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EXTENSION ON THE FUZZY INTEGRAL BASED
ON ⊕-DECOMPOSABLE MEASURE
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Abstract. We extend the concept of fuzzy integral based on ⊕-decomposable measure
from nonnegative fuzzy measurable function to extended real-valued fuzzy measurable
function. Further investigations of fuzzy integrals based on pseudo-additive decompos-
able measure are carried out. Meanwhile, the space (S(µ),σ(·,·)) of all fuzzy measurable
function will be proved to be a pseudo-metric space. Finally, as an application of this ex-
tension the Pettis integral will be obtained for that kind of fuzzy integral.
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1. Introduction. The theory of fuzzy integral is an important part of fuzzy analysis.

The concept of fuzzy sets suggested by Zadeh [10] is a mathematical expression of sets

without precise boundaries and has been applied to various problems in engineering.

Fuzzy measures have been intensively discussed since Sugeno [7] defined a fuzzy

measure as a measure having monotonicity instead of additivity. Weber [9] proposed

⊥-decomposable measures where the additivity of measure is weakened. Special type

of decomposable measure and integral for nonnegative measurable function have

been done by many mathematicians (see [2, 3, 5, 8, 9] etc.). The pseudo-additive

measure and integral investigated by Sugeno and Murofoshi [8] are special case of

⊥-decomposable measure and integral. In [4], the author gave some convergence the-

orem for fuzzy integral based on⊕-decomposable measure. It is natural to ask whether

we can define the fuzzy integral for extended real-valued fuzzy measurable func-

tion. The answer is just the purpose of this paper. Since the fuzzy integral based

on ⊕-decomposable measure will be defined by using the classical Lebesgue integral,

we will use some results of classical measure theory. The paper deals at first with

the definition and basic properties of fuzzy integral based on ⊕-decomposable mea-

sure for extended real-valued fuzzy measurable function. Next, Fisher theorem will be

obtained for this kind of fuzzy measure, and the absolute integrability will be investi-

gated. After that the space (S(µ),σ(·,·)) of all µ-measurable function will be proved

to be a pseudo-metric space. Finally, as an application of this extension the Pettis

integral will be obtained for that kind of fuzzy integral.

2. Preliminaries and pseudo-additive integral of extended real-valued measurable

function. Let [a,b] be a closed subinterval of [−∞,∞] (in some cases we will also take

semiclosed subinterval). The full order on [a,b] will be denoted by ≤, this is the usual

order of the real line but it can also be another order.
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Definition 2.1 (see [2]). Let [a,b] be a closed real interval and ⊕ : [a,b]×[a,b]→
[a,b] be a two place function satisfying the following conditions:

(1) ⊕ is commutative,

(2) ⊕ is nondecreasing in each place,

(3) ⊕ is associative,

(4) ⊕ has either a or b zero element, that is, either ⊕(a,x) = x or ⊕(b,x) = x is

called a pseudo-addition.

Definition 2.2 (see [2]). A pseudo-multiplication ⊗ is a two place function ⊗ :

[a,b]×[a,b]→ [a,b] satisfying the following conditions:

(1) ⊗ is commutative,

(2) ⊗ is nondecreasing in each place,

(3) ⊗ is associative,

(4) there exists a unit element e∈ [a,b] such that ⊗(x,e)= x for all x ∈ [a,b].

Throughout, ⊕ is assumed to be an Archimedean pseudo-addition and ([a,b],⊕,⊗)
is assumed to be a semi-ring with pseudo-operation defined by monotone and contin-

uous generator g. In this case we will consider only strict pseudo-addition, such that

the function ⊗ is continuous and strictly increasing in (a,b)×(a,b). By Aczel’s rep-

resentation we have that, for each strict addition ⊕ there exists a monotone function

g; g : [0,b]→ [0,∞] such that

g(0)= 0, u⊕ν = g−1(g(u)+g(ν)). (2.1)

Using a generatorg of strict pseudo-addition⊕, we can define pseudo-multiplication⊗:

u⊗ν = g−1(g(u)×g(ν)). (2.2)

We will notice that this is the only way to define a pseudo-multiplication ⊗ which is

distributive with respect to ⊕ and generated by the function g.

