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1. Introduction. In this paper, we are interested in the subclasses of functions con-

vex in the negative (positive) direction of the imaginary axis of order (α,β) denoted

by ��−
α,β (��+

α,β).
In [1, 2], the authors defined and studied the class Iα of functions called angularly

accessible in the direction of the imaginary axis. Applying the method based on the

Carathéodory kernel theorem, they showed an analytic characterization of functions

in Iα. The same class Iα with applying the Schwarz-Christoffel formulas and a method

of approximation by polygons was defined and examined again in [8], where the author

used the name parallel accessible domains (functions) of order α.

The aim of this paper is to introduce and analytically characterize functions in the

class ��−
α,β (��+

α,β). In the case when α = β = 1, the results reduce to the class ��−

(��+) of functions convex in the negative (positive) direction of the imaginary axis.

These classes were distinguished as the subclasses of the class of functions convex

in the direction of the imaginary axis in [6]. In [4, 5], the author examined the class L0

of functions called convex in the direction of the negative real half-axis. To be precise,

an analytic and univalent function f in the unit disk D belongs to L0 if and only if for

every w ∈ f(D) the half-line {w+t : t ∈ [0,+∞)} is contained in f(D). Applying the

Carathéodory kernel theorem the author proved, in a quite simple way, an analytic

characterization of the class L0. Since if ∈ ��+ and −if ∈ ��− if f ∈ L0, the same

was done for the classes ��+ and ��−. In [9], a new proof of analytic formulas for the

classes ��−(��+) based on Julia’s lemma were found. The same idea is used in this

paper. At the end we notice that the classes ��−
α,α and ��+

α,α are proper subclasses

of Iα.

2. Preliminaries. Let C̄= C∪{∞}, D= {z ∈ C : |z|< 1} denote the open disk in the

plane and let T= ∂D. Let � denote the class of all analytic univalent functions in D.
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For each k > 0, let

Ok =
{
z ∈D :

|1−z|2
1−|z|2 < k

}
(2.1)

denote the disk inD called the oricycle. The oricycleOk is a disk inD whose boundary

circle ∂Ok is tangent to T at z = 1.

In the proof of the main theorem, we apply the Julia lemma (see [7]; see also [3,

page 56]) recalled below.

Lemma 2.1 (Julia [7]). Let ω be an analytic function in D with |ω(z)|< 1 for z ∈D.

Assume that there exists a sequence (zn) of points in D such that

lim
n→∞zn = 1, lim

n→∞ω
(
zn
)= 1, (2.2)

lim
n→∞

1−∣∣ω(zn)∣∣
1−∣∣zn∣∣ = λ <∞. (2.3)

Then

∣∣1−ω(z)∣∣2

1−∣∣ω(z)∣∣2 ≤ λ
|1−z|2
1−|z|2 , z ∈D, (2.4)

and hence, for every k > 0,

ω
(
Ok
)⊂Oλk. (2.5)

Remark 2.2. Since

1−∣∣ω(z)∣∣
1−|z| ≥ 1−∣∣ω(0)∣∣

1+∣∣ω(0)∣∣ , z ∈D, (2.6)

for every function ω analytic in D with |ω(z)| < 1 for z ∈D, the constant λ defined

in (2.2) is positive (see [3, page 43]).

3. Convexity in the negative direction of the imaginary axis of order (α,β). We

start with notation. For w ∈ C and θ ∈ [0,2π), let

l[w,θ]= {w+teiθ : t ∈ [0,+∞)}. (3.1)

For A,B ⊂ C and w ∈C, let

A±B = {u±v ∈ C :u∈A∧v ∈ B}, A+w =A+{w}. (3.2)

For fixed α,β∈ [0,1], let

A(α,β)=
{
z ∈C :−(1−α)π

2
≤ argz ≤ (1−β)π

2

}
∪{0}. (3.3)

Clearly, A(0,0) = {z ∈ C : Rez ≥ 0} and A(1,1) = l[0,0] = [0,∞). Notice that A(α,β),
when α≠ 1 or β≠ 1, is a closed convex sector with the half-lines l[0,(1−β)π/2] and

l[0,2π−(1−α)π/2] as its arms.
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Definition 3.1. Fix α,β ∈ [0,1]. A domain Ω ⊂ C, Ω ≠ C, is called convex in the

negative direction of the imaginary axis of order (α,β) if and only if w+ iA(α,β) is

contained in Ω for every w ∈Ω. The set of all such domains will be denoted by �−α,β.

