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ON A CLASS OF DIOPHANTINE EQUATIONS

SAFWAN AKBIK
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Cohn (1971) has shown that the only solution in positive integers of the equation Y (Y +
DY +2)(Y+3) =2X(X+1)(X+2)(X+3)is X =4, Y = 5. Using this result, Jeyaratham
(1975) has shown that the equation Y (Y +m) (Y +2m)(Y +3m) = 2X(X+m) (X +2m) (X +
3m) has only four pairs of nontrivial solutions in integers given by X = 4m or —7m,
Y = 5m or —8m provided that m is of a specified type. In this paper, we show that if
m = (m1,my) has a specific form then the nontrivial solutions of the equation Y (Y +
mp)(Y+mo)(Y+mp+mp) =2X(X+my)(X+mp2)(X+m; +mpy) are m times the primi-
tive solutions of a similar equation with smaller m’s. Then we specifically find all solutions
in integers of the equation in the special case mp = 3m;.

2000 Mathematics Subject Classification: 11D25, 11D45, 11D09, 11D41.
We generalize the equations of Cohn [1] and Jeyaratnam [2] by considering the
Diophantine equation
Y(Y+m1)(Y+m2)(Y+m1 +7’VL2) = 2X(X+m1)(X+m2)(X+m1 +7’VLz). (1)

The trivial solutions of (1) are the sixteen pairs obtained by equating both sides of
the equation to zero. A nontrivial solution with (X,Y,m,m;) = 1 is called a primitive
solution.

THEOREM 1. If every prime p dividing m = (m,, my) is such that
p=2,3,5mod8) or p=1(mod8) with2?1/*=_1(modp), ()

then every nontrivial solution of (1) is m times a primitive solution of

) e e ) o ) ) e ).

THEOREM 2. If every prime p dividing N is of the form (2), then every nontrivial
solution of

Y(Y+N)(Y+cN)(Y+(1+¢)N) =2X(X+N)(X+cN)(X+(1+c¢)N) (4)
is N times a nontrivial solution of
Y(Y+1)(Y+c)(Y+1+c)=2X(X+1)(X+c)(X+1+c), (5)

where c is a positive integer.


http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com

546 SAFWAN AKBIK
THEOREM 3. The equation
Y(Y+1)(Y+3)(Y+4) =2X(X+1)(X+3)(X+4) (6)

has only four pairs of nontrivial solutions in integers given by X = 14 or —18,Y =17
or —21.

THEOREM 4. If every prime p dividing N is of the form (2), then the equation
Y(Y+N)(Y+3N)(Y+4N) =2X(X+N)(X+3N)(X +4N) (7)

has only four pairs of nontrivial solutions in integers given by X = 14N or —18N,
Y =17N or —21N.

Note that Theorem 2 follows immediately by applying Theorem 1 withm, =N, m, =
cN, and m = (N,cN)=N. Also Theorem 4 follows easily by combining Theorem 2, in
the case ¢ = 3, with Theorem 3.

LEMMA 5. Every solution of (1) that is not primitive is K = (X,Y,m,m») times a
primitive solution of

) ) ) e ) ) 3 )

PROOF. Suppose that X, Y is a solution of (1). By dividing both sides of that equa-
tion by K* we find

L(L m)(X, ma) (Y mtm)

K\K' K J\K" K /J\K K ©)
X(X ml)(X m2><X m1+m2)
=2-—\—+— o+ )| z+— ).
K\k" K J\K" Kk /)\K K

Thus X/K, Y/K is a solution of (8). The lemma follows since (X/K,Y/K,m;/K,
mz/K) = 1. O

LEMMA 6. Equation (1) cannot have a primitive solution if the greatest common
divisor m = (my,m>) is divisible by a prime p of the form (2).

PROOF. By completing the squares in (1) we find

2

2 ; 2 2 2 2
Y +my +my)° —mi —m3 H (2X+my+my)" —m? —m}3 — _mimi. (10)
2 2
Letting
y=2Y+m;+moy, (11)
x =2X+m;+mo, (12)
2 _ 2 _ 2
A=%=2Y2+2Y(ml+mz)+mlmz,
2 2 2 (13)
B=""""NTME _5x2 L oX (my +ma) + mymo,

2
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we obtain the equations

Y2 =2A+m3+m3,  x>=2B+m?}+m3, (14)

A?-2B% = —mims. (15)
If 2 | m, then

A%?-2B? = -m?m3 = A,B=0(mod4) = 2X?,2Y%=0(mod4)
by (13) (16)
= X,Y =0(mod2) = 2| (X,Y,m;,mp) = 1.

