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A NOTE ON RUSCHEWEYH TYPE OF INTEGRAL OPERATORS
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We prove that the class of uniformly x-convex functions introduced by Kanas is closed
under the generalized Ruscheweyh integral operator for 0 < & < 1.

2000 Mathematics Subject Classification: 30C45.

We denote by s the class of functions f(z) = z+a»z? + - - - which are analytic in
A={zeC:|z| <1}.Let S denote the class of functions in & that are univalent in A.
The subclasses of S containing functions which are uniformly convex and uniformly
starlike, introduced by Goodman [1, 2], are denoted by UCV and UST, respectively.

The class of uniformly x-convex functions was introduced by Kanas [3] and she
gave an analytic condition for such functions as follows: f(z) is a uniformly x-convex
function if and only if

A (z=0)f(2) (z-0)f"(2)
Re{(l (X)—f(Z)—f(C)+O((1+—f’(Z) )}>0 (1)

forall z, € Aand 0 < & < 1. For € = 0, this class of functions reduces to Mocanu’s
class M () of x-convex functions [4].
In this note, for & > 0, we consider the integral operator

_ Fa(2,0) ~Fa(0,0)

F(z) Fo(0.2) , (2)
where
_(ec+l/x z ve-l B 1/« «
Rz ) = { gy | -0 0 - F @) e 3)

for all z € A and for fixed € € A with z + . We prove that this normalized function
F(z) is a uniformly x-convex function when f(z) is a uniformly x-convex function in
the sense of Kanas [3].

For € = 0 the operator F(z) reduces to Ruscheweyh’s integral operator [5]. It is well
known that Mocanu'’s class M (x) of x-convex functions is closed under Ruscheweyh’s
integral operator for «« > 0.
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THEOREM 1. Let f(z) = z+a»z%+--- be a uniformly x-convex function in A and
let ¢ > 0. Then, for 0 < x < 1, the function

— FO((Zig)_FO((OaC)

Fz) Fa0,0)

z,C €A, (4)

is uniformly «-convex where Fy(z,C) is defined as in (3).
PROOF. We have from (3) that

c+1/x

1/« —
Ff(@8) =g

z
L (=D (f () ~f (@) . (5)
Differentiating with respect to z, we have

(2= O SR 2, QR (2,0 +e(z =) R (2,0)
(6)
1 o
_ (c+&)(Z—C)“l(f(z)ff(g))l/
and again differentiating with respect to z we get

1 ) 1 . ,
&{<zf§>F&/“*l(z,c>Fa (2,0 +(z-0) (& - 1)F&/ 2(2,0) (Fi(2,0))>

+FY1(Z O)F.(z, g)} + %F,}/""l (z,0)Fy(2,0)

_ l l ’ _ 1/ax—1,
= (e+ L)@@ - @) @)
F&/H(z,;)F&(z,C){a% +<1—o<)<z—:)§“£jg ratrol

= (e + 1) f' (2)(f(2) - f) /.

Thus we get
R 2 0 Rz a1+ BRI Eob sl |
(z-0)Fy(z,0) (8)
+ —Fa(Z,C) +co(}

= (ca+ D) f () (f(2) - @)
From (2) we have

_ Fi(z,0)

© F&(0,0)° ©)

F'(z2)

showing that F(0) =0 and F'(0) = 1.
Considering

(z-0)F'(z) _(z-0)Fy(z,0)

F@)-F@©) ~  Faz,0) (10)
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and differentiating with respect to z, we have

F’(z) 1 F(2) 1 +F&'(2.C) _Fy(2,0),
F'(z) z-C F(z)-F() z-T Fua(z,0) Fu(z,0)’

(z-0)F"(2) _(z-0)F(2) 14 (z-0)F((2,8) Fy(2,8)(z-7)
F'(z) F(z)-F(T) Fa(z,0) Fo(z,0)

Substituting (10) and (12) in (8), we obtain
- / (z-0)F"(2) (z-0)F'(2) (z-0)F'(z)
1/x—-1 —
Fa (Z’E)F“(Z’E){“[ F(z) F(z)-F(©) ] F(z)-F(©) +C°‘7f

= (ca+ D) f' (2)(f(2) - F@)*

FL (2, 0)F (2, o{u — )

(z—

Fz)-F©)

OF'(2)

= (ca+ 1) f (2)(f(z) - F@©)

Setting

P(z,0)=(1-x)

(z-0)F'(2)

F'(2)

(x<1+w)+ca}

equation (13) becomes

F(z)-F(C)

(x((Z*C)F”(Z) +1>’

F'(z)

FY* Yz, 0)F,(2,0{P(z,0) +ca = (ca+ 1) f (2) (f(2) - f() "7

Taking logarithmic differentiation with respect to z, we get

(1-x)(z-0)
=0+
o([(Z—C)

:0((1+

F
Fq

«(2,0)
(z,0) "

(z-0)f"(2)

+(1-

f(z)

Fy(2,0)

x(z-10)

)

Fu(2,0)

P(z,0) +c«x

(z-0)f'(2).
f(z2)-f()’

(z-0)Fy(2,T)

Fy(z,0) «(z-C)P'(z,0) x

x(z-C)P'(z,C)

Fa(z,0)
-0)f"(2)

(z

f'(z)

Equations (10) and (12) give

|

(z-0)F'(z) (z—

(z=0)F4(2,0)
Fu(z,0) ] *

>+(1—o<)

FO((Z, ;)

(z-0)f'(2)
f(2)-f(©)"

(z-0C)F'(2)

P(z,0)+cx

x(z-C)P'(z,C)

F'(2)

o0

f(2)

- F(2)-F(Q)
L z2-0f" (@)

O)F'(2) ]

)+(1fo<)

" Fz)-F(©)

(z-0)f'(2)

f@)-f@©)°

P(z,0)+cx
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(11)

12)

(13)

(14)

(15)

(17)



186 M. A. DURAI AND R. PARVATHAM

That is
(z-0)F"(2) L (z-0F(2)]  «x(z-0)P'(z,0)
[o(1+ F(2) )+a a)F(Z)—F(C)]+ P(z,0) +c 8
(z-0)f"(2) (z-0)f'(2)
=14 2250 =) 1-)—=L 22
a1+ E 5l r a0 TR
Hence, we have
x(z-0)P'(2,0) _ (z-0)f"(2) A (2-0f(2)
PO 2 D v e = o1+ 7(2) )+ Vo -fo 1Y
Since f(z) is uniformly «-convex, we have
x(z-C)P'(z,0)
Re{P(Z'CH—P(z,CHca }>0 (20)

forallz,CeA, 0<x<1.

We show that ReP(z,C) > 0. Suppose that there exists a point {y € A such that the
image of the arc T': z(t) = Co +re' is tangent to the imaginary axis. Let wg be the
point of contact and let zy € A such that wy = P(z0,Cp). Then ReP(z(,Cp) = 0 and
therefore P(zg,Cy) = ix, where x € R. Hence the outer normal to F(T) is

(z0—Co)P'(20,C0) = ¥ <O. (21)

For such ¢y, we have

a(z0—Co)P'(20,C0) ] _ . xy
RQ{P(ZO’CO)Jr P(z0,C0) +cax }_Re{wﬁ_cowix}

=Re{ix+w} (22)
2o +x2

cxly
= m <0 forc>0
which contradicts (20) and hence Re P(z,C) > 0 in A showing that F(z) is a uniformly
x-convex function. |
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