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We study the set of differences {g* —g” (modp):1 < x, v < N} where p is a large prime
number, g is a primitive root (modp), and p2/3 <N < p.
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1. Introduction. Let p be a large prime number and g a primitive root (modp).
The distribution of powers g" (modp), 1 <n < N, for a given integer N < p has been
investigated in [1, 2, 4]. In this paper, we use techniques from [4] to study the set of
differences

A:={g*¥-g”(modp):1<x, vy <N}. (1.1)

A natural question, attributed to Andrew Odlyzko, asks for which values of N can we
be sure that any residue h(modp) belongs to A? He conjectured that one can take
N to be as small as p'/?*¢, for any fixed € > 0 and p large enough in terms of ¢. If
true, this would be essentially best possible since A has at most N2 elements. For any
residue a(modp), denote

v(N,a) =#{1 <x, y<N:g*-g” =a(modp)}. (1.2)

If a = 0(modp) we have the diagonal solutions x = y, thus v(N,0) = N. For a #
O(modp) it is proved in [4, Theorem 2] that

2 ,
v(N,a) = N?+O(\/flogzp). (1.3)

It follows that we can take N = cop3/#log p in Odlyzko’s problem, for some absolute
constant cg. The exponent 3/4 is a natural barrier in this problem, as well as in other
similar ones. An example of another such problem is the following: given a large
prime number p, for which values of N can we be sure that any residue h # 0(mod p)
belongs to the set {xy(modp):1 <x, ¥ < N}? Again we expect that N can be taken
to be as small as p!/?*¢. As with the other problem, it is known that we can take
N = c1p34logp for some absolute constant c¢1, and this is proved by using Weil’s
bounds for Kloosterman sums [5]. If one assumes the well-known H* conjecture of
Hooley which gives square root cancellation in short exponential sums of the form
Di<x<nel(ax/p), where x denotes the inverse of x modulo p, then we show that N
can be taken to be as small as p2/3*€ in the above problem. We mention, in passing,
that this question is also related to the pair correlation problem for sequences of


http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com

326 M. VAJAITU AND A. ZAHARESCU

fractional parts of the form ({n?«})nen, which would be completely solved precisely
if one could deal with the case when N = p?/3-¢ (see [3] and the references therein).

Returning to the set A, its structure is also relevant to the pair correlation problem
for the set {g"(modp), 1 <n < N}. Here one wants an asymptotic formula for

#{1 <x4y<N:g*-g” =h(modp), he%]}, (1.4)

for any fixed interval J C R. The pair correlation problem is similar to Odlyzko’s prob-
lem, but it is more tractable due to the extra average over h. This problem is solved
in [4] for N > p>/7+€, the result being that the pair correlation is Poissonian as p — o
(here we need N/p — 0). It is also proved in [4] that under the assumption of the gen-
eralized Riemann hypothesis (for Dirichlet L-functions) the exponent can be reduced
from 5/7+€ to 2/3 + €. We mention that by assuming square root type cancellation in
certain short character sums with polynomials >, _,,.y X(P(n)), the exponent 3/4 in
Odlyzko’s problem can be reduced to 2/3 + € as well. Taking into account the difficulty
of the conjectures which would reduce the exponent to 2/3 + € in all these problems,
it might be of interest to have some more modest, but unconditional results, valid in
the range N > p?/3+€,

Our first objective, in this paper, is to provide a good upper bound for the second
moment
2

2

M)(N):= > |v(N,a)- N7

a(modp)

(1.5)

From (1.3), it follows that M»(N) <« 10210g4 p. The following theorem gives a sharper
upper bound for M, (N).

THEOREM 1.1. For any prime number p, any primitive root gmod p, and any posi-
tive integer N < p,

M,(N) < pNlogp. (1.6)

Since each residue h(modp) which does not belong to A contributes an N4/p? in
M>(N), we obtain the following corollary.

COROLLARY 1.2. For any prime number p, any primitive root gmodp, and any
positive integer N < p,

p’logp
N3
Thus, for N > p2/3*€ it follows that almost all the residues a(mod p) belong to A.
Although by its nature the inequality (1.6) does not give any indication on where the
possible residues h ¢ A might be located, there is a way of obtaining results as in
Corollary 1.2, with h restricted to a smaller set.

