a finite dimen-
sional Lie algebra. It is shown that this is a graded Lie algebra and that the graded
subalgebras of two manifolds are isomorphic if and only if the manifolds are diffeo-
morphic. The other type is constructed from an atlas of the manifold satisfying some
conditions.

2. Graded subalgebras with dim M number of generators. Without loss of gen-
erality, we set n = 2 in this section. Choose two analytic vector fields X; € ¥(M)
that span the tangent space for some point of M and such that m is infinite dimen-
sional where m = m(X;,X>) = (X1, X») is the Lie algebra generated by the X;. We have
m=>p_; m(X1,X2) where my = mi(X1,X>2) is the span over R of the set

10 X[+ (X X )] 1] 2 = 1,2] 2.1)
For a smooth atlas of M define a topology on ¥(M) by the metric

1 Jv-—wlk
2k1+lv—wl’

plv,w)=>

k=0

v,weLM), (2.2)

where ||v —w]||k is the supremum on M of partial derivatives of order less than k + 1
of components of v —w. Construct Xj, #, and p(-,-) for a smooth manifold M in the
same way that X;, m, and p(-,-) were instead for M. Assume there is a Lie algebra
epimorphism & :m — m.

LEMMA 2.1. The completion m of m in the p>(-,-) = p(-,-)+p(®(-),®(-)) topology
isF(M).
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PROOF. Define

o AMEL !
Mg = > g adt(x) (ad' (X2) ([X1,X2]) (2.3)
kl=0 T

which can be shown to converge for all A, € in the p, topology. Define

V=<=ZakA,\k§k: Zai<oo]»c9(M). (2.4)
k=1 k=1
Let L be a nonzero element of ¥(M) and D a countable dense subset of M. Consider
it = (LYo, 2 AL, (p0, A0 (po),...) €1 2.5)
2i-1= Pi 5 oNE pi 1306 Pi)s--- 2, .
vai = (LO (), 222, (p1). LA? () el €D (2.6)
2i = Pi 5 oNE pi 130G pPi)s-.- 2, Pi , .

where for example L® (p;) is the second component of L(p;) is a coordinate neigh-
bourhood of p; and I, is the Hilbert space of elements (a;,dz,...) so that >;_; a% < o
with inner product (-,-). Let W be the span of the set of v. Since m (X1, X>) is infinite
dimensional there are Ay, & so that the map that maps (a;,a»,as,...) to (az,as,...) is
injective on W. It will be injective on W, the completion of W in the (-, -) topology. If,
say, LM p; = 0 then (0, 1/2Af\11)§1 (pr), 1/3A)(\12)§2 (px),...) is not an element of W. There
is then a nonzero (a,a;,a»,...) € > with a # 0 so that

aL(pi) +a1Ax g (pi) +a2Ay,e, (pi) +---=0, Vp;,eD. 2.7)

Since D is dense this equation holds for all p € M hence L € V. O
THEOREM 2.2. Ifm and i are isomorphic then M and M are diffeomorphic.

PROOF. Let ® be anisomorphism of m and . Let m have the topology p» and # the
topology p2(-,-) = p(-,-) +p(®~1(-),®"1(-)). The Lie bracket and ® are continuous
in this topology.

Let A,B be the closure of open sets of M. By Lemma 2.1, there are vector fields
E,F € with supports A, B, respectively. Let A, B be the supports of ®(E), ®(F),
respectively. If AnB # @ then there are E, F so that [E,F] # 0 hence [®(E),®(F)] #0
consequently AnB # @ and vice versa.

Let pg € M and let A; be the closure of open sets of M and let E; € m have support
A; and ®(E;) support A;. It follows from the previous paragraph that if A;;; C A;
then A;,; C A;. The A; can be chosen so the diameters of A;, A; approach zero and
{po} =N Ai. Let {po} = N3, A;. Let {B;, B;} be another such sequence so that {po} =
N;>,B; and suppose {p1} = nf‘;lfs’i. Now the sequence of sets {A; N B, A; N B;} satisfy
the same conditions so we must have that py = p,. We thus have a well-defined map
T:M — M so that T(pg) = Po which on using the previous argument but with &1 is
a bijection.

Choose a coordinate neighborhood (x,y) of po. Using e*2dX1) (X,), let A(x,) be
the value of A required to move the integral curve of X, passing through p, along
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X1 so that it intersects the point (x,y). If X;(po) = 0 there is then a Z; € m so that
X1(po) + Z1(po) # 0. Now use Lemma 2.1 with ® restricted to (X; + Z1,X>). The map
7 will remain unchanged. Similarly, using e$2d4(X2) (X}) we can construct E(x,y).