Definition 3.2. Let ��−
α,β denote the class of all functions f ∈� such that f(D)∈

�−α,β. Functions in ��−
α,β will be called convex in the negative direction of the imaginary

axis of order (α,β).

The class �−1,1 denoted for short by �− and the corresponding class ��−
1,1 denoted

by ��− contain domains and functions called convex in the negative direction of the

imaginary axis, respectively.

Lemma 3.3. If 0≤α1 ≤α2 ≤ 1, 0≤ β1 ≤ β2 ≤ 1, and Ω ∈�−α1,β1
, then Ω ∈�−α2,β2

.

Since �−α,β ⊂�− for all α,β∈ [0,1], every domain in �−α,β is simply connected.

It is obvious that, for every f ∈ ��−
α,β, there are some points on T which “corre-

spond” to infinity lying on the boundary of f(D). In what follows, we will use a kind

of the boundary normalization for every f ∈ ��−
α,β by saying that z = 1 corresponds

to ∞∈ ∂f(D). Since, in general, we cannot extend f on T, in order to be precise, we

will apply the notion of prime ends to formulate this normalization. Below we con-

struct a prime end p∞(Ω) for every Ω ∈ �−α,β and next using the prime end theorem

we associate z = 1 with p∞(Ω).
Since for each α,β ∈ [0,1], ��−

α,β ⊂ ��−, we can construct for every domain Ω in
�−α,β, a prime end p∞(Ω) in this way like in [9].

Construction of a prime end for the domain convex in the negative

direction of the imaginary axis. When α= β= 1 the detailed construction was

presented in [9]. The same construction is valid for α ≠ 1 or β ≠ 1 since ��−
α,β ⊂

��− for all α,β ∈ [0,1]. But in what follows we need some notations used in the

construction, so we recall it again.

Let Ω ∈�−α,β.

(1) Assume first that Ω is neither a vertical strip nor a half-plane with the boundary

straight line parallel to the imaginary axis. Then there existsw0 ∈ ∂Ω such that (w0+
iA(α,β))\{w0} lies inΩ. Hence (l[w0,π/2]\{w0})⊂Ω. For each t ∈ (0,∞), we denote

C(t)= {w ∈ C : |w−w0| = t}. It is clear that Ω∩C(t)≠∅ for every t ∈ (0,∞). By [10,

Proposition 2.13, page 28], for each t ∈ (0,∞) there are countably many crosscuts

Ck(t) ⊂ C(t), k ∈ N, of Ω each of which is an arc of the circle C(t). By Ω0(t) ⊂ Ω we

denote the component of Ω \C(t) containing the half-line l[w0+ it,π/2]\{w0+ it}
and by Q(t) ∈ ⋃

k∈NCk(t) we denote the crosscut containing the point w0 + it. So

Q(t)⊂ ∂Ω0(t). Let now (tn) be a strictly increasing sequence of points in (0,∞) such

that limn→∞ tn =∞ and let (Q(tn)) be the corresponding sequence of crosscuts of Ω.

It is easy to observe that

(i) Q(tn)∩Q(tn+1)=∅ for every n∈N;

(ii) Ω0(tn+1)⊂Ω0(tn) for every n∈N;

(iii) diam#Q(tn)→ 0 as n→∞, where diam# B means the spherical diameter of the

set B ⊂ C.

Therefore (Cn) = (Q(tn)) forms a null chain of Ω (see [10, page 29]). Notice also

that the null chain (Cn) is independent of the choice of the sequence (tn).
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The equivalence class of the null chain (Cn) defines the prime end denoted byp∞(Ω).
We can also show that infinity is a unique principal point of the prime end p∞(Ω).

