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We give a geometric formulation of the field equations in the Lagrangian and Hamiltonian
formalisms of classical field theories (of first order) in terms of multivector fields. This
formulation enables us to discuss the existence and nonuniqueness of solutions of these
equations, as well as their integrability.
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1. Introduction. In recent years, there have been new developments in the study

of multisymplectic Hamiltonian systems [2] and, in particular, their application to de-

scribe field theories. In this study, multivector fields and their contraction with differ-

ential forms are used; this is an intrinsic formulation of the systems of partial differ-

ential equations locally describing the field. Thus, the integrability of such equations,

that is, of multivector fields, is a matter of interest. Given a fiber bundle π : E →M ,

certain integrable multivector fields in E are equivalent to integrable connections in

E→M [8]. This result is applied in two particular situations:

• first, multivector fields in J1E (the first-order jet bundle), in order to character-

ize integrable multivector fields whose integral manifolds are holonomic;

• second, the manifold J1∗E ≡ Λm1 T∗E/Λ
m
0 T∗E (where Λm1 T∗E is the bundle

of m-forms on E vanishing by the action of two π -vertical vector fields, and

Λm0 T∗E ≡π∗ΛmT∗M), which is also a fiber bundle J1∗E→M . Then, we will take

multivector fields in J1∗E in order to characterize those that are integrable.

From these results we can set the Lagrangian and Hamiltonian equations for mul-

tisymplectic models of first-order classical field theories in a geometrical way [3, 12,

14, 15, 18], in terms of multivector fields; which is equivalent to other formulations

using Ehresmann connections in a jet bundle [4, 21], or their associated jet fields [7].

This formulation allows us to discuss several aspects of these equations, in particu-

lar, the existence and nonuniqueness of solutions. (In a recent work [19], an extended

Hamiltonian formalism for field theories was proposed, but using multivector fields in

Λm1 T∗E instead of J1∗E. See also [16, 17], where multivector fields are used in another

more specific context.)

In Section 2, we introduce the terminology and nomenclature concerning multivec-

tor fields in differentiable manifolds and fiber bundles. This is used in Section 3 for

setting the field equations for Lagrangian field theories (of first-order) in terms of
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multivector fields, and for analyzing their characteristic features. Finally, the same

study is carried out in Section 4 for Hamiltonian field theories.

Throughout this paper, π : E → M denotes a fiber bundle (dimM = m, dimE =
N+m), where M is an oriented manifold with volume form ω ∈Ωm(M). We denote

by π1 : J1E → E the jet bundle of local sections of π , and π̄1 = π ◦π1 : J1E → M
gives another fiber bundle structure. And (xµ , yA, vAµ ) denote natural local systems

of coordinates in J1E, adapted to the bundle E →M (µ = 1, . . . ,m; A = 1, . . . ,N), such

that ω = dx1∧···∧dxm ≡ dmx. Manifolds are real, paracompact, connected, and

C∞. Maps are C∞. The sum over crossed repeated indices is understood.

2. Multivector fields in differentiable manifolds. Let E be an n-dimensional dif-

ferentiable manifold. Sections of Λm(TE) are calledm-multivector fields in E (they are

contravariant skewsymmetric tensors of order m in E). Then, contraction with multi-

vector fields is the usual one for tensor fields in J1∗E. We denote by Xm(E) the set of

m-multivector fields in E.

If Y ∈ Xm(E), for every p ∈ E, there exists an open neighborhood Up ⊂ E and

Y1, . . . ,Yr ∈ X(Up) such that Y =
Up

∑
1≤i1<···<im≤r f

i1···imYi1 ∧···∧Yim , with f i1···im ∈
C∞(Up) andm≤ r ≤ dimE. Then, Y ∈ Xm(E) is said to be locally decomposable if, for

every p ∈ E, there exists an open neighborhood Up ⊂ E and Y1, . . . ,Ym ∈ X(Up) such

that Y =
Up
Y1∧···∧Ym.