Definition 2.3 (see [6]). A set function µ :Ω→ [a,b]+ is a ⊕-decomposable mea-

sure if the following hold:

µ(∅)= 0, ∀A,B ∈Ω, A∩B =∅ then µ(A∪B)= µ(A)⊕µ(B). (2.3)

A ⊕-decomposable measure is said to be σ -⊕-decomposable if for all (An)n∈N ⊂ Ω,

Ai∩Aj =∅, i≠ j, we have

µ
( ∞⋃
n=1

Ai

)
=⊕∞i=1µ

(
Ai
)

(2.4)

with

⊕∞i=1µ
(
Ai
)= lim

n→∞⊕
n
i=1µ

(
Ai
)
. (2.5)

Definition 2.4 (see [2]). Let (X,Ω,µ) be a ⊕-measure space and consider a sim-

ple measurable function f such that f(w) = ∑n
k=1ak · IAk(w) where Ak ∈ Ω, k =
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1,2,3, . . . ,n is a partition of Ω. Then the fuzzy integral based on pseudo-additive mea-

sure is defined by ∫
X
f ⊗µ =⊕nk=1

(
ak⊗µ

(
Ak
))
. (2.6)

The above fuzzy integral is well defined.

Proposition 2.5 (see [1]). Let f be a measurable positive function, then there exists

a sequence (ϕn) of increasing simple positive function such that for all x ∈X, f(x)=
limn→∞ϕn(x).

Definition 2.6. Let f be a measurable function, (ϕn) is a sequence of simple

functions, ϕn→ f , µ be a σ -⊕-decomposable measure. Then∫
X
f ⊗µ = lim

n→∞

∫
X
ϕn⊗µ. (2.7)

Theorem 2.7 (see [4]). Let (X,Ω,µ) be a ⊕-measure space, f a nonnegative mea-

surable function. And let

a⊕b = g−1(g(a)+g(b)),
a⊗b = g−1(g(a)·g(b)) for a,b ∈R.

(2.8)

Then (2.6) and (2.7) can be defined by∫
X
f ⊗µ = g−1

[∫
X
(g◦f)d(g◦µ)

]
(2.9)

for any simple or measurable function, where g ◦µ = γ is an ordinary measure and∫
X d(g◦µ) is the Lebesgue integral.

Proof. See [4].

Remark 2.8. We say that f is pseudo-integrable if for all A∈∑,
∫
Af ⊗µ <∞.

Definition 2.9. Let (X,Ω,µ) be a fuzzy measure space, f : X → [−∞,∞] µ-

measurable, and

f+(t)=



f(t), f (t)≥ 0,

0, f (t) < 0,
f−(t)=




0, f (t) > 0,

−f(t), f (t)≤ 0,
(t ∈X). (2.10)

Clearly, f+ and f− are also µ-measurable and f(t)= f+(t)−f−(t) (t ∈Ω).
If f+ and f− are also pseudo-integrable onA, then we say that f is pseudo-integrable

on A and define ∫
A
f(t)⊗µ =

∫
A
f+(t)⊗µ−

∫
A
f−(t)⊗µ. (2.11)

In the sequel we denote

S(µ)= {f :X �→ [−∞,∞] : f is µ-measurable and finite a.e. on X
}
,

L1(µ)= {f :X �→ [−∞,∞] : f is pseudo-integrable
}
.

(2.12)
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Proposition 2.10. Let (X,Ω,µ) be a finite pseudo-additive measure space, then the

following hold:

(1) If for all A∈Ω, µ(A)= 0 then
∫
Af ⊗µ = 0.

(2)
∫
Af ⊗µ =

∫
X f ·XA⊗µ.

(3) If f ∈ L1(µ), then −f ∈ L1(µ) and
∫
A(−f(t))⊗µ =−

∫
Af(t)⊗µ.

(4) f ∈ L1(µ), c ∈ (−∞,∞), then cf ∈ L1(µ), and

∫
A
c⊗µ =


c⊗µ(A) if c ≥ 0,

−(−c⊗µ(A)) if c < 0.
(2.13)

Proof. (1) and (2) are obvious.