#{h(modp):h ¢ Al <

(1.7)

THEOREM 1.3. For any prime number p, any primitive root gmod p, and any posi-
tive integer N < p,

3 1/2
#{1 <h < /p:h prime, h(modp) ¢ A} < (%) . (1.8)
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COROLLARY 1.4. Forany e >0, any prime number p, and any primitive root gmod p,
almost all the prime numbers h < /P (in the sense that the exceptional set has <. p'/*~¢
elements) can be represented in the form

h =g*-g”(modp) (1.9)

with1 < x, v < p?/3+€,

Note that a weaker form of Corollary 1.4, with the range 1 < x, y < p?/3%€ re-
placed by the larger range 1 < x, vy < p>/5*¢, follows directly by taking N = p>/6*¢ in
Corollary 1.2. The point in Corollary 1.4 is that it gives a result where h is restricted
to belong to a small set, at no cost of increasing the range 1 < x, y < p2/3+€,

2. Proof of Theorem 1.1. Let p be a prime number, g a primitive root mod p,
and N a positive integer smaller than p. We know that a = 0(mod p) contributes an
(N-N2/p)2 < N?in M>(N). For a # 0(mod p) define a function h, on Z/(p —1)Z x
Z/(p—1)Z by

1, ifg*—-g> =
ha(x,y>={’ g™ ~g” =atmodp), @.1)

0, else.

Thus v(N,a) = 31 <x y<nha(x,¥). Expanding h, in a Fourier series on Z/(p —1)Z x
Z/(p—1)Z we get

viNa) = S hatrs) S e(”*SJ’), 2.2)

where the Fourier coefficients are given by

(2.3)

- 1
ha(T,S)=m Z hu(x!y)e(_ 1

X +Sy>
x,y(modp-1) 14

The main contribution in (2.2) comes from the terms with » = s = O(modp — 1), and
this equals h,(0,0)N2. It is easy to see that h;(0,0) =1/p+0(1/p?). Thus

N2 1
v(N,a)—?(1+O<E))+R(a), (2.4)
where
R@) = >  ha(r,s)En(r)Ey(s), (2.5)
(r,5)#(0,0)
B rXx _ sy
FN(T)—IS%Ne(p_l), FN(S)—lsyZSNe<p_l). (2.6)



328 M. VAJAITU AND A. ZAHARESCU

From (2.4) and the definition of M> (N), it follows that in order to prove Theorem 1.1
it will be enough to show that

p-1
> |R(a)|* < pNlogp. (2.7)
a=1

From [4, Lemma 7] it follows that

XEDT)TXR)T(X-T)
pp-1)2

ha(r,s) = X" (a), (2.8)
where T(x"), T(x%), T(x""*%) are Gauss sums associated with the corresponding
multiplicative characters x", x*, x~** defined modp, and x is the unique character
mod p which corresponds to our primitive root g by

x(g™) :e(pyfl>, (2.9)

for any integer m. From (2.5) and (2.8) we derive

R@)= >  bmx"(), (2.10)
m(modp—1)
where
-m
bm = % > Fx(rEn()x* (=D T(x") T (x*). (2.11)
PP =% 1 9400 modp-1)
r+s=m(modp-1)
Since
, ifn#0(modp-1),
|T(x")] = v _ p (2.12)
1, ifn=0(modp-1),
it follows that
|bm| < p~3? > | En(r)En(s)]. (2.13)

r+s=m(modp-1)

Here Fy(v) and Fy(s) are geometric progressions and can be estimated accurately.
We allow 7, s, and m to run over the set {—(p—1)/2+1,—(p—-1)/2+2,...,(p—1)/2}.
Then

|En(r) | < min{N,‘%}, (2.14)

and similarly for |Fy(s)|. From (2.13) and (2.14) it follows that
-3/2 ; P P
|bm| <p > mm{N, }mm{N, \SI}' (2.15)

r+s=m(modp—1) |T|
IrlIsl=(p-1)/2
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By Cauchy’s inequality we derive

172 1/2 172 1/2
|bm| < p~32 > min{NZ,—Z} > min{Nz,—z}
Irl<(p-1)/2 Il Isl<(p-1)/2 sl

(2.16)
2
=p3z min{Nz,p—z}« p l/2N.
Irl<(p-1)/2 r

Ignoring the two terms v = 0, s = m and v = m, s = 0 which contribute in (2.15) at
most 2p3/2N? < 2p~1/2N, the rest of the sum in (2.15) is less than or equal to

2

r+s=m(modp-1)
O<|rl,Isl=(p-1)/2

2

p
[7]ls]