A nonvanishingm-multivector field Y ∈ Xm(E) and anm-dimensional distribution

D ⊂ TE are locally associated if there exists a connected open set U ⊆ E such that Y |U
is a section of ΛmD|U . If Y ,Y ′ ∈ Xm(E) are nonvanishing multivector fields locally

associated with the same distribution D, on the same connected open set U , then

there exists a nonvanishing function f ∈ C∞(U) such that Y ′ U= fY . This fact defines

an equivalence relation in the set of nonvanishing m-multivector fields in E, whose

equivalence classes are denoted by {Y}U . We have as a consequence the following

theorem.

Theorem 2.1. There is a one-to-one correspondence between the set of m-

dimensional orientable distributions D in TE and the set of the equivalence classes

{Y}E of nonvanishing, locally decomposable m-multivector fields in E.

Proof. Let ω ∈ Ωm(E) be an orientation form for D. If p ∈ E, there exists an

open neighborhood Up ⊂ E and Y1, . . . ,Ym ∈ X(Up), with i(Y1∧···∧Ym)ω > 0, such

that D|Up = span{Y1, . . . ,Ym}. Then Y1∧···∧Ym is a representative of a class of m-

multivector fields associated with D in Up . But the family {Up ; p ∈ E} is a covering

of E; let {Uα; α ∈ A} be a locally finite refinement and {ρα; α ∈ A} a subordinate

partition of unity. If Yα1 , . . . ,Yαm is a local basis of D in Uα, with i(Yα1 ∧···∧Yαm)ω> 0,

then Y =∑αραYα1 ∧···∧Yαm is a global representative of the class of nonvanishing

m-multivector fields associated with D in E.

The converse is trivial because, if Y |U = Y 1
1 ∧···∧Y 1

m = Y 2
1 ∧···∧Y 2

m, for different

sets {Y 1
1 , . . . ,Y 1

m}, {Y 2
1 , . . . ,Y 2

m}, then span{Y 1
1 , . . . ,Y 1

m} = span{Y 2
1 , . . . ,Y 2

m}.
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If Y ∈ Xm(E) is nonvanishing and locally decomposable and U ⊆ E is a connected

open set, then the distribution associated with the class {Y}U is denoted by �U(Y). If

U = E, we write �(Y).
A nonvanishing, locally decomposable multivector field Y ∈ Xm(E) is said to be

integrable (resp., involutive) if its associated distribution �U(Y) is integrable (resp.,

involutive). Of course, if Y ∈ Xm(E) is integrable (resp., involutive), then so is every

other multivector field in its equivalence class {Y}, and all of them have the same

integral manifolds. Moreover, Frobenius theorem allows us to say that a nonvanishing

and locally decomposable multivector field is integrable if and only if it is involutive.

Nevertheless, in many applications, we have locally decomposable multivector fields

Y ∈ Xm(E) which are not integrable in E, but integrable in a submanifold of E. An

(local) algorithm for finding this submanifold has been developed [8].

The particular situation to which we will pay attention is the study of multivector

fields in fiber bundles. If π : E→M is a fiber bundle, we will be interested in the case

where the integral manifolds of integrable multivector fields in E are sections of π .

Thus, Y ∈ Xm(E) is said to beπ -transverse if, at every pointy ∈ E, (i(Y)(π∗ω))y ≠ 0,

for everyω∈Ωm(M) withω(π(y))≠ 0. If Y ∈ Xm(E) is integrable, it is π -transverse

if and only if its integral manifolds are local sections of π : E → M . In this case, if

φ : U ⊂M → E is a local section with φ(x) = y and φ(U) is the integral manifold of

Y through y , then Ty(Imφ) is �y(Y).

3. Lagrangian equations in classical field theories. A classical field theory is de-

scribed by its configuration bundle π : E→M and a Lagrangian density which is a π̄1-

semibasic m-form on J1E. A Lagrangian density is usually written as � = £(π̄1∗ω),
where £∈ C∞(J1E) is the Lagrangian function associated with � and ω.

The Poincaré-Cartan m and (m+1)-forms associated with the Lagrangian density

� are defined using the vertical endomorphism � of the bundle J1E:

Θ� := i(�)�+�∈Ωm(J1E
)
;

Ω� :=−dΘ� ∈Ωm+1(J1E
)
.