Let B be the closure of a neighborhood of py then by Lemma 2.1 there is a sequence
Z{%) € V that converges to a smooth vector field with support B. Consider a coordinate
system so that Ayg(x,y) = Ag(x +A,¥), po = (0,0) so Z,{l(')) constructed by replacing
Aj g, BY Ayag in Z(()Q will converge to a smooth vector field with support B — (A,0)
for sufficiently small B. Let d)(Zéf))) have support B. For a coordinate neighborhood
(%,3) of po = T(po) = (0,0) such that Ayg(%,7) = Ag(X +A,7) we have &(Z\)) will
converge to a smooth vector field with support B — (A,0). Using also a coordinate
system so that Oxg(x,)) = Oxro(x,y + &) where ©,¢ is constructed by interchanging
X1 and X» in Ajg and on choosing smaller and smaller B we can conclude that T maps
the point (x,y) to (X,¥) so that

Alx,y) =A%,7), Ex,) =E&%,), 2.8)

where for example using eMad(@(XD) (§(X5)), A(%, %) is the value of A required to move
the integral curve of ®(X») passing through p, along ®(X;) until it intersects the
point (X,7). Now A(x,y), 5\(5(,5/), E(x,y), g(ic,j/) are smooth functions so by taking
derivatives of (2.8) it follows that T is a diffeomorphism. O

It follows from Theorem 2.2 that an automorphism of m induces a diffeomorphism
of M.

Define Vy(X1,X2) = Zle my (X1,X>2). The dimension of Vy(X;,X>?) is locally maxi-
mal if there is € > 0 such that for analytic vector fields Y; on M so that p(X;,Y;) <€
we have dim VN(Yl,Yz) < dim VN(Xl,Xg).

Let {vq,vgk} be a set of smooth vector fields on M and let || - || be a norm on the
span of this set. We also require that as k — o, [[vgx —vg4ll = 0.

LEMMA 2.3. Ifvy,v2,...,v; are linearly independent then there is an N such that for
k> N, vik,Vok,..., Vix are linearly independent.

PROOF. Assume there are t — « so that for each t we can find ay; so that
l
atVig+asivot+---+apvy =0, z ait =1. (2.9)
k=1

There is a subsequence {ays} and ay such that |ays —ax| < 1/s, k =1,2,...,1. Taking
the limit as s — o« we have a;v; +a>v2 + - - - + a;v; = 0 with not all the ay zero which
contradicts the linear independence of the set {vy,v,,...,v;}. O

Let (F1,F>) be a free Lie algebra so dim Vy (X1,X?) < dim Vy (F1,F>) < . Since the
dimension of Vy(X1,X>) is bounded for all analytic X;, X» there are by Lemma 2.3
analytic X; so that the dimension of Vy(X1,X>) is locally maximal. In fact it can be
shown that there is a Lie algebra m(X;, X>) with analytic X; so that the dimension of
VN()?l,Xz) is locally maximal for all N.

THEOREM 2.4. The Lie algebram(X,,X,) is a graded Lie algebra.
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PROOF. Let Y; be the projection of e‘Vz(a/axp), p = 1,2,...,m onto the tangent
space at each point of M. Choose two of the projections say Y1, Y> so that they span
the tangent space at some point of M. For € > 0 there is an embedding and coordinates
on M so that

=l

Yj(xl,xz)fe*f |l <e Vix?+x3) <1, j=1,2. (2.10)
J

0

Now by argument of Theorem 3.1 we have that m(e*VZ(a/axl ),e*’z(a/axz )) is a graded
Lie algebra. By Lemma 2.3 with a sufficiently small € we have