(2) (a) Let Ω be a vertical strip of width d> 0. Clearly, this is possible only when α=
β= 1. Letw0 ∈ ∂Ω. For each t ∈ (d,∞), set C(t)= {w ∈ C : |w−w0| = t}. It is clear that

Ω∩C(t)≠∅ for every t ∈ (d,∞). Observe that Ω(t) is a sum of two disjoint circular

arcs, denoted by Q+(t) and Q−(t). Let Q+(t) be the circular arc which lies above

Q−(t). Precisely,Q+(t) cuts the boundary straight lines of Ω at two points:w1(t) and

w2(t), and together with half-lines l[w1(t),π/2] and l[w2(t),π/2] is a boundary of

a domain denoted by Ω+(t). Moreover, Ω+(t)⊂Ω and Ω+(t)∩ IntC(t)=∅.

Let now (tn) be a strictly increasing sequence of points in (d,∞) such that limn→∞ tn
=∞, and let (Q+(tn)) be the corresponding sequence of crosscuts of Ω. It is easy to

observe that the conditions (i)–(iii) listed in part (1) are fulfilled. Therefore (C+n ) =
(Q+(tn)) forms a null chain of Ω. The null chain (C+n ) is independent of the choice of

the sequence (tn).
The equivalence class of the null chain (C+n ) defines the prime end denoted by

p+∞(Ω). We can also say that infinity is a unique principal point of the prime end p+∞(Ω).
In a similar way the sequence (Q−(tn)) is a null chain which represents the second

prime end p−∞(Ω), different from p+∞(Ω).
For the next considerations, the prime end p+∞(Ω) will be denoted by p∞(Ω).
(b) Let nowΩ be a half-plane with the boundary straight line parallel to the imaginary

axis. Let w0 ∈ ∂Ω, and for each t ∈ (0,∞), let C(t) = {w ∈ C : |w −w0| = t}. It is

clear that Q(t) = Ω∩C(t) is a halfcircle for every t > 0. Repeating considerations

similar to those above we see that the sequence (Cn)= (Q(tn)), for an arbitrary strictly

increasing sequence (tn) of points in (0,∞) such that limn→∞ tn =∞, forms a null chain

of Ω which represents a prime end denoted by p∞(Ω).
In this way, we construct for every Ω ∈ �−α,β, in a unique way, a prime end p∞(Ω).

We can also show that infinity is a unique principal point of the prime end p∞(Ω).
Therefore, the following proposition follows.

Proposition 3.4. For every Ω ∈ �−α,β, α,β ∈ [0,1], the prime end p∞(Ω) is of the

first or of the second kind.

Let f ∈ ��−
α,β and Ω = f(D). By the prime end theorem there exists a bijective

mapping f̂ of the unit circle T onto the set of all prime ends of Ω (see [10, page 30]).

Hence there is a unique ζ∞ ∈ T such that p∞(Ω) = f̂ (ζ∞). We can also show that

infinity is a unique principal point of the prime end p∞(Ω).
If now f ∈��−

α,β, then we can write p∞(Ω)= f̂ (ζ∞) for unique ζ∞ ∈ T.

4. An analytic characterization of the class of function convex in the negative

direction of the imaginary axis of order (α,β). In the proof of the main theorem,

which analytically characterizes the class ��−
α,β, we need the following lemma which

was proved in [9] in an easy way.

Lemma 4.1. Every sequence (an) of positive numbers with

lim
n→∞

(
a1a2 ···an

)= 0 (4.1)
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has a convergent subsequence (ank) and

0≤ lim
k→∞

ank = a≤ 1. (4.2)

Now we prove the theorem which says that every function f ∈��−
α,β, withp∞(f (D))

= f̂ (1), preserves convexity in the negative direction of the imaginary axis of order

(α,β) on every oricycle Ok.

Theorem 4.2. Let α,β ∈ [0,1] and f ∈ �. Then f ∈ ��−
α,β and p∞(f (D)) = f̂ (1),

if and only if f(Ok)∈�−α,β for every k > 0.

Proof. (1) Assume that f ∈ ��−
α,β and ζ∞ = 1 corresponds to the prime end

p∞(f (D)). For each u∈A(α,β), let

ωu(z)= f−1(f(z)+iu), z ∈D. (4.3)

Since f(D)∈�−α,β, f(z)+iu∈ f(D) for every u∈A(α,β) and z ∈D. Hence, from the

univalence of f , it follows that ωu is well defined.