(3.1)

Then a Lagrangian system is a couple (J1E,Ω�). The Lagrangian system is regular if

Ω� is 1-nondegenerate. In a natural chart in J1E we have

Ω� =− ∂2£

∂vBν ∂vAµ
dvBν ∧dyA∧dm−1xµ− ∂2£

∂yB∂vAµ
dyB∧dyA∧dm−1xµ

+ ∂2£

∂vBν ∂vAµ
vAµ dvBν ∧dmx+

(
∂2£

∂yB∂vAµ
vAµ −

∂£
∂yB

+ ∂2£

∂xµ∂vBµ

)
dyB∧dmx,

(3.2)

where dm−1xµ ≡ i(∂/∂xµ)dmx; and the regularity condition is equivalent to

det((∂2£/∂vAµ ∂vBν )(ȳ))≠ 0, for every ȳ ∈ J1E.

A variational problem can be stated for (J1E,Ω�) (Hamilton principle): the states of

the field are the sections of π (denoted by Γ(M,E)) which are critical for the functional

L : Γ(M,E) → R defined by L(φ) := ∫M(j1φ)∗�, for every φ ∈ Γ(M,E). These critical

sections can be characterized by the condition(
j1φ

)∗i(X)Ω� = 0, ∀X ∈ X
(
J1E

)
. (3.3)
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In natural coordinates, if φ= (xµ,yA(x)), this condition is equivalent to demanding

that the components of φ satisfy the Euler-Lagrange equations,

∂£
∂yA

∣∣∣∣
j1φ

− ∂
∂xµ

∂£
∂vAµ

∣∣∣∣
j1φ

= 0, (for A= 1, . . . ,N). (3.4)

(For a more detailed description of all these concepts cf. [1, 3, 7, 11, 12, 13, 20, 21]).

The problem of finding these critical sections can be formulated equivalently as

follows: to find a distribution D of T(J1E) satisfying the conditions:

• D is integrable (i.e., involutive);

• D is m-dimensional;

• D is π̄1-transverse;

• the integral manifolds of D are the critical sections of the Hamilton principle.

From the first and second conditions, there existX1, . . . ,Xm ∈ X(J1E) (in involution),

which locally span D. Therefore X = X1∧···∧Xm defines a section of ΛmT(J1E),
that is, a nonvanishing, locally decomposable multivector field in J1E, whose local

expression in natural coordinates is

X =
m∧
µ=1

f
(
∂
∂xµ

+FAµ
∂
∂yA

+GAµρ
∂
∂vAρ

)
, (3.5)

where f is a nonvanishing function. A representative of the class {X} can be selected

by the condition i(X)(π̄1∗ω) = 1 which leads to f = 1. Furthermore, the third and

fourth conditions impose thatX is π̄1-transverse, integrable and its integral manifolds

are holonomic sections of π̄1.

Bearing this in mind, we want to characterize the integrable multivector fields in

J1E whose integral manifolds are canonical prolongations of the sections of π . So,

consider the vector bundle projection κ : TJ1E→ TE defined by

κ(ȳ,ū) := Tπ̄1(ȳ)φ
(
Tȳπ̄1(ū)

)
, (ȳ, ū)∈ TJ1E, φ∈ ȳ. (3.6)

This projection is extended in a natural way to Λmκ : ΛmTJ1E → ΛmTE. Then, a π̄1-

transverse multivector field X ∈ Xm(J1E) is said to be semiholonomic, or a second-

order partial differential equation, if Λmκ ◦X = ΛmTπ1 ◦X. In a natural chart in J1E,

the local expression of X is

X ≡
m∧
µ=1

f
(
∂
∂xµ

+vAµ
∂
∂yA

+GAµρ
∂
∂vAρ

)
, (3.7)

where f ∈ C∞(J1E) is an arbitrary nonvanishing function. On the other hand, X ∈
Xm(J1E) is said to be holonomic if it is integrable, π̄1-transverse and its integral sec-

tions ψ : M → J1E are holonomic. Then, it can be proved [8] that a multivector field

X ∈ Xm(J1E) is holonomic if and only if it is integrable and semiholonomic.

Of course, if X ∈ Xm(J1E) is a semiholonomic (resp., holonomic) multivector field,

then all those in the class {X} ⊂ Xm(J1E) are semiholonomic (resp., holonomic) too.