Vn(Y1,Y2) =my (Y1, Y2)oma (Y, Y2) @ - - - @my (Y1, Y2). (2.11)
Define E;(t) = tY; + (1 -t)X; and assume
By (E1 (£),E2(t)) +Bo(E1(t),E2(t)) + - - + BN (E1 (), E2(t)) =0 (2.12)
with B, (E1(1),E2(1)) # 0 for some p < N where By (E; (£),E»(t)) is
iy (1) Byt (E1 (8),E2 (£)) + - - -+ ag, (8) By, (E1 (1), Ea (1)) (2.13)
and Byq (E1(t),E2>(t)) is
[Ej, (£),[Ej, (£),[ ..., [Ejp_, (), Eji ()] ] - - - 1] € mi (Eq (1), E2 (1)), (2.14)

where the j; depend on k and gq. Since the dimension of Vn(X1,X5) is locally maximal
we have that there is a ¢; < 1 so that for t € (£1,1], (2.12) holds. The a4 (t) will
then be polynomials in t. By (2.11) and Lemma 2.3 there is a ty > 0 so that for t €
[0,t0) we must have B, (E1(t),E2(t)) = 0. Now B, (E;(t),E>(t)) is analytic in t so
MBp(E1(1),E2(1)) = 0 which is a contradiction hence

VN(Xl,XZ) =m (}A(l,f(z) dmp ()?1,)?2) D--- @mN(Yl,Xg). (215)
O

THEOREM 2.5. The Lie algebras m(X,,X>) and m(X,,X>) are isomorphic.

PROOF. Let € > 0 be such that for all analytic Y; so that p(Y;,X;) < € we have that
dim Vy(Y1,Y2) = dim Vy(X1,X>). Let Z; — X; € @F_,m (X1, X>) so that p(Z;,X;) <e.
Assume B(Z1,7Z») = 0 where

%(21,22):%1(21,22)+"'+%N(Z1,Zz) (216)

and %k(ZI,Zg) = ax1 Bi1 (Z1,Z2)+ -+ + aklkBklk (Z1,2>). The dimension of VN(Zl,Zz)
will be locally maximal so by argument of Theorem 2.4 we have that B,(Z;,Z;) =0
for all p < N. Now B,(Z1,7Z2) = Bp(X1,X2) + Wys1 = 0 where W, is an element
of eaf:wlmk(f(l,f(z) hence B, (X1,X>) = 0 for all p < N consequently B(X;,X>) = 0.
This holds for all such %. Since the dimension of Vy(X1,X>) is locally maximal we
have %B(Z,,Z») = 0 if and only if #(X;,X>) = 0.

Define E;(t) = tX; + (1 - t)X;. Using Lemma 2.3 there is a o > 0 such that for
te[0,ty), p(EA,-(t),)A(j) <e€and B(E;(t),E>(t)) is a basis element of Vy (E; (t),E»(t)) if
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and only if B(X1, X») is a basis element of Vi (X1, X>). Using Lemma 2.1 withm = # and
® = id we can conclude that B(E; (t),E>(t)) = 0forall to € [0,ty). Now B(E; (t),E>(t))
is analytic in t so when t = 1 we have % (X1, X,) = 0. This holds for all N and all such
% so we can conclude there is an epimorphism

d:m(X, X)) —m(X, Xo). (2.17)

It can be shown that there are W; € m so that Wj, ®(W;) are analytic and the dimen-
sion of Vi (®(Wy),®(W>)) is locally maximal for all N and consequently ® restricted
to (Wy,W>) is an isomorphism. By Lemma 2.1 the completion of (W;,W,) in the p;
topology is $(M) so ® restricted to m(X;,X>) is an isomorphism. O

It follows from Theorems 2.4 and 2.5 that m(X;, X>) is a graded Lie algebra.

By Lemma 2.3, Theorem 2.5, and the argument presented in the first paragraph of
Theorem 2.4, it can be shown that if B(X;, X>) is a basis element of m(X;, X>) then the
bracke’[B(e‘Vz(a/axl),e‘V2 (0/0x>)) is abasis element ofm(e"2 (a/axl),e‘r2 (0/0x7))
and vice versa. It can also be shown that the dimension of mk(e‘yz(a /0x1), e‘TZ(a/sz )
grows polynomially with k hence m(X;,X>) is not a free Lie algebra.

THEOREM 2.6. The Lie algebrasm(X1,X») and (X, X,) are isomorphic if and only
if M and M are diffeomorphic.

PROOF. In Theorem 2.2 we showed that if m(X;,X») and #m(X;,X>) are isomorphic
then M and M are diffeomorphic.

