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We consider a thin film flow where a flat substrate is coated with a mixture of two miscible
liquids, of equal viscosity, and develop a model to predict the evolving coating thicknesses.
The developed model can, under certain circumstances, be used as an approximation for
the dip-coating of a liquid suspension of a viscous volatile liquid and solid solute as occurs
in many industrial applications.
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1. Introduction. A thin liquid film consisting of a mixture of two miscible liquids,

one volatile (which we will refer to as the solvent), one nonvolatile (referred to as the

solute), of equal viscosity, flows under gravity over a flat substrate (see Figure 1.1).

We develop a lubrication type model [11, 12, 13, 15] to predict the evolving coating

thicknesses [1]. The developed model, can under certain circumstances, be used as an

approximation for the dip-coating of a liquid suspension of a viscous volatile liquid

and solid solute as occurs in many industrial applications [3, 4, 16]. The coating pro-

file on a flat, finite, long substrate is modelled to find the thickness of coating as a

function of distance from the top of the substrate [18]. The emphasis here is placed

on obtaining approximate analytic solutions [5, 9] rather than numerically solving the

governing partial differential equations [17].

We consider the case where the initial mixture thickness is uniform and finite. In

[14], we considered a related problem with an infinite initial thickness. After a short

time the fluid thickness is thin and the rate of reduction in fluid thickness due to

gravity and evaporation are of the same order. Thereafter, when the mixture thickness

is very thin there is little flow due to gravity while the evaporation of solvent is the main

contributor to the rate of mixture reduction. In the case where the solute and solvent

have different viscosities, the model developed here would still provide a reasonable

approximation for the process. Initially the viscosity of the solvent would be a good

approximation for the viscosity of the mixture. If the viscosity of the solute is the

larger (smaller) then as the solvent evaporates the viscosity of the mixture would rise

(fall). However, for many practical dip-coating processes, it is known that the slowing

down of the flow due to the film becoming very thin dominates the effect of the rise

in the viscosity [7].

2. The mathematical model. The basic approach is to use a lubrication approx-

imation to exploit the thinness of the liquid film in simplifying the Navier-Stokes

equations. We define the small parameter ε as

ε= H
L
, (2.1)
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Figure 1.1. Schematic of gravity driven flow.

where L is the typical length of the substrate and H is the typical film thickness. If g
is the acceleration due to gravity, γs is the surface tension, µ, ν are the dynamic and

kinematic viscosities, h(x,t) is the solvent thickness, s(x,t) is the solute thickness,

(u,v) is the velocity vector, Σ is the mixture thickness Σ= h+s, c(x,t) is the ratio of

solute thickness to mixture thickness, s = c(x,t)Σ, [10] we scale

u∼U ≡ gH
2

ν
, v∼εU, x∼L, z∼H, p∼ γsH

3

µUL3
, t∼ L

U
, s∼S, Σ∼H, (2.2)

where S is the initial solute thickness. We assume that the composition of the mixture

is uniform initially and due to the thinness of the liquid film the concentration across

the film is approximately constant at all times (small Peclet number across the film)

and that diffusion in the x direction is dominated by convection (large Peclet number

in the x direction). The Peclet number is ÛL̂/D where L̂ is an appropriate length scale,

Û is either U or εU , ν ≈ 10−6 m2 s−1 is kinematic viscosity and D ≈ 10−9 m2 s−1 is

a typical diffusion constant through a liquid medium. The Peclet number across the

film is thus small if the film thickness is less than about 0.1mm while along the film

the Peclet number is large if the film thickness is larger than about 0.01µm.

In the scaled version we thus have

s = cH
S
Σ, Σ= δs+h, δ= S

H
� 1. (2.3)

The governing equations in scaled form become

0=−∂p
∂x

+ ∂
2u
∂z2

+1+O(ε2), (2.4)

0=−∂p
∂z
+O(ε2), (2.5)

∂u
∂x

+ ∂w
∂z

= 0. (2.6)



A MODEL FOR DIP-COATING OF A TWO LIQUID MIXTURE 315

As H2g/Uν = 1 by virtue of the scales (2.2). On z = 0 there is no-slip while on the free

surface z = Σ(x,t) we have zero shear stress

∂u
∂z

= 0. (2.7)