As a local expression of a representative we can take

X ≡
m∧
µ=1

(
∂
∂xµ

+vAµ
∂
∂yA

+GAµρ
∂
∂vAρ

)
. (3.8)
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Given a section φ= (xµ,fA), if j1φ= (xµ,fA,∂fA/∂xρ) is an integral section of this

semiholonomic multivector field, then vAµ = ∂fA/∂xµ and the components of φ are a

solution to the system of partial differential equations,

GAνρ
(
xµ,fA,

∂fA

∂xµ

)
= ∂2fA

∂xρ∂xν
. (3.9)

On the other hand, it can be proved [8] that classes of locally decomposable and π̄1-

transverse multivector fields are in one-to-one correspondence with orientable con-

nections in the bundle π : J1E →M (this correspondence is characterized by the fact

that �(X) is the horizontal subbundle of the connection). For the multivector field

(3.8), the associated Ehresmann connection has the local expression

∇= dxµ⊗
(
∂
∂xµ

+vAµ
∂
∂yA

+GAµρ
∂
∂vAρ

)
. (3.10)

Then X ∈ Xm(J1E) is integrable if and only if the connection ∇ associated with the

class {X} is flat, that is, the curvature of ∇ vanishes everywhere. Thus, system (3.9)

has a solution if and only if the following additional system of equations holds (for

every B, µ, ρ, η)

0=GBηµ−GBµη,

0= ∂G
B
ηρ

∂xµ
+vAµ

∂GBηρ
∂yA

+GAµγ
∂GBηρ
∂vAγ

− ∂G
B
µρ

∂xη
−vAη

∂GBµρ
∂yA

−GAηγ
∂GBµρ
∂vAγ

.
(3.11)

Now, the problem posed by the Hamilton principle can be stated in the follow-

ing way:

Theorem 3.1. Let (J1E,Ω�) be a Lagrangian system. The critical sections of the

Lagrangian variational problem are the integral sections of a class of holonomic mul-

tivector fields {X�} ⊂ Xm(J1E), such that

i
(
X�

)
Ω� = 0 ∀X� ∈

{
X�

}
. (3.12)

Proof. The critical sections must be the integral sections of a class of holonomic

multivector fields {X�} ⊂ Xm(J1E), as a consequence of the above discussion.

Now, using the local expression (3.2) of Ω�, and taking (3.8) as the representative of

the class of semiholonomic multivector fields {X�}, from the relation i(X�)Ω� = 0 we

have that the coefficients on dvAµ , dyA, and dxµ must vanish. But for the coefficients

on dvAµ , we obtain the identities

0=
(
vBµ −vBµ

) ∂2£

∂vAν ∂vBµ
∀A,ν ; (3.13)

meanwhile the condition for the coefficients on dyA leads to the system of equations

∂2£

∂vBν ∂vAµ
GBνµ =

∂£
∂yA

− ∂2£

∂xµ∂vAµ
− ∂2£

∂yB∂vAµ
vBµ A= 1, . . . ,N. (3.14)
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Therefore if j1φ = (xµ,fA,∂fA/∂xν) must be an integral section of X�, then vAµ =
∂fA/∂xµ , and hence the coefficients GBνµ must satisfy (3.9). As a consequence, system

(3.14) is equivalent to the Euler-Lagrange equations for the section φ. Note that, from

the above conditions, the coefficients on dxµ vanish identically.

So, in Lagrangian field theories, we search for (classes of) nonvanishing and locally

decomposable multivector fields X� ∈ Xm(J1E) such that

(1) the equation i(X�)Ω� = 0 holds;

(2) X� are semiholonomic;

(3) X� are integrable.

Then we introduce the following nomenclature:

Definition 3.2. X� ∈ Xm(J1E) is said to be an Euler-Lagrange multivector field

for � if it is semiholonomic and is a solution to the equation i(X�)Ω� = 0.

Observe that neither the compatibility of system (3.14) nor the integrability of (3.9)

are assured. Thus, the existence of Euler-Lagrange multivector fields is not guaranteed

in general, and if they exist, they are not necessarily integrable.

Theorem 3.3 (existence and local multiplicity of Euler-Lagrange multivector fields).

Let (J1E,Ω�) be a regular Lagrangian system. Then

(1) there exist classes of Euler-Lagrange multivector fields for �;

(2) in a local system, these multivector fields depend on N(m2−1) arbitrary func-

tions.