Let p | m such that p = 3,5(mod 8). Assume that p { A, then by (15), p t B. Also by
(15), 1 = (2B%/p) = (2/p) = —1, a contradiction. Thus p | A and hence p | B. By (13),
p | X and Y. Therefore (X,Y,m;,my) + 1.

Suppose that p | m such that p = 1(mod8) and 27~1/4 = —1(modp).If p { A, then
p t B. Since (2/p) =1, (13) implies that A and B are quadratic residues mod p. Thus
BP—1/2 = A(P=1/2 = 1 (mod p). From (15) we find that

2B% = A’(mod p) = 2P~ D/HABP=1/2 = A(p=12 — 2(P=1/4 = 1 (mod p), (17)
a contradiction. Therefore p | A,B. By (13), p | X,Y and hence (X,Y,m;,m>) + 1 and
the lemmas follows. O

PROOF OF THEOREM 1. By Lemmas 5 and 6 and the fact that (m;/K,m,/K) can
only have prime divisors of the form (2), a nontrivial solution of (2) is a multiple of a
primitive solution of (3) with (m;/K,m,/K) = 1. This happens when K = (m,m») =m
and the theorem follows. O

For Theorem 3 we now prove the following lemma.
LEMMA 7. The only solution in positive integers of (6)is X = 14,Y =17.

PROOF. Note that (6) can be obtained from (1) by letting m; =1 and m, = 3. Then
(11), (12), (13), (14), and (15) become

v =2Y +4, x =2X+4, (18)
A=2Y?+8Y+3, B=2X>+8X+3, (19)
y2=2A+10, x?=2B+10, (20)
A%?-2B? = -9, (21)

All solutions in positive integers of (21) are given by
A= Vn, B = U‘I’H (22)
where

Vi +V2U, = (343V2) (3+2v2)" =3(1+v2)"""", n=0,1,2,.... 23)
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Thus
3(1+\/§)2n+1+3(1_\/§)2n+1
Vn: ’
2
U _3(1+\E)2n+1_3(1_\/§)2n+1
n — _2\/7 -

Letx=1++2and 8 =1-+2, then

x+B=2, «-B=-222, «aBf=-1,

0(2n+1+ 2n+1 (XZ”+1—
vn=3(73), Un:3<T

o+ 16

From (20) and (22), we must have
y? =2V, +10,
x? =2U, +10.
Using (25), we can easily find that
an = _V‘Vl*l!
Uy=Un,
Un+2 = 6Un+1 - Un,
V2 = 6Vis1 — Vi
Let

(X‘V_,’_BT ETZO(V_ﬁT

x+pB’ x—B"’

ny =
then we easily find that

Vi = 3n2n+1, Un = 3&n+1,
Eor =281y,

N2r =207 + (=)™ =482+ (-1)",
Nm+n = NmNn+2EmEn,
Emin = EmMNn +Enlm.

Using relations (33), (34), (35), (36), and (37), we get
Viir = (=1)""V,, (modn, ),
Viior = Vy(modny,),
Upsr = (=1)""'Up (modn;, ),
Un+2r = Un(modny),
N3 = ne[4ni+3(-1"],

Er =& 4+ (-1,

B2n+l

)

(24)

(25)

(26)
(27)

(28)
(29)
(30)
(31)

(32)

(33)
(34)
(35)
(36)
(37)

(38)
(39)
(40)
(41)

(42)

(43)
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Let
0y = Eor, bt = nor, (44)
then we get
Or11 =20y, (45)
Pra1 =27 -1 =407 +1 = 7 +207, (46)
b7 =20%+1. (47)

Using (42), (43), and (44), we find that for k = 2! we have
Nok = Pe-1[4b7,, —3], (48)
Eok = Or1[4p7,, —1]. (49)

We will need some of the entries in Tables 1 and 2.