The full-dimensional normal stress boundary condition on the free surface z = Σ(x,t)
is of the form

n·T·n= γsκ, (2.8)

where T, n, κ are the stress tensor, surface unit normal, and surface curvature, re-

spectively [11]. In scaled form, to leading order, this becomes

p =− ε3

Ca
(
∂2h/∂x2

) , (2.9)

where Ca = µU/γs ∼ ρgH2/γs . Using the typical values γs = 7.3×10−2 Kg s−2, ρ =
1.0×103 Kg m−3, g = 9.81m s−2, H ≈ 10−5 m, L ≈ 1m, it is reasonable to choose the

distinguished limit ε3 Ca−1 � ε2. From (2.5), we see that the pressure field at leading

order is impressed across the film. Hence, in (2.4) the pressure gradient does not

contribute at leading order. Thus the velocity field is easily found to be

u(x,z)=−
[
z2

2
−hz

]
. (2.10)

To define the unknown free surface z = Σ(x,t), we require an extra free surface con-

dition which we express in terms of mass conservation

Σt =−qx ; q =
∫ z=Σ
z=0

u(x,z)dz. (2.11)

We assume that the rate of evaporation of the solvent, ev , is constant [10]. With evap-

oration effects included, the evolution equation for Σ takes the form

Σt+
(
Σ3

3

)
x
+σ = 0, (2.12)

where σ = evL/HU while the dimensionless solute transport is governed by

st+
(
Σ2

3
s
)
x
= 0. (2.13)

Using the fact that Σ= δs+h, δ� 1 we rewrite these equations as

(δs+h)t+
(
(δs+h)3

3

)
x
+σ = 0, st+

(
(δs+h)2

3
s
)
x
= 0 (2.14)

which reduces to

ht+
(
h3

3

)
x
+σ +O(δ)= 0, (2.15)

st+
(
h2

3
s
)
x
+O(δ)= 0. (2.16)
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The boundary conditions in dimensional variables (using an asterisk to denote this)

are

Σ∗
(
x∗,0

)= f∗(x∗), h∗
(
x∗,0

)= (1−δ)f∗, s∗
(
x∗,0

)= δf∗ (2.17)

which in scaled form become

Σ(x,0)= f
∗

H
, h(x,0)= (1−δ)f

∗

H
, s(x,0)= f

∗

H
(2.18)

which to leading order in δ are h(x,0)= f∗/H, s(x,0)= f∗/H. We consider the case

where the initial film is initially uniform and finite, that is,

h(x,0)= h0, x ≥ 0, (2.19)

or h(x,0)= h0Ĥ(x) where Ĥ is the Heaviside step function.

2.1. The solvent problem. We consider (2.15) subject to the initial condition (2.19).

2.1.1. A shock solution. There is a theoretical shock solution where the initial con-

dition is propagated downwards with shock speed c = (q−−q+)/(h−−h+)= (1/3)h2
0

if we recall that q = h3/3. The solution is h(x,t)= 0, x < (1/3)h2
0t, h(x,t)= h0−σt,

x > (1/3)h2
0t so the shock is located at xs = (1/3)h2

0t and it is easy to see that this is a

solution of the problem. In the limiting case of slow evaporation where σ = 0, we can

easily show that this solution is unstable. We first use a coordinate transformation to

fix the position of the shock by setting z = x− (1/3)h2
0t, τ = t, v(z,τ) = h(x,t) in

which case the governing equation becomes vτ+vz(v2−(1/3)h2
0)= 0 and we wish to

investigate the stability of the stationary shock v = 0, z < 0; v = h0, z > 0. For z < 0 we

set v = 0+δ1 exp(ωt)f(z) with δ1 � 1 and to leading order in δ we quickly obtain:

df/dz = (1/3)h2
0ωf and so f =Aexp((1/3)h2

0ωz) for some arbitrary A. As we also

require that f → 0 as z→−∞ we must have ω> 0 and the solution is unstable. Simi-

larly for z > 0 we find that the solution is unstable. In each of these situations the per-

turbed solution on the real line is defined in a piecewise fashion and is supplemented

by a condition on the shock of the form C(τ) = (q−−q+)/(h−−h+) = Bδ1 exp(ωτ)
where B is defined by the values of the film thickness and the flux on either side of

the shock.