Proof. (1) First we analyze the local existence of solutions and then their global

extension.

In a chart of natural coordinates in J1E, using the local expression (3.2) of Ω� and

taking the multivector field given in (3.5) (with f = 1) as the representative of the class

{X�}, from the relation i(X�)Ω� = 0, we have that the coefficients on dvAµ , dyA, and

dxµ must vanish.

Thus, for the coefficients on dvAµ , we obtain that

0=
(
FBµ −vBµ

) ∂2£

∂vAν ∂vBµ
∀A,ν. (3.15)

But if � is regular, the matrix (∂2£/∂vAν ∂vBµ ) is regular. Therefore FBµ = vBµ (for every

B, µ) which proves that if X� exists it is semiholonomic.

Subsequently, from the condition for the coefficients on dyA, and taking into ac-

count that we have obtained FBµ = vBµ , we obtain the set of (3.14), which is a system of

N linear equations on the functionsGBνµ . This is a compatible system as a consequence

of the regularity of �, since the matrix of the coefficients has a (constant) rank equal

to N (observe that the matrix of this system is obtained as a rearrangement of rows

of the Hessian matrix).

From the above results, we obtain that the coefficients on dxµ vanish identically.

From these results, we are able to assure the local existence of (classes of) multivector

fields satisfying the desired conditions. The corresponding global solutions are then

obtained using a partition of unity subordinated to a covering of J1E made of local

natural charts.
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(2) The expression of a semiholonomic multivector field X� ∈ {X�} is given by (3.8).

So, it is determined by the Nm2 coefficients GBνµ , which are related by the N indepen-

dent equations (3.14). Therefore, there are N(m2−1) arbitrary functions.

Now the problem is to find a class of integrable Euler-Lagrange multivector fields,

if indeed it exists. Thus, we can choose, from the solutions to this system, those such

that X� verify the integrability condition, that is, the associated connection ∇� is flat

(3.11). If (3.14) and the first group of (3.11) allow us to isolate N+ (1/2)Nm(m−1)
coefficients GAµν as functions on the remaining ones; and the set of (1/2)Nm2(m−1)
partial differential equations (the second group of (3.11)) on these remaining coeffi-

cients satisfies the conditions on Cauchy-Kowalewska’s theorem [6], then the existence

of integrable Euler-Lagrange multivector fields is assured.

Remark 3.4 (singular Lagrangian systems). For singular Lagrangian systems, the

existence of Euler-Lagrange multivector fields is not assured except perhaps on some

submanifold S ↩ J1E. Furthermore, locally decomposable and π̄1-transverse multi-

vector fields, which are solutions of the field equations, can exist (in general, on some

submanifold of J1E), but none of them is semiholonomic (at any point of this subman-

ifold). As in the regular case, although Euler-Lagrange multivector fields exist on some

submanifold S, their integrability is not assured except perhaps on another smaller

submanifold I ↩ S; such that the integral sections are contained in I. This condition

implies that π̄1|I : I →M must be onto on M .

The local treatment of the singular case is as follows: starting from (3.5), and taking

the representative obtained by making fµ = 1, for every µ, we can impose the semi-

holonomic condition by making FAµ = vAµ , for every A, µ. Therefore, we have system

(3.14) for the coefficients GAµν ; but this system is not compatible in general except

perhaps in a set of points S1 ⊂ J1E, which is assumed to be a nonempty closed sub-

manifold. Then, there are Euler-Lagrange multivector fields on S1, but the number

of arbitrary functions on which they depend is not the same as in the regular case,

since this number depends on the dimension of S1 and the rank of the Hessian ma-

trix of £. Next, the tangency condition must be analyzed; and finally the question of

integrability must be considered as above, but for a submanifold of S1.