TABLE 1
n Un Vn
1 15 21
3 507 717
4 2955 4179
11 675176043 954843117
8 3410067 4822563

23 1037608383669414483 1467399848617311837
24 6047624848242867123 8552633080529593443

TABLE 2

k  ng
2 3
3 7
4 17
6

8

32.11
577
12 17-1153
24 97-.577-13729
48 193-9188923201-665857

Now we consider the following cases.
(a) Equation (26) is impossible if n = 1(mod3). Let n = 1 + 3 where v > 0, then
using (38) we get
Vp = Vi (modns),

Vo=+21=0(mod7). (>0)

Hence 2V, +10 =10 = 3(mod 7). Since (3/7) = —1, (26) is impossible.
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(b) Equation (27) is impossible if n = 1,2(mod4). Using (40), we get
Un = +Uy, Uz (modny),

(51)
U, =+15,+87 = +2(mod17).

Hence 2U, + 10 = +4 + 10 = 6,—-3(mod17). Since (6/17) = (-3/17) = —1, (27) is
impossible.
(c) Equation (26) is impossible if n = 8(mod 12). Using (39) and (28) we get

Vp =V_y = —V3(modns),

(52)
Vpo=-717=-2(mod11) since 11 | ng.
Hence 2V, +10 = 6(mod 11). Since (6/11) = —1, (26) is impossible.
(d) Equation (26) is impossible if n = 11(mod 16). Using (39) and (28) we get
Vn =V_5 = —V4(modns),
(53)

Vy=—-4179 = —140(mod 577).

Hence 2V, + 10 = —270(mod 577). Since (—270/577) = —1, (26) is impossible.
(e) Equation (26) is impossible if n = 11,12(mod 24). Using (38) and (28) we get
n=xVi,=V_o1p = £V, FVi (mod noy),

(54)
n = +954843117 = +46(mod97) since 97 | noa4.

Hence 2V, + 10 = =102 + 10 = 5,15(mod97). Since (5/97) = (15/97) = —1, (26) is
impossible.
(f) Equation (26) is impossible if n = 15(mod 24). Using (38) and (28) we get
Vi = £V_g = TVg(mod o),

(55)
V= F4822563 = +£504289(mod 1331713) since 1331713 | ny4.

Hence 2V, + 10 = 323145,1008588(mod1331713). Since (323145/1331713) =
(1008588/1331713) = —1, (26) is impossible.
(g) Equation (26) is impossible if n = 23,24 (mod48). Using (38) and (28) we get

Vi = £Va3,£V_p4 = V>3, ¥ Va3 (mod nas). (56)

Since Vo3 = 1467399848617311837 and T = 9188923201 | n4g, we have 2V, + 10 =
11299978,-11299958(mod ). Since (11299978/7) = (-11299958/1) = —1, (26) is

impossible.
(h) Equation (27) is impossible if n = 3(mod48), n = 3. That is, n = 3 +3 -2t -
¥, where t > 4 and 7 is an odd positive integer. Using (40) we get U, = —U3 =

—507(modns.,t). Hence
2Up +10 = -1004(mod ns.ot). (57)
From (48) we get n5.ot = Ng.oi-1 = P¢[4p? —3]. Using this in (57) we simultaneously get
2U, +10 = —1004(mod ¢;),

) (58)
2U, +10 = —1004(mod 4¢p? — 3).
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Since ¢, = 2¢? —1 and ¢3 = 577 we can easily show, by induction, the following for
t>3

¢ =1(mod38), (59)
¢ =81,69,-17,75,-46,—36(mod 251), (60)

when
t=0,1,2,3,4,5(mod6), (61)

respectively. By (59) we get

-1004 ~1\/ 4 \/251 b br
( b )‘(dn)(qbt)(¢t)‘(1)(1)(251>‘(251>' (62)

Similarly (~1004/(4¢? —3)) = ((4¢$? —3)/251). Using (60) we find that (¢p;/251) = —1
if t = 2,5(mod6) and ((4(1)? -3)/251) = -1if t =0,1,3,4(mod6). Therefore (27) is
always impossible in this case.

Note that for n = 3 we have U; = 507 and V3 = 717. Now (22) and (19) imply that
X =14, Y = 17, a nontrivial solution of (6).