(3) We have that (−f)+(t) = f−(t), (−f)−(t) = f+(t) (t ∈ Ω), so by Definition 2.9

we have −f ∈ L1(µ) and

∫
A

(−f(t))⊗µ =
∫
A
(−f)+(t)⊗µ−

∫
A
(−f)−(t)⊗µ

=
∫
A
f−(t)⊗µ−

∫
A
f+(t)⊗µ

=−
(∫

A
f+(t)⊗µ−

∫
A
f−(t)⊗µ

)

=−
∫
A
f(t)⊗µ.

(2.14)

(4) By (3) and similarly for pseudo-additive integral for nonnegative measurable

function we conclude the proof.

Proposition 2.11. Let µ be a pseudo-additive measure and f an extended real-

valued measurable function; f is pseudo-integrable if and only if |f | is pseudo-

integrable and

∣∣∣∣
∫
X
f ⊗µ

∣∣∣∣≤



∫
X
f+⊗µ

∫
X
f−⊗µ

≤
∫
X
|f |⊗µ. (2.15)

Proof

Necessity. Suppose that f is pseudo-integrable then
∫
X f+⊗µ <∞ and

∫
X f−⊗µ <

∞, but |f | = f++f− that implies

∫
X
|f |⊗µ =

∫
X
f+⊗µ+

∫
X
f−⊗µ = g−1

(∫
X
f+⊗µ+

∫
X
f−⊗µ

)
<∞. (2.16)

Thus |f | is pseudo-integrable.

Sufficiency. Suppose that |f | is pseudo-integrable then
∫
Ω |f |⊗ <∞ but

∫
Ω f+⊗

µ ≤
∫
Ω |f |⊗<∞ and

∫
Ω f−⊗µ ≤

∫
Ω |f |⊗<∞ thus

∫
Ω f+⊗µ and

∫
Ω f−⊗µ are two finite

quantities, so according to Definition 2.9, f is pseudo-integrable.

Theorem 2.12 (Fisher theorem). Let (X,Ω,µ) be a pseudo-additive measure space.

For every measurable sequence (fn)n∈N which converge in measure to f , we can extract

a subsequence (fnk)k∈N which converges to fµ a.e.
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Proof. By hypothesis (fn) converges in measure to f , so

∀ε > 0; lim
n→∞µ

({
t ∈X :

∣∣fn(t)−f(t)∣∣≥ ε})= 0

⇐⇒∀ε > 0; ∀δ > 0, ∃n0(δ) ∀n∈N, n≥n0(δ)

�⇒ µ({t ∈X :
∣∣fn(t)−f(t)∣∣≥ ε})= 0.

(2.17)

Thus for all k ∈ N∗, we infer ε = δ = 2−k that will give for all k ∈ N∗, there exists

nk = n0(2−k) ∈ N. Then for all n ∈ N, n ≥ nk implies that µ({t ∈ X : |fn(t)−f(t)| ≥
2−k}) < 2−k.

We will choose the nk as an increasing sequence so that n1 < n2 < ··· < nk+1. We

infer

Ek =
{
t ∈X :

∣∣fnk(t)−f(t)∣∣≥ 2−k
}
. (2.18)

It is clear that µ(Ek) < 2−k. Take E =⋂∞∂=1 (
⋃
k≥∂ Ek).

So

µ
( ⋃
k≥∂
Ek
)
=⊕k≥∂µ

(
Ek
)
<⊕k≥∂2−k = g−1

(∑
k≥∂
g
(
2−k

))≤ 2−∂+1 = 2·2−∂. (2.19)

But for all ∂ ∈N; E ⊂⋃k≥∂ Ek, so µ(E)≤ µ(⋃k≥∂ Ek) < 2.2−∂ implies that µ(E)= 0.

If t �∈ E if and only if t �∈⋂∂≥1(
⋃
k≥∂ Ek) if and only if for all ∂ ∈N, t �∈⋃k≥∂ Ek if and

only if for all ∂ ∈N, for all k∈N, k≥ ∂ implies that t �∈ Ek if and only if for all ∂ ∈N,

for all k∈N, k≥ ∂ implies that |fnk(t)−f(t)|< 2−k.
When k→∞ then |fnk(t)−f(t)| → 0 that is to say limk→∞fnk(t) = f(t). Thus fnk

converges outside the set E. In other words fnk → fµ a.e.