4. Hamiltonian equations in classical field theories. For the Hamiltonian formal-

ism of field theories, the choice of a multimomentum phase space or multimomentum

bundle is not unique (see [10]). In this work we take

J1∗E ≡ Λ
m
1 T∗E
Λm0 T∗E

, (4.1)

where Λm1 T∗E is the bundle ofm-forms on E vanishing by the action of two π -vertical

vector fields, and Λm0 T∗E ≡π∗ΛmT∗M . We have the natural projections

τ1 : J1∗E �→ E,
τ̄1 =π ◦τ1 : J1∗E �→M

(4.2)

and we denote by (xµ ,yA,pµA) the natural local systems of coordinates in J1∗E adapted

to these bundle structures (µ = 1, . . . ,m; A= 1, . . . ,N).
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For constructing Hamiltonian systems, J1∗E must be endowed with a geometric

structure. There are different ways for doing this, namely, using Hamiltonian sections

[3], or Hamiltonian densities [3, 10, 12]. So we construct the Hamilton-Cartan m and

(m+1) forms Θh ∈ Ωm(J1∗E) and Ωh = −dΘh ∈ Ωm+1(J1∗E), which have the local

expressions (in an open set U ⊂ J1∗E):

Θh = pµAdyA∧dm−1xµ−Hdmx,
Ωh =−dpµA∧dyA∧dm−1xµ+dH∧dmx.

(4.3)

H ∈ C∞(U) is a local Hamiltonian function, which is given by a Hamiltonian section

h : J1∗E → Λm1 T∗E as follows: if (xµ,yA,pµA,p) denotes a natural system of adapted

coordinates in Λm1 T∗E, then h(xα,yA,pαA)= (xα,yA,pαA,−H). A couple (J1∗E,Ωh) is

said to be a Hamiltonian system.

We can state a variational problem for (J1∗E, Ωh) (Hamilton-Jacobi principle): the

states of the field are the sections of τ̄1 which are critical for the functional H(ψ) :=∫
Mψ∗Θh, for every ψ∈ Γ(M,J1∗E). They are characterized by the condition [3, 10]

ψ∗i(X)Ωh = 0 ∀X ∈ X
(
J1∗E

)
. (4.4)

In natural coordinates, ifψ(x)=(xµ,yA(x),pµA(x)), this condition leads to the system

∂yA

∂xµ

∣∣∣∣∣
ψ
= ∂H
∂pµA

∣∣∣∣∣
ψ
,

∂pµA
∂xµ

∣∣∣∣∣
ψ
=− ∂H

∂yA

∣∣∣∣∣
ψ
, (4.5)

which is known as the Hamilton-De Donder-Weyl equations.

Let (J1∗E,Ωh) be a Hamiltonian system. The problem of finding critical sections

solutions of the Hamilton-Jacobi principle can be formulated equivalently as follows:

to find a distribution D of T(J1∗E) satisfying the conditions:

• D is integrable (i.e., involutive);

• D is m-dimensional,

• D is τ̄1-transverse.

• The integral manifolds of D are the critical sections of the Hamilton-Jacobi

principle.

Then, from the first and the second conditions, there exist X1, . . . ,Xm ∈ X(J1∗E) (in

involution), which locally span D. Therefore X = X1∧···∧Xm defines a section of

ΛmT(J1∗E), that is, a nonvanishing, locally decomposable multivector field in J1∗E,

whose local expression in natural coordinates is

X =
m∧
µ=1

f
(
∂
∂xµ

+FAµ
∂
∂yA

+GρAµ
∂
∂pρA

)
, (4.6)

where f ∈ C∞(J1∗E) is a nonvanishing function. A representative of the class {X} can

be selected by the condition i(X)(τ̄1∗ω)= 1 which leads to f = 1.

Therefore, the problem posed by the Hamilton-Jacobi principle can be stated in the

following way:
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Theorem 4.1. The critical sections of the Hamilton-Jacobi principle are the sections

ψ ∈ Γc(M,J1∗E) such that they are the integral sections of a class of integrable and

τ̄1-transverse multivector fields {X�} ⊂ Xm(J1∗E) satisfying

i
(
X�

)
Ωh = 0 ∀X� ∈

{
X�

}
. (4.7)

Proof. The critical sections must be the integral sections of a class of integrable

and τ̄1-transverse multivector fields {X�} ⊂ Xm(J1∗E), as a consequence of the above

discussion.

Now, using the local expression (4.3) of Ωh and taking the multivector field (4.6)

(with f = 1) as a representative of the class {X�}, from i(X�)Ωh = 0 we obtain that

the coefficients on dpµA must vanish:

0= FAν −
∂H
∂pνA

∀A,ν ; (4.8)

and the same happens for the coefficients on dyA:

0=GµAµ+
∂H
∂yA

A= 1, . . . ,N. (4.9)

(Using these results, the coefficients on dxµ vanish identically.)