Fix u∈A(α,β) and let Ω∈�−α,β.

We select two points:w0 ∈ ∂Ω andw1 ∈Ω, in the following way. IfΩ is not a vertical

strip or a half-plane with the boundary straight line parallel to the imaginary axis, then

there existsw0 ∈ ∂Ω such that (w0+iA(α,β))\{w0} lies inΩ. Since (w0+iu)∈ (w0+
iA(α,β)), the half-line l starting from w0 and going through u lies in w0+ iA(α,β).
Consequently, (l\{w0})⊂Ω. Fix w1 ∈ l\{w0}.

In the case when Ω is a vertical strip or a half-plane with the boundary straight

line parallel to the imaginary axis, let w1 ∈ Ω be arbitrary and w0 ∈ ∂Ω be such that

Imw1 = Imw0.

Assume now that, forΩ = f(D), the pointsw0 andw1 are chosen as above. Consider

the sequence (wn) = (w1 + i(n− 1)u) of points in l \ {w0} and the corresponding

sequence (zn)= (f−1(wn)) of points in D.

With a notation as in the construction of a prime, end let C(tn) = {w ∈ C :

|w−w0| = |wn−w0|}, where tn = |wn−w0|, and letQ(tn)⊂ C(tn), for n∈N, denote

the crosscut of f(D) containingwn. From the method of choosingw0 andw1, we see

that the conditions (1)–(3) are satisfied and (Q(tn)) is a null chain representing the

prime end p∞(f (D)). By the prime end theorem (f−1(Q(tn))) is a null-chain inD that

separates the origin from ζ∞ = 1 for large n. Since zn = f−1(wn) ∈ f−1(Q(tn)) and

diamf−1(Q(tn))→ 0 for n→∞, we conclude that limn→∞zn = 1. Observe that

ωu
(
zn
)= f−1(wn+iu

)= zn+1. (4.4)

Let now

an = 1−∣∣ωu
(
zn
)∣∣

1−∣∣zn∣∣ , n∈N. (4.5)

Hence

an = 1−∣∣ωu
(
zn
)∣∣

1−∣∣zn∣∣ = 1−∣∣zn+1

∣∣
1−∣∣zn∣∣ , (4.6)
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for all n∈N. Consequently,

lim
n→∞

(
a1a2 ···an

)= lim
n→∞

(
1−∣∣z2

∣∣
1−∣∣z1

∣∣ 1−∣∣z3

∣∣
1−∣∣z2

∣∣ ··· 1−∣∣zn∣∣
1−∣∣zn−1

∣∣ 1−∣∣zn+1

∣∣
1−∣∣zn∣∣

)

= lim
n→∞

1−∣∣zn+1

∣∣
1−∣∣z1

∣∣ = 0.
(4.7)

By Lemma 4.1, there exists a convergent subsequence (ank) of the sequence (an) such

that

0≤ lim
k→∞

ank = λ(u)≤ 1. (4.8)

Hence we conclude that, for each u∈A(α,β), there exists a convergent subsequence

(znk) of the sequence (zn) such that

lim
k→∞

1−∣∣ωu
(
znk

)∣∣
1−∣∣znk∣∣ = λ(u)≤ 1. (4.9)

In view of Remark 2.2, λ(u) > 0 for every u ∈ A(α,β). By this way, ωu satisfies the

assumptions of the Julia lemma with λ(u)∈ (0,1]. Hence

ωu
(
Ok
)⊂Oλ(u)k ⊂Ok (4.10)

for every u ∈ A(α,β) and k > 0. This yields f−1(f (Ok)+ iu) ⊂ Ok, so f(Ok)+ iu ⊂
f(Ok) for every u∈A(α,β). Therefore f(Ok)∈�−α,β for every k > 0.

(2) Now assume that f(Ok)∈�−α,β for every k > 0. Since∞∈ ∂f(Ok) for every k > 0

and

f(D)=
⋃
k>0

f
(
Ok
)
, (4.11)

∞ ∈ ∂f(D) and f(D) ∈ �−α,β. Observe also that there exists a prime end p∞(f (D))
which corresponds to some point ζ∞ ∈ T. We need to show that ζ∞ = 1.