Let o be a diffeomorphism of M and M. By the paragraph preceding this theorem
we have that B; (X1,X?),...,B;(X1,X>) are basis elements of Vy (X1, X>) if and only if
B1(X1,X5),...,B;(X1,X>) are basis elements of Vy (X1, X>). As in Theorem 2.5 we must
have B (o1 (X1),0:1(X2)) = 0 hence B(X;,X;) = 0. This holds for all N and % so we
then have an epimorphism m(X;,X>) — (X, X>). Similarly, there is an epimorphism
(X1, Xo) - m(X1,X2) so m(X;,Xo) and % (X;,X,) are isomorphic. O

As a possible application we can look at diffeomorphism classes of S*. Let P =
{T:(01,02,03,04) :i=1,...,8} be a set of polynomials in sin 6;, cos;, j =1,2,3,4 so
that P defines a homeomorphism of $* into a subset Sf) of R8. Let m(P) be the Lie
algebra with kth grade my (P) constructed by projecting 0/0x;, i = 1,2,...,8 onto the
tangent space of Sp and choose four such projections so that they span the tangent
space for some point of S3. We can construct a finite dimensional graded Lie algebra

m(P)
@Zo: N (P)
for some positive integer N. If we can find two polynomial sets P;, P>, and an N so that

m(P1,N) and m(P,,N) are not isomorphic then we have at least two diffeomorphism
classes of S4.

m(P,N) = (2.18)

3. Graded subalgebras constructed from atlases. Let {(Uy, ¢ ) : @ € I} be an atlas
of M such that

(1) Uy is a neighborhood of O, where the O, are disjoint open connected subsets
of M, the union of the closure of all the O is M.
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(2) ¢« : Uy — R™ are onto.

(3) puopy' are analytic.

(4) For o,B €1, ay €I can be found such that U, nU, = & and UgnU, # .

(5) For any set {0, &2,..., 04} such that if U = Uy, NUw, N+ - - N Uy, + @ then U is
connected and is a proper subset of Uy, N« +-NUy_; NUw;,; N+ - Uy, for all i.

Without loss of generality, in this section we consider manifolds so that |[I| < oo.
Define

m=(Xep:xel, peN={1,2,...,n}) CFM) (3.1)

to be the Lie algebra generated by X, where Xy, is zero outside U and for points
of Uy the push forward by ¢« of Xy is e’ (0/0x,) som = > my; where my is the
span over R of the set

{[XBIJI AXpojor [ [ X vie s X )] 11 Bi €1, jim € N}- (3.2)

If all the ¢y o d)lgl are rational functions it can be shown that the dimension of my
grows polynomially with k.

THEOREM 3.1. The Lie algebram is a graded Lie algebra.

PROOF. Consider for example an equation

al[X}’Ijl’ [Xyjo [ - - [X}’k—ljk—l’X}’kjk]] -]

3.3)
toe +al[X01i1’[X<Tzi2v [ e [Xo'm—lim—l'XUmim]] e ]] =0

We can write a component of (3.3) in the coordinates of Ug as
ar[PiiFiy+ -+ Pir Fi Je ™ 4ot ay[PuFp + - - - + Pig Firy Jle™ 7" =0, (3.4)

where P;;(x1,...,X,) is a polynomial and F;;(x1,...0c,x,) is made of factors of partial
derivatives of components of Xy, & # B. q; is the number of times the factors of the
form Xp, appear in the ith term of (3.3). Since the X4,, & # B are analytic for some
point on the boundary of Ug we must have q; = q;. Consequently writing equations like
(3.3) in the coordinates of Uy for each y € I and using condition 5 on the atlas allows
us to conclude, m = &7 ;my and [m;,m;] C m;,; follows using properties of the Lie
bracket. O

Construct {(Ug, bz) : & € I}, Xap, 1, p(+,-) for a smooth manifold M in the same
way that {(Ux, Pu) : x € I}, Xap, m, p(-,-) were for M. Assume there is a Lie algebra
isomorphism ® : m — m. We can take ¢ so that ®(m;) = m;. We now show this implies
M and M are diffeomorphic.

LEMMA 3.2. There is a bijection B : I — I such that for all p € N, the support of
®(Xup) is the closure of Ug(x)-

PROOF. Write ®(Xyp) = Zg, + -+ + Z&,, Where Zg, € 1y and supp Zg, = [:]&I.. As-
sume m > 1. There is a Zs;, say Zg,, so that supp®~'(Zs,) D Ux. By condition 4
on the atlas there is a U; such that Us, N Uy = @ and Ug,, N Uy # @. We can then
find a Xy, so that [®(Xap),[X54, Zan 1] # 0, hence =1 ([Xy4, Z4,, 1) has support on
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Uy. It can be checked that the bracket of an element of m; with an element of m, is
not zero if they have common support. The intersection of U, and the supports of
& 1(Zy,) and @1 ([Xy4, Za,, )) is then not empty so [ (Zx, ), ([ Xy4, Zam )] # O
hence [Z,,[Xyq, Zam 1] # 0 which is a contradiction since Uy, N Uy = @ so m = 1. Use
the argument as just presented on ®(Xyp + X«q) to conclude that supp®(X«p) = IZJ&I,
for each p € N. Define B: I — I by B(x) = &;. If supp®(Xg,p,) = supp®(Xg,p,) then
by letting Zp(g,) = ®(Xg, p, + Xp,p,) and using a similar argument as just presented on
®~1(Zp(p,)) allows us to conclude that B is bijective. O