Now, if ψ(x)= (xµ,yA(xν),pµA(xν)) has to be an integral section of X� then

FAµ ◦ψ=
∂yA

∂xµ
, GµAµ ◦ψ=−

∂pµA
∂xµ

; (4.10)

and (4.8) and (4.9) are the Hamilton-De Donder-Weyl equations (4.5) for ψ.

Thus, we search for (classes of) τ̄1-transverse and locally decomposable multivector

fields X� ∈ Xm(J1∗E) such that

(1) i(X�)Ωh = 0 holds;

(2) X� are integrable.

Classes of locally decomposable and τ̄1-transverse multivector fields are in one-

to-one correspondence with connections in the bundle τ̄1 : J1∗E → M . Then X� is

integrable if and only if the curvature of the connection associated with this class

vanishes everywhere.

Definition 4.2. A multivector field X� ∈ Xm(J1∗E) will be called a Hamilton-De

Donder-Weyl (HDW) multivector field for the system (J1∗E,Ωh) if it is τ̄1-transverse,

locally decomposable and verifies the equation i(X�)Ωh = 0.

For a Hamiltonian system, the existence of Hamilton-De Donder-Weyl multivector

fields is guaranteed, although they are not necessarily integrable.

Theorem 4.3 (existence and local multiplicity of HDW-multivector fields). Let

(J1∗E,Ωh) be a Hamiltonian system. Then

(1) there exist classes of HDW-multivector fields {X�};
(2) in a local system, the above solutions depend on N(m2−1) arbitrary functions.

Proof. (1) Bearing in mind the proof of Theorem 4.1, we have that (4.8) makes a

system of Nm linear equations which determines univocally the functions FAν , while
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(4.9) is a compatible system of N linear equations on the Nm2 functions GµAν . These

results assure the local existence. The global solutions are obtained using a partition

of unity subordinated to a covering of J1∗E made of natural charts.

(2) In natural coordinates in J1∗E, a representative of a class of HDW-multivector

fields X� ∈ {X�} is given by (4.6) (with f = 1). Therefore, it is determined by the

Nm coefficients FAν , which are obtained as the solution to (4.8), and by the Nm2

coefficients GµAν , which are related by the N independent equations (4.9). Therefore,

there are N(m2−1) arbitrary functions.

In order to find a class of integrable HDW-multivector fields (if it exists) we must

impose that X� verify the integrability condition: the curvature of the associated con-

nection ∇� vanishes everywhere, that is, the following system of equations holds (for

1≤ µ < η≤m)

0= ∂F
B
η

∂xµ
+FAµ

∂FBη
∂yA

+GγAµ
∂FBη
∂pγA

− ∂F
B
µ

∂xη
−FAη

∂FBµ
∂yA

−GρAη
∂FBµ
∂pρA

= ∂2H
∂xµ∂pηB

+ ∂H
∂pµA

∂2H
∂yA∂pηB

+GγAµ
∂2H

∂pγA∂p
η
B
− ∂2H
∂xη∂pηB

− ∂H
∂pηA

∂2H
∂yA∂pµB

−GρAη
∂2H

∂pρA∂p
µ
B
,

(4.11)

0= ∂G
ρ
Bη

∂xµ
+FAµ

∂GρBη
∂yA

+GγAµ
∂GρBη
∂pγA

− ∂G
ρ
Bµ

∂xη
−FAη

∂GρBµ
∂yA

−GγAη
∂GρBµ
∂pγA

= ∂G
ρ
Bη

∂xµ
+ ∂H
∂pµA

∂GρBη
∂yA

+GγAµ
∂GρBη
∂pγA

− ∂G
ρ
Bµ

∂xη
− ∂H
∂pηA

∂GρBµ
∂yA

−GγAη
∂GρBµ
∂pγA

,

(4.12)

(where use is made of the Hamiltonian equations). Hence the number of arbitrary

functions will be in general less than N(m2−1).
As this is a system of partial differential equations with linear restrictions, there is

no way of assuring the existence of an integrable solution. Considering the Hamilton-

ian equation (4.9) for the coefficients GµAν , together with the integrability conditions