Proposition 2.13. Let µ be a σ -⊕-decomposable measure and f an extended real-

valued measurable function pseudo-integrable such that for all A ∈ Ω,
∫
Af ⊗µ = 0,

then f = 0 µ a.e.

Proof. We infer that E = {t ∈X : f(t)≠ 0}. Let

En =
{
t ∈X : f(t) >

1
n

}
, Fn =

{
t ∈X : f(t) <− 1

n

}
. (2.20)

It is clear that

E =
∞⋃
n=1

({
t ∈X : f(t) >

1
n

}
∪
{
t ∈X : f(t) <− 1

n

})
. (2.21)

But we know that f is measurable then for all n∈N∗, En ∈Ω, Fn ∈Ω.

By using the hypothesis of the proposition we obtain

0=
∫
Ω
f ⊗µ ≥

∫
En
f ⊗µ ≥

∫
En

1
n
⊗µ ≥ 0

⇐⇒
∫
En

1
n
⊗µ ≤ 0

⇐⇒ g−1
(∫

En
g◦
(

1
n

)
dγ
)
≤ 0
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⇐⇒
∫
En
g
(

1
n

)
dγ ≤ g(0)= 0

⇐⇒ g
(

1
n

)
γ
(
En
)= 0

⇐⇒ γ(En)= 0 ∀n∈N∗.
(2.22)

Or g ◦µ = γ so for all n ∈ N, g ◦µ(En) = γ(En) = 0 implies that µ(En) = 0 for all

n∈N∗. We also have

∀n≥ 1, 0=
∫
Fn
f ⊗µ ≤

∫
Fn
− 1
n
⊗µ

=−
∫
Fn

1
n
⊗µ

⇐⇒ g−1
(∫

Fn
g
(

1
n

)
dγ
)
≤ 0

⇐⇒ γ(Fn)= 0.

(2.23)

Thus for all n≥ 1, µ(Fn)= 0.

But

E =
∞⋃
n=1

({
t ∈X : f(t) >

1
n

}
∪
{
t ∈X : f(t) <− 1

n

})
=

∞⋃
n=1

(
En
⋃
Fn
)
. (2.24)

Then

µ(E)= µ
( ∞⋃
n=1

(
En
⋃
Fn
))

= µ[(E1∪F1
)∪(E2∪F2

)∪···]
= µ(E1

)⊕µ(F1
)⊕µ(E2

)⊕µ(F2
)⊕··· = 0.

(2.25)

That means f = 0 µ a.e.

3. Fuzzy measurable function

Theorem 3.1. Let (X,Ω,µ) be a finite pseudo-measure space, the following hold for

any f ,h,k∈ L1(µ)
(1) (f/(1+|f |)) is pseudo-integrable.

(2) If we infer σ(f ,h)=
∫
X(|f −h|/(1+|f −h|))⊗µ

(a) σ(f ,h)= 0 if and only if f = h µ a.e.,

(b) σ(f ,h)= σ(h,f ),
(c) σ(f ,k)≤ σ(f ,h)⊕σ(h,k).

Proof. (1) We have

∀f ∈ L1(µ), 0≤ |f |
1+|f | < 1

⇐⇒ 0≤
∫
X

|f |
1+|f | ⊗µ <

∫
X

1⊗µ

⇐⇒ 0≤
∫
X

|f |
1+|f | ⊗µ < µ(X) <∞.

(3.1)
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Thus |f |/(1+|f |) is pseudo-integrable so f/(1+|f |) is also pseudo-integrable.

(2) (a) σ(f ,h)= 0 if and only if f = h µ a.e.

(⇒) Suppose that σ(f ,h)= 0 then
∫
X(|f −h|/(1+|f −h|))⊗µ = 0. We infer that

E = {t ∈X :
∣∣f(t)−h(t)∣∣> 0

}
, En =

{
t ∈X :

∣∣f(t)−h(t)∣∣> 1
n

}
. (3.2)

It is clear that E=⋃∞n=1En. In fact if t∈E then the absolute value of |f(t)−h(t)|> 0

that imply there exists n0 ∈N∗ such that

∣∣f(t)−h(t)∣∣> 1
n0

�⇒ t ∈
∞⋃
n=1

{
t ∈X :

∣∣f(t)−h(t)∣∣> 1
n

}
�⇒ E ⊂

∞⋃
n=1

En. (3.3)

Conversely, if t ∈ ⋃∞n=1{t ∈ X : |f(t)−h(t)| > 1/n}, then there exists n1 ∈ N∗ such

that absolute value |f(t)−h(t)|> 1/n1 imply absolute value of |f(t)−h(t)|> 0 that

means t ∈ E. So t ∈⋃n≥1En ⊂ E.