This form of shock instability is well known and we could have predicted it by inter-

preting (2.15) as a kinematic wave equation. The kinematic wave speed is ∂(h3/3)/∂h=
h2. When x > (1/3)h2

0t, we have h = h0 > 0 so small disturbances propagate away

from the shock and in this way the shock will tend to break up.

In the case where σ > 0, the basic shock solution is unsteady due to the evapo-

ration effects even though the location of the shock has been fixed via coordinate

transformation. In this instance we have a static but time-dependent shock [2] h= 0,

z < 0; h= h0−στ , z > 0. For z < 0 we set v = δf(τ,z) with δ� 1 and disturbances

evolve according to fτ−(1/3)h2
0fz = 0 with the general solution f = F(z+(1/3)h2

0τ)
where F describes the form of the disturbance. This describes a wave propagating in

the −z direction so the disturbance is not captured by the shock and the basic solu-

tion is unstable. Similarly, when z > 0 we set v = h0−στ+δf(τ,z) and we find that
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f = F(z−D(τ)) where d(τ) = (h0−στ)2− (1/3)h2
0 and dD(τ)/dτ = d(τ). Signals

thus travel on the space time curves x−D(τ) = constant. For small times τ we note

that d(τ) > 0 and thus D(τ) > 0 and so the disturbance F propagates with positive

velocity away from the shock with consequent instability.

2.1.2. A continuous solution. As the shock solution is unstable, we seek an alter-

native solution by assuming the existence of a fan type solution emanating fromx = 0.

Thus at any time t > 0 far enough down the film at x = xf the disturbance caused by

the non-uniformity at x = 0 will not yet have any influence and the film thickness will

be uniform, though less than its initial value due to evaporation, that is, h0−σt. For

x < xf , we expect a monotonically increasing profile arising from the expansion fan

emanating from x = 0. At the top of the film there will be an interval x < xd where

the liquid thickness is zero as a result of evaporation and the fact that the film is not

being replenished from above.

By demanding continuity of the film thickness, h(x,t) on the whole domain can be

written as a piecewise smooth function

h(x,t)=




0, 0≤ x < xd,(
− σt

2
+ 1
t

√
tx− σ

2t4

12

)
, xd ≤ x < xf ,

h0−σt, xf ≤ x.

(2.20)

The drying line (i.e., the line in xt space corresponding to h= 0) is given by

xd = 1
3
σ 2t3, (2.21)

and as h(x,t) is continuous at xf we have the following relationship between xf
and xd:

xf = xd+h0t
(
h0−σt

)
. (2.22)

2.2. The solute problem. From (2.16) the equation describing the solute thick-

ness is

∂s
∂t
+ 1

3
h2 ∂s
∂x

+ 2
3
hs
∂h
∂x

= 0. (2.23)

The initial condition for the solute is

s(x,0)= h0 or s(x,0)= h0Ĥ(x). (2.24)

The characteristics are defined by

dx
dt

= 1
3
h2, (2.25)

where h is defined in (2.20) and we would like to obtain an explicit (as distinct from

parametric) representation if possible. In Figure 2.1, we use (2.21) to plot the drying

line and via (2.22) the disturbance line. The disturbance line is the curve that defines
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Figure 2.1. The drying line (solid) above the disturbance line (dashed) for
h0 = 1.

when and where the fluid thickness changes to the flat profile h0−σt. Substituting

(2.20) into (2.25), we obtain

dx
dt

= l(t)+ x
3t
+m(t)

√
x+n(t), (2.26)

where

l(t)= σ
2

18
t2, m(t)=−σ

3

√
t, n(t)=−σ

2

12
t3. (2.27)

Writing α(t)= x(t)+n(t), (2.26) becomes

dα(t)
dt

= f(t)
√
α(t)+g(t)α(t)+q(t), (2.28)

where

f(t)=−σ
3

√
t, g(t)= 1

3t
, q(t)=−σ

2

6
t2. (2.29)

From [6], the solution of (2.28) is

α(t)=
(
q(t)
f (t)

)2

χ(t), (2.30)

where χ(t) satisfies

Υ =−
∫

dχ√χ−γχ+1
+
∫ (
f(t)

)2

q(t)
dt. (2.31)

Υ is an arbitrary constant labeling the characteristics and the constant γ satisfies

dz(t)
dt

−g(t)z(t)= γq(t), z(t)=
(
q(t)
f (t)