(4.11) and (4.12), we haveN+(1/2)Nm(m−1) linear equations and (1/2)Nm2(m−1)
partial differential equations. Then, if the set of linear restrictions (4.9) and (4.11) al-

low us to isolate N+(1/2)Nm(m−1) coefficients GµAν as functions on the remaining

ones; and the set of (1/2)Nm2(m−1) partial differential equations (4.12) on these

remaining coefficients satisfies certain conditions, then the existence of integrable

HDW-multivector fields (in J1∗E) is assured. If this is not the case, we can eventually

select some particular HDW-multivector field solution, and apply an integrability al-

gorithm in order to find a submanifold �↩ J1∗E (if it exists), where this multivector

field is integrable (and tangent to �).

Remarks. • (Restricted Hamiltonian systems). There are many interesting cases in

field theories where the Hamiltonian field equations are established not in J1∗E, but

rather in a submanifold j0 : P ↩ J1∗E, such that P is a fiber bundle over E (and M),

and the corresponding projections τ1
0 : P → E and τ̄1

0 : P →M satisfy τ1 ◦ j0 = τ1
0 and

τ̄1 ◦ j0 = τ̄1
0 .
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Now, the existence of HDW-multivector fields is not assured. However, an algorith-

mic procedure can be outlined with the aim of obtaining a submanifold Sf of P , where

HDW-multivector fields exist, can be outlined. Of course the solution is not unique, in

general, but the number of arbitrary functions is not the same as above (it depends

on the dimension of Sf ).

Finally, the question of integrability must be considered, and similar considerations

to those above must be made for the submanifold Sf instead of J1∗E.

• (Hamiltonian system associated with a hyper-regular Lagrangian system). If the

Hamiltonian system (J1∗E,Ωh) is associated with a hyper-regular Lagrangian system,

then there exists the so-called Legendre map, which is a diffeomorphism between

J1E and J1∗E [3, 5, 10]. In this case, it can be proved [10] that, if X� ∈ Xm(J1E) and

X� ∈ Xm(J1∗E) are multivector fields solution of the Lagrangian and Hamiltonian field

equations, respectively, then

ΛmTF�◦X� = fX� ◦F� (4.13)

for some f ∈ C∞(J1∗E). That is, we have the following (commutative) diagram:

ΛmTJ1E
ΛmTF�

ΛmTJ1∗E

J1E
F�

X�

J1∗E

X�

(4.14)

we say that the classes {X�} and {X�} are F�-related.

5. Conclusions and outlook. We have used multivector fields in fiber bundles for

setting and studying the Lagrangian and Hamiltonian field equations of first-order

classical field theories. In particular, we have shown that:

• The field equations for first-order classical field theories in the Lagrangian for-

malism (Euler-Lagrange equations) can be written using multivector fields in J1E. This

description allows us to write the field equations for field theories in an analogous

way to the dynamical equations for (time-dependent) Lagrangian mechanical systems.

• The Lagrangian equations can have no integrable solutions in J1E, for neither

regular nor singular Lagrangian systems.

In the regular case, Euler-Lagrange multivector fields (i.e., semiholonomic solutions

to the equation i(X�)Ω� = 0) always exist; but they are not necessarily integrable. In

the singular case, not even the existence of such an Euler-Lagrange multivector field

is assured. In both cases, the multivector field solution (if it exists) is not unique.

• The Hamiltonian field equations can be written using multivector fields in J1∗E
(the multimomentum bundle of the Hamiltonian formalism) in an analogous way to

the dynamical equations for (time-dependent) Hamiltonian mechanical systems.

• The field equations i(X�)Ωh = 0, with X� ∈ Xm(J1∗E) locally decomposable and

τ̄1-transverse, have solution everywhere in J1∗E, which is not unique; that is, there

are classes of Hamilton-De Donder-Weyl multivector fields which are solutions to these

equations. Nevertheless, these multivector fields are not necessarily integrable every-

where in J1∗E.



698 A. ECHEVERRÍA-ENRÍQUEZ ET AL.

• This multivector field formulation is especially useful for characterizing sym-

metries, both in the Lagrangian and Hamiltonian formalisms of field theories. First

attempts at this characterization have been already carried out [9], but new develop-

ments in this area are expected in the future.
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