To this end, let k > 0 be fixed and suppose that ζ∞ ≠ 1.

Let (Q(tn)) be an arbitrary sequence of crosscuts of f(D) which represents the

prime end p∞(f (D)) corresponding in a unique way to a point ζ∞ ∈ T, that is, (Q(tn))
is a null-chain of f(D). By the prime end theorem (f−1(Q(tn))) is a null-chain that

separates in D the origin and ζ∞ for large n. Since ζ∞ ≠ 1 and diamf−1(Q(tn))→ 0

for n→∞ we see that

f−1(Q(tn))∩Ok =∅, (4.12)

for large n.

On the other hand, f(Ok) ∈ �−α,β, which implies that Q(tn)∩f(Ok) ≠∅ for large

n∈N. This contradicts (4.12) and shows that ζ∞ = 1 and p∞(f (D))= f̂ (1). The proof

of the theorem is finished.

Using Theorem 4.2 we find an analytic characterization of functions in the class

��−
α,β.
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Theorem 4.3. Let α,β∈ [0,1]. If f ∈��−
α,β and p∞(f (D))= f̂ (1), then

−βπ
2
≤ arg

{−i(1−z)2f ′(z)}≤απ
2
, z ∈D. (4.13)

Proof. LetΩ= f(D). The caseα= β= 1 is well known and can be found in [5, 6, 9].

Assume that α≠ 1 or β≠ 1. This means that A(α,β) is a closed convex sector which

does not reduce to the half-line l[0,0]. Now we prove that (4.13) is true for all points

on γk = ∂Ok \{1} for every k > 0. We use the following parametrization of γk:

γk : z = z(θ)= 1+keiθ
1+k , θ ∈ (0,2π). (4.14)

Let Γk = f(γk), since γk is positively oriented, so is Γk. For each z ∈ γk we denote by

τ(z) the tangent vector to Γk at w = f(z), that is,

τ(z)= z′(θ)f ′(z(θ)), (4.15)

where z = z(θ) is given by (4.14). Since

(
1−z(θ))2 = k2

(1+k)2
(
1−eiθ)2 = 4ksin2(θ/2)

k+1
z′(θ)i

= 2Re
{
1−z(θ)}z′(θ)i, θ ∈ (0,2π),

τ(z)=− i(1−z)
2f ′(z)

2Re{1−z} , z ∈ γk.

(4.16)

Let V denote the closed convex sector with vertex at w and with the half-lines

l[w,απ/2] and l[w,2π−βπ/2] as its arms. This means that (w+iA(α,β))∪V forms

a closed half-plane containing the half-line l[w,απ/2].
Fix k > 0. By Theorem 4.2, f(Ok) ∈ �−α,β for every k > 0. Therefore by an easy

observation we see that w+ iA(α,β) ⊂ f(Ok). Hence it follows that the tangent line

to Γk at w cannot intersect the interior of the sector w+ iA(α,β). This implies that

τ(z) lies in V . Consequently, in view of (4.16), we have

−βπ
2
≤ arg

{
τ(z)

}= arg
{−i(1−z)2f ′(z)}≤απ

2
(4.17)

for z ∈ γk. As k was arbitrary, this is true in D.

Now we prove the converse theorem.

Theorem 4.4. Let α,β ∈ [0,1]. If f ∈ � and (4.13) is true, then f ∈ ��−
α,β and

p∞(f (D))= f̂ (1).

Proof. (1) Suppose that there exists z0 ∈D such that the equality in the left-hand

side of (4.13) holds. Then it holds in the whole disk D, that is, there exists a positive

real number a such that

−i(1−z)2f ′(z)≡ ae−iβπ/2, z ∈D. (4.18)
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This is satisfied only for

f(z)= b+ aie
−iβπ/2

1−z , z ∈D, (4.19)

where b ∈ C.

In a similar way, if the equality in the right-hand side of (4.13) holds for some z0 ∈D,

then it holds only for

f(z)= b+ aie
iαπ/2

1−z , z ∈D, (4.20)

where b ∈ C.