=81+, (2.17)

where we denote by S; the sum of the terms with |7| < |s| and by S> the sum of the
terms with |7 | > |s|. Note that in S; we have |s| > |m|/2 and so

s p* p*logp

51 <
[m ||| [m]

(2.18)
O<|ri=(p-1)/2

and similarly for S;. From (2.16), (2.17), and (2.18) we conclude that

1 . plogp}
bn| < —mm{N, . 2.19
| Wl| ti |n1| ( )

We now return to (2.10) and compute

p-1 p-1
SR |P=> Y S b by x™ M2 (a)
a=1 a=1 mj(modp-1) mp(modp-1)

- (2.20)

= Z bmlbmz me]7MZ(a)-

mp,mp(modp-1) a=1

The orthogonality of characters (mod p) shows that the last inner sum is zero unless
m; = mp when it equals p — 1, hence

p-1
SIR@|*=(p-1) S |bml’ (2.21)
a=1 m(modp—1)

Using (2.19) in (2.21) we obtain

p-1 ) 2 2
SIR@|]P < Y min{Nz,plogp} < pNlogp. (2.22)
a=1

2
Iml<(p—1)/2 Im|

Thus (2.7) holds and Theorem 1.1 is proved. O
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3. Proof of Theorem 1.3. Let p, g, and N be as in the statement of the theorem.
We will combine the second moment estimate from Theorem 1.1 with two new ideas.
The first idea is to restrict the range of x, y to 1 < x, y < N; = [N/2] in the definition
of A in order to increase the number of residues which do not belong to the set. To
be precise, we consider the set

Al ={g*-g”(modp):1=<x, y <N}, (3.1

and note that, for any residue h(mod p) which does not belong to A and any integer
0 < n < Ny, the residue hg" will not belong to A;. Indeed, if there were integers
x,y €1{1,2,...,N1} such that g¥ —g” = hg " (modp), then g**" — g¥*" = h(mod p)
which is not the case since 1 < x+n, y+n < N, and h does not belong to A. Therefore,
if 3 is a set of residues (modp) which do not belong to A, no element of the set
M={hg " (modp):he#, 0<n<N;}willbelong to A,. The second idea is captured
in the following lemma.

LEMMA 3.1. Let p be a prime number, g a primitive root modp, # a set of
prime numbers smaller than ./p, N1 an integer larger than |¥|, and denote M =
{thg ™ (modp):he ¥, 0 <n <N;}. Then

|9€1 (19¢] +1)

M| = > . (3.2)

PROOF. The set .l becomes larger if one increases N; thus it is enough to deal with
the case N; = |¥/|. Consider the sets

%, ={hg "(modp):h € ¥}. (3.3)
Each of these sets has exactly || elements and we have

M= %n. (3.4)

0=n=<N;

We claim that for any 1 < n; # n, < Ny, the intersection %,, N ¥, has at most one
element. Indeed, assume that for some distinct n;,n, € {1,2,...,N1}, the set #,, N
¥, has at least two elements, call them a and b. There are then prime numbers
P1,P2,P3,P4 € ¥ such that

a=pig " =p2g " (modp),

3.5
b=p3g™™ = pisg ™ (modp). (35)

Note that since 1 # n,(modp —1) we have g~ # g~ (mod p) hence the numbers
p1 and p, are distinct. Also, p; and p3 are distinct because a and b are distinct.
We have

ab =pipsg " " = pap3g ™ " (modp), (3.6)

thus

p1p4 = p2p3(modp). (3.7)
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Now the point is that p;ps4 and p2p3; are positive integers less than p, and so the
above congruence implies the equality p; ps = p2ps3. Since these four factors are prime
numbers, p; coincides with either p» or p3, which is not the case. This proves the claim.
We now count in . all the elements of ¥, all the elements of 3; with possibly one
exception if this was already counted in %, from > we count all the elements with
at most two exceptions, and so on. Thus

191191 +1)

= 19+ (1% = 1) + -+ -+ 1 5 ,

(3.8)

which proves the lemma. O

We now apply Lemma 3.1 to the set ¥ of prime numbers < ,/p which do not be-
long to A, and with N} = [N/2]. It follows that the corresponding set .it has at least
|9¢|2/2 elements. As we know, none of them belongs to A;. Thus each such element
contributes an Nj‘ /p? in M (N;), and combining this with Theorem 1.1 we find that

2 N4
@p—; <M,(Ny) < pN,logp. (3.9)
This implies
p*logp\ '
< (gEP) (3.10)
which completes the proof of Theorem 1.3. O
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