)2

(2.32)
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and we easily find that γ =−4 and

Υ =−
∫

dχ√χ+4χ+1
− 2

3

∫
1
t
dt. (2.33)

We now define

a(χ)= 1
4

log
(
4χ+√χ+1

)− 1

2
√

15
tan−1

(
8
√χ+1√

15

)
. (2.34)

The equations for the characteristics in the region between the drying line and the

disturbance line are obtained from (2.33) giving

ξ2 =−a(χ)− 2
3

logt, (2.35)

where ξ2 defines the particular characteristic with a(χ) defined by (2.34) and

χ(t)= x(t)−(σ
2/12)t3

(σ 2/4)t3
. (2.36)

The characteristics in the region below the disturbance line are obtained by substitut-

ing (2.20) into (2.25) to obtain

dx
dt

= 1
3

(
h0−σt

)2, (2.37)

giving

ξ1 = x− 1
3

(
h2

0t−h0σt2+ 1
3
σ 2t3

)
, (2.38)

where ξ1 defines the characteristic. We define t0 and t1 to be the unique times a char-

acteristic intersects the drying and disturbance lines, respectively. The characteristics

below the disturbance line given by (2.38) intersect the x axis at ξ1. From the distur-

bance line (2.22) and the equation of the characteristic below the disturbance line

(2.38), the x coordinate of their point of intersection is

xf = 3
2
ξ1. (2.39)

Using (2.39) and (2.38), the other coordinate of intersection t1 between the distur-

bance line and the characteristic below the disturbance line which lies between 0 and

(9ξ1/2σ 2)1/3 is obtained numerically as a function of ξ1. The value of t along the

characteristic below the disturbance which lies between 0 and t1(ξ1) is numerically

expressed as a function of x and ξ1, using (2.38). ξ2 is expressed as a function of

ξ1 by substituting the coordinates of the intersection point between the disturbance

line and the characteristic below the disturbance line into the equation for the char-

acteristic above the disturbance line (2.35). The equation of the drying line (2.21) and

the equation of the characteristic above the disturbance line (2.35) are solved for t0
as a function of ξ2(ξ1). The value of t along the characteristic above the disturbance

line which lies between t1(ξ1) and t0(ξ1) is numerically expressed as a function of

x and ξ1 using (2.35). A complete characteristic is defined as a function of x and ξ1

if we choose the value of t along the characteristic below or above the disturbance
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Figure 2.2. The drying line (solid) above the disturbance line (dashed) and
related characteristics (dotted) for h0 = 1.

line if x < (3/2)ξ1 or x ≥ (3/2)ξ1, respectively. Finally, we plot in Figure 2.2 some

characteristics starting at x = ξ1 and ending at x = (1/3)σ 2t0(ξ1)3 on the drying line.

We now make the following change of independent variables:

η= t, ξ =




x− 1
3

(
h2

0t−h0σt2+ 1
3
σ 2t3

)
, (x,t) is below the disturbance line,

−a(χ)− 2
3

logt, (x,t) is between the disturbance

and the drying lines,

x, (x,t) is above the drying line.
(2.40)

Hence (2.23) becomes

ds
dη

=−2
3
hs
∂h
∂x
, (2.41)

where s = s(ξ,η) and the initial condition becomes

s(ξ,0)= h0. (2.42)

From (2.20), it can be seen that ∂h/∂x = 0 when x < xd and x > xf . Hence the right-

hand side of (2.41) is nonzero when in the middle region, that is, when xd ≤ x ≤ xf .

So (2.41) becomes

ds
dη

=




0, (x,t) is below the disturbance line,

s


 1√(

36/σ 2
)
x(ξ,η)/η−3η2

− 1
3η


, (x,t) is between the disturbance

and the drying lines,

0, (x,t) is above the drying line.
(2.43)
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As t0 and t1 are the times a characteristic intersects the drying and disturbance lines,

respectively, using the initial condition (2.42), (2.43) becomes

∫ s
h0

ds
s
=
∫ t0
t1


 1√(

36/σ 2
)
x(ξ,η)/η−3η2

− 1
3η


dη (2.44)

which reduces (with ψ= η/t0) to

s(ξ)= c0h0
3

√
t1
t0

exp


∫ 1

t1/t0

dψ√(
36/σ 2

)(
x(ξ,η)/t30

)
1/ψ−3ψ2

]
(2.45)

and it follows that

−a(1)=−a
(
x(η)/t30−

(
σ 2/12

)
ψ3(

σ 2/4
)
ψ3

)
− 2

3
logψ. (2.46)