Particularly, if α= β= 0, then (4.13) is true only for

f(z)= b+ ai
1−z , z ∈D, (4.21)

where b ∈ C and a∈R\{0}.
Functions (4.19) and (4.20) map D onto half-planes and a simple geometric viewing

shows that they are elements of ��−
α,β with p∞(f (D))= f̂ (1).

(2) Suppose that in (4.13) strong inequalities holds. Since f ∈ ��−, f is univalent

in D (see [5, 4, 6]). We show that f(D)∈�−α,β.

Suppose, on the contrary, that f(D) 
∈�−α,β. By Theorem 4.2, there exists k > 0 such

that f(Ok) 
∈ �−α,β. This means that (w0+ iA(α,β))\{w0} is not contained in f(Ok)
for some w0 ∈ f(Ok).

Suppose that

Γk∩l
[
w0,π−βπ

2

]
≠∅. (4.22)

Thus there exists w1 ∈ Γk∩l[w0,π−βπ/2], w1 ≠w0, such that the segment [w0,w1)
lies in f(Ok). Let τ(z1) be the tangent vector to Γk atw1 = f(z1), where z1 ∈ γk. Let V
denote the closed convex sector with vertex atw1 and with the half-lines l[w1,απ/2]
and l[w1,2π −βπ/2] as its arms. This means that (w1 + iA(α,β))∪V is a closed

half-plane containing the half-line l[w1,απ/2]. Let H be the complementary closed

half-plane. Hence τ(z1) lies in H which means that

arg
{
τ
(
z1
)}∈ [−π,−βπ

2

]
∪
[
π−βπ

2
,π
]
, (4.23)

contrary to (4.13).

In a similar way we obtain a contradiction assuming that

Γk∩l
[
w0,α

π
2

]
≠∅. (4.24)

This ends the proof.

Remark 4.5. For α = β = 1, Theorems 4.3 and 4.4 show the well-known analytic

characterization of the class ��−.
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The following theorems are immediate consequences of Theorems 4.3 and 4.4

by applying them to the function f(z) = g(e−iµz), z ∈ D, where g ∈ ��−
α,β and

p∞(g(D))= ĝ(1).
Theorem 4.6. Let α,β∈ [0,1]. If f ∈��−

α,β and p∞(f (D))= f̂ (eiµ), µ ∈R, then

−βπ
2
≤ arg

{−ieiµ(1−e−iµz)2f ′(z)
}≤απ

2
, z ∈D. (4.25)

Theorem 4.7. Let α,β∈ [0,1]. If f ∈� and (4.25) is true for µ ∈R, then f ∈��−
α,β

and p∞(f (D))= f̂ (eiµ).

5. Convexity in the positive direction of the imaginary axis of order (α,β). The

results presented in Section 4 can be applied at once to the functions called convex in

the positive direction of the imaginary axis of order (α,β).

Definition 5.1. Fix α,β ∈ [0,1]. A domain Ω ⊂ C, Ω ≠ C, will be called convex

in the positive direction of the imaginary axis of order (α,β) if and only if the sector

w− iA(α,β) is contained in Ω for every w ∈ Ω. The set of all such domains will be

denoted by �+α,β.

Definition 5.2. Let ��+
α,β denote the class of all functions f ∈� such that f(D)∈

�+α,β. Functions in the class ��+
α,β will be called convex in the positive direction of the

imaginary axis of order (α,β).

Since f ∈��+
α,β if and only if −f ∈��−

α,β we have the following theorems.

Theorem 5.3. Letα,β∈ [0,1] and let f ∈�. Then f ∈��+
α,β andp∞(f (D))= f̂ (1),

if and only if f(Ok)∈�+α,β for every k > 0.

Theorem 5.4. Let α,β∈ [0,1]. If f ∈��+
α,β and p∞(f (D))= f̂ (eiµ), µ ∈R, then

−βπ
2
≤ arg

{
ieiµ

(
1−e−iµz)2f ′(z)

}
≤απ

2
, z ∈D. (5.1)

Theorem 5.5. Let α,β∈ [0,1]. If f ∈� and (5.1) is true for µ ∈R, then f ∈ ��+
α,β

and p∞(f (D))= f̂ (eiµ).
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