THEOREM 3.3. Ifm and v are isomorphic then M and M are diffeomorphic.

PROOF. We can write L € (M) as L = > ye; L« Where Ly € (M) has support, a
compact subset of Uy. By Lemmas 3.2 and 2.1 we have that L, is in the completion of
(Xap 1 p € N) in the p, topology. Now use the argument of Theorem 2.2. O

We now look at how the graded Lie algebras constructed from different atlases sat-
isfying the five conditions differ. Let {(Uy, b «), ([75,435) :x € I\{B}} be an atlas of M
satisfying the five conditions on an atlas and require also that UgnU, # & if and only if
Uﬂ NUy # @ forall y € I. Define Xﬁn to be the push forward of Xg, by (f)ﬁl o ¢g. Define

= (Xap, Xpp : x €1\{B}, p €N) (3.5)

with kth grade #.
We can in fact choose Uz and ¢4 so that the dimension of >}, iy is locally maxi-
mum for all N.

THEOREM 3.4. There is an epimorphism# — m mapping Xgp to Xg, and Xup 10 Xop

for o + B.

PROOF. Without loss of generality, we can let n = 1 and define X, = X4;. Define a

diffeomorphism
X

1-x2°

Write dggl opp in the 6o ¢g coordinates of Up as x — X = x+T(x) and x =X +S5(X). Let

0°l:(-1,1) — R, X — (3.6)

N
TN (x) = e—l/(1-¢-5)2—>c2 Z bl(N)Xl, 5§>0 (3.7)
=0

be such that as N — oo, T™™) converges uniformly to T on [—1,1]. Define )?EN) and MmN
by replacing T (x) by TN (x) in the definition of XB and m. Consider for example an
equation of the form

ay XY Xy [+ Xy X101 58
- '+a£N)[Xvn[ A;;N)a[' T [)A(l(sN)aXvk]] t ]] =0.

By the argument of Theorem 3.1, each term will contain the same number of factors
of the form X;"'. We can write Xg — Xp in the 0o ¢4 coordinates of Ug as

72 (1-x2)?% d e LS/ A-GerSDP (1 - (x +S(x))°)* d

e—[x/(l—x2 AN .
1+x2 dx 1+S(x) 1+ (x+S(x))* dx

(3.9
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With this in mind, we can write (3.8) in the 6 o ¢pg coordinates of Up after clearing
denominators and exponentials as

[ (P + @V )E 4 (P + Q) EEY ]+
+afN)[( <N>+Q<N>) FM g (fi?+Ql ) ]20’

where the Fff\] ) (x) are made of factors of derivatives of the component of X4, & # B.

(3.10)

Pi(JN )(x) is a polynomial and Qx\] ) is a polynomial in x, S™, and derivatives of SN,
Each term of Q{}” contains a SN or a derivative of S™) as a factor. Since S is
analyticon (-1-9,1+9), (3.10) holds for all points of (-1—-6,1+ 6). On the boundary
of (-1-5,1+5),S™ and all its derivatives are zero hence for all points of (-1,1)

N) [ p(N) (N) (N) (N) (N[ pN) p(N)
|:P11 Fll +...+P1T1F1T]:|+ +(}ll [Pll F +PlTl Tl]=0. (3.11)
Equation (3.8) then holds when X EN ) is replaced by X g- There is then an epimorphism
MmN - m taking XéN) to Xp and Xy to X for o # B. Now let N — o and use the local
maximality of the dimension of >y, iy, for all N. O

Let( = (Lap : x €I, p € N) be a graded Lie algebra with kth grade i constructed as
was m and such that the dimension of ZQ’:I () is locally maximum for all N. We can use
Theorem 3.4 to show that there is an € > 0 such that for all such { with p(ia,,,Xap) <€
for all @ € I,p € N we have an epimorphism (—m
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