To evaluate s(ξ) in (2.45), we first express t0 and t1 as functions of ξ. Substituting

(2.36) and (2.21) into (2.40) we have

t0 = exp
(
− 3

2

(
ξ+a(1))). (2.47)

To obtain t1 as a function of ξ, we solve for the intersection point of the equation of

the characteristic (2.40) and the equation of the disturbance line (2.22). From (2.46)

we solve for x/t30 as a function of ψ so as to enable us to compute the integral in

(2.45) where x/t30 lies between 0 and σ 2/3. We can now integrate (2.45) and obtain s
as a function of ξ. Substituting the equation for the drying line (2.21) into (2.47), we

obtain

ξ(x)=−a(1)− 2
9

log
(

3
σ 2
x
)
. (2.48)

Substituting (2.48) into the numerical solution for s(ξ), we obtain s expressed as a

function of x. In Figure 2.3, we plot the solute thickness as a function of the dis-

tance from the top of the substrate for a number of finite initial fluid thicknesses

together and compare this with the solute profile corresponding to an infinite initial

fluid thickness (smooth curve). In Figure 2.4 we demonstrate the effect of varying the

evaporation parameter σ .

2.2.1. The solute profile before h = 0. From the drying line (2.21) and the fluid

profile thickness (2.20), it can be seen that the process time for the substrate to be

fully dry is the minimum of 3
√

3L/σ 2 and h0/σ where L is the substrate length. We

will now find the scaled solute thickness as a function of x at some time t̄ less than

the process time, if all the solvent h were instantaneously to evaporate at time t̄.
The solution of the scaled solute profile at a time before the substrate is fully dry

with a finite initial fluid thickness is a piecewise smooth function with the domain

broken into three parts. It is clear that all solvent has evaporated from x = 0 to the

x coordinate of the point of intersection of the drying line and the line t = t̄. Con-

sequently, the solution of the scaled solute profile in this domain is given by (2.45)
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Figure 2.3. Solute thickness for h0 = 1, 1.1, 1.2 and the solute profile for
an infinite initial fluid thickness (solid). σ = c0 = 1.
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Figure 2.4. Solute thickness for h0 = c0 = 1, σ = 1.5 (solid), σ = 1 (dotted),
σ = 0.5 (dashed).

using (2.46), (2.47), and (2.48). From this point to the end of the substrate the profile

can be obtained from (2.20).

In the second region, the development is similar to that given in Section 2.2 with t0
replaced by t̄. In Figure 3.1, we plot s(x) against x at t = t̄. In Figure 3.2, we superim-

pose plots of s(x) at t = t̄ and when h= 0, against x for a finite initial fluid thickness.

3. Discussion. We have developed a simplified model for the flow under gravity

of a two liquid mixture with one volatile component. We assume that evaporation of

the solvent takes place at a constant rate [10]. In the thin film approach used here,

the problems for the evolution of the nonvolatile component (solute) and volatile

component (solvent) partially uncouple and it becomes possible to obtain approximate

solutions without numerically integrating the governing partial differential equations.

Solutions for the solvent can be found explicitly; numerical quadrature is required to

resolve the solute problem.
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Figure 3.1. Solute thickness at t̄ = 1/2 with σ = c0 = h0 = 1.
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Figure 3.2. Solute thickness at t̄ (dashed), and when all the solvent has
evaporated for σ = c0 = h0 = 1, t̄ = 1/2.

The solutions are split into three regions, an uppermost region where all the solvent

has evaporated, an intermediate region where evaporation and gravity effects thin the

film and a lower region where the disturbance created by the initial condition has not

yet propagated and where the mixture thins purely as a result of evaporation. This

model can also be used to approximate the classical dip-coating process where the

solute is in the solid phase. One complication is that as the solvent level decreases, the

viscosity can increase significantly, an effect not incorporated in the present model.

A perturbation model for the case where the rise in viscosity is small could easily be

developed along the lines of the present paper. Moreover, it is well known that in most

practical situations [8], the film has already become so thin that the flow is negligible

before the viscosity changes significantly so the assumption of constant viscosity is

reasonable.
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