(i) Equation (27) is impossible if n = 6 (mod 48) and n > 0, where 6 = 0,—1. That is
n=20+3k(2r +1) = 6 +6kr + 3k, where k = 2¢, t > 4, and » > 0. Using (40) and (33)
we get

Un = +Uskss = £38ek+26+1 (mod ney) - (63)
The upper and the lower signs depend on whether ¥ is even or odd. Using (37), we get
Eokr25+1 = EokMN26+1 + E25+116ks (64)

where nss:1 = 1,—1 for 6 = 0,—1 and &5.1 = 1 for 6 = 0,1. Now (64) becomes
Eek+25+1 = &k + Nek, Where the upper and lower signs depend on whether § = 0
or § = 1, respectively. Using this in (63) we get

n = +3&6k (mod ney ). (65)

For 6 = 0, the upper sign holds if 7 is even and the lower sign holds if 7 is odd. For
6 = —1, upper sign holds if » is odd and the lower sign holds if » is even. Using (48)
and (49) in (65) we get

Un = %3011 [40%,, — 1] = £301.1[407,, -3+ 2] (mod i1 [497,, -3]).  (66)

Therefore we simultaneously get U, = i60t+1(mod4¢f+173) and U, = ¥30;41
(mod ¢p¢+1). Thus

2Up +10=10+126;,; (mod4¢?,, —3),

(67)
2Un +10=10= 69t+1 (m0d¢t+1).

In what follows we need the fact that

0; =0(mod8), fort =3, (68)
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which follows by induction using (45) and 63 = 408. Now we show that
10i 129t+1 (5i69t+1)
. = , 69
( 473 ) 59 ©9

(105800 10030

For (69) we have

(101129”1)
4¢)?+1 -

( 5+60.41 )
4¢t+1

using (59)

(s92:3)
5+660:4

()
<5+69t+1)

using (47)
89t+1

867, +1
S5+ 69t+1

36(802,,+1) ( 236 )
5i60t+1

(71)

), since 0; = 0(mod4)

5%60¢41

(m)’ since 3607,, = 25(mod 5 +60,1).

Equation (69) follows since 6; = 0(mmod4). For (70) we have

(10169“1) _ (5139“1)
¢t+1 ¢t+l

2 _ 592y =
=(5(¢t 29f)+3‘9”1), using (46) and (47)

b2 +207

-200? 60 )
= (ﬁ)’ since ¢p? = —207 (mod ¢? +20?)

B -1 2 Gt 109[i3¢t
P +207 ) \p7+207 )\ p? +207 b7 +207

1060, +3¢;
b? +267

o pi+207 \ (97 +1807
T \100;+3¢p: ) \ 100; 3¢
[ 11867
h 10915i3¢t

(72)
—(1)(1)(1)(

), since 9¢p? = 10067 (mod 100; = 3¢;)

N (109t2i3¢>t> (109533@) N _<ﬁi3¢t>'

Equation (70) follows using (59) and (68).
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Since 03 = 408, ¢p3 = 577, P11 = 2¢p? — 1, and 0,1 = 20, ¢, we can inductively
show the following:

0 =12,5,-12,-5(mod59) ift=0,1,2,3(mod4),

(73)
¢ =-17,—-13(mod59) ift=0,1,(mod2), respectively.
Using (73) and taking the upper signs in (69) and (70), we get
(%g”l) ~ 1 ift=23(mod4),
1060+ 3 (74)
(%) -1 ift=0,1,2(mod4).

Thus this case is always impossible. Using the lower signs in (69) and (70) we get

(%&“):71 if £ =0,1(mod4),
100, -3 (75)
—( L d)t):—l if t =0,2,3(mod4),

and this case is also impossible. Therefore (27) is always impossible.
The only remaining case is n = 0. Then Uy = Vy = 0 and so X =Y = 0, a trivial
solution and Lemma 7 is proved. O

PROOF OF THEOREM 3. First note that if the pair (X,Y) is a solution of (6), so are
(-X-4,Y), (X,-Y—4),and (-X—4,-Y —4). Note also that —X —4 < —4 if and only
if X>0and -Y -4 < —4 if and only if Y > 0. Since (14,17) is the only solution in
positive integers of (6), (—18,17), (14,-21), (-18,—-21) are the only solutions where
each of X and Y is either positive or less than —4. The only remaining possibilities for
more solutions are where X or Y € {—4,-3,-2,—1,0} where there are no nontrivial
solutions and the proof is completed. O

Finally note that (6) has 16 trivial solutions and 4 nontrivial solutions of a total of
only 20 solutions.
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