We infer

ϕ :R+ �→R+, t �→ t
(1+t) (3.4)

we obtain ϕ′(t)= 1/(1+t)2 thus ϕ is increasing. Let t ∈ En, then

∣∣f(t)−h(t)∣∣
1+

∣∣f(t)−h(t)∣∣ ≥
1/n

1+1/n
= 1
n+1

. (3.5)

By using the hypothesis σ(h,f )= 0 we obtain

0=
∫
X

|f −h|
1+|f −h| ⊗µ ≥

∫
En

|f −h|
1+|f −h| ⊗µ ≥

∫
En

1
n+1

⊗µ ≥ 0

⇐⇒ 0= 1
n+1

⊗µ(En) ∀n∈N that is to say µ
(
En
)= 0 ∀n∈N.

(3.6)

Since µ(E)= µ(⋃∞n=1En)=⊕∞n=1µ(En)= µ(E1)⊕µ(E2)⊕··· = 0, then µ(E)= 0 that is

to say f = h µ a.e.

(⇐) By hypothesis f = h µ a.e. Then µ(E)= 0.

Thus

∫
X

|f −h|
1+|f −h| ⊗µ =

∫
E

|f −h|
1+|f −h| ⊗µ = 0. (3.7)

(b) σ(f ,h)= σ(h,f ) is obvious.

(c) For all f ,h,k∈ L1(µ) we |f −h| ≤ |f −k|+|k−h|.
So

|f −h|
1+|f −h| ≤

|f −k|+|k−h|
1+|f −k|+|k−h|

= |f −k|
1+|f −k|+|k−h| +

|k−h|
1+|f −k|+|k−h|

≤ |f −k|
1+|f −k| +

|k−h|
1+|k−h| .

(3.8)
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And we obtain by using the properties of pseudo-additive integral in [4]

∫
X

|f −h|
1+|f −h| ⊗µ ≤

∫
X

[
|f −k|

1+|f −k| +
|k−h|

1+|k−h|

]
⊗µ

=
∫
X

|f −k|
1+|f −k| ⊗µ⊕

∫
X

|k−h|
1+|k−h| ⊗µ⇐⇒ σ(f ,h)

≤ σ(f ,k)⊕σ(k,h).

(3.9)

Remark 3.2. Theorem 3.1 implies that the space (S(µ),σ(·,·)) of fuzzy measur-

able function is a pseudo-metric space.

4. Application of this extension. Let (X,Ω,µ) be a pseudo-measure space and Y
be a Banach space on (−∞,∞).

Definition 4.1. A vector-valued function f : X → Y will be called pseudo-Pettis

weakly integrable if x∗f is pseudo-integrable for each x∗ ∈ Y∗ (dual of Y ). Moreover,

if for every A∈Ω there exists xA ∈ Y such that

x∗
(
xA
)=

∫
A
x∗(f )⊗µ ∀x∗ ∈ Y∗, (4.1)

then f is called pseudo-Pettis integrable and xA is said to be the pseudo-Pettis integral

of f over A, denoted by

xA = (P)
∫
A
f ⊗µ (4.2)

and we have x∗((P)
∫
Af ⊗µ)=

∫
Ax∗(f )⊗µ and then

∫
A
x∗(f )⊗µ =

∫
A

(
x∗(f )

)+⊗µ−
∫
A

(
x∗(f )

)−⊗µ. (4.3)

The pseudo-Pettis integral built above is well defined because f is a vector-valued

function defined on X and the numerical function x∗f is pseudo-integrable according

to Definition 2.9.

Remark 4.2. If Y = (−∞,∞) then the pseudo-Pettis integral and pseudo integral

are the same.

Conclusion. The extension of the concept of fuzzy integral based on pseudo-

additive integral is very important, it will allow us to introduce Pettis integral and

Bochner integral in the theory of fuzzy integral. Those concepts will be deeply studied

in a subsequent paper.
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