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MODEL TRACKING FOR RISK PROBLEMS
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We assume that we have M candidate insurance models for describing a process. The
models considered consist of a risk process driven by right-constant, finite-state spaces,
jump processes. Based on observing the history of the risk process, we propose dynamics
whose solutions indicate the likelihoods of each candidate model.
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1. Introduction. Risk theory deals with stochastic models in insurance business,
see, for example, Grandell [2]. Usually, in such models claims are described by point
processes and the amounts claimed by policies holders are sequences of random vari-
ables. The profit, or the loss, of the company is the difference between premiums in-
come and the claims. In this paper, we assume that we have M competing models,
denoted by {Hy,...,Hy}, describing the risk process, see Section 2. We are interested
in ranking the candidate models based on their likelihood of being most appropriate
for describing the risk process and some other processes driving the risk process.
This problem as well as others fall within the category of Model Tracking or Detection
problems as we are interested in tracking (or detecting) the most appropriate model
for describing the proposed risk model, see, for example, Poor [5] and Snyder [6].

In the next section, we present the model of the paper. The main result of the paper
is found in Section 3 where the likelihood that our model is best described by a certain
candidate model is derived. In Section 4, a filtering problem is discussed.

2. The model. Assume initially that all processes are defined on a probability space
(Q,%,P).

Consider an insurance “risk process” R which at time t is the sum of an initial
capital Ry, an integrated premiums process with integrand a nonnegative, bounded,
and measurable real-valued function P(-), a new premiums process, a lost premiums
process, and a claims process. We also assume that we have M candidate models
denoted by {H,,...,Hy} representing the dynamics of the risk process. Then, under
the hypothesis that model Hy, is used, h = 1,...,M, we have

t t
R} =R0+J PHh(S)dSJFI J Y, (Z})vi(dr,dx)
0 0 Jr+ ©.1)

t t
| ] A viarax - | | va, ziviarax),
0 JR* 0 JR*

where Y}'{h(-), i =1,2,3, are bounded nonnegative functions and each vi, i = 1,2,3,
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is an integer-valued random measure which, under probability measure P, has pre-
dictable compensator (see Jacod [3]) v function of Z}.

Here Zti, i=1,2,3,t € R, are finite-state spaces processes with right-constant
sample paths on the state spaces Si= {s{,...,s;'[i}; st will denote the (column) vector
($tyemnnsh)".

Suppose 1 < <N, and for j # ¢

ni

mh(x) =[] (x-s;), (2.2)

j=1

and ¢} (x) = j(x)/T(se); then ¢pi(s;) = 8¢ and ¢! = (pi,..., % ) is a bijection
of the set § = {s{,...,s} } with the set ST = {ef,e},..., e} }; e§ is the standard basis
(column) vector in R™ with unity in the jth position and zero elsewhere. Consequently,
without loss of generality, we consider processes Zti on St fori = 1,2,3. If Zti e st
denotes the state of this process at time t > 0, then the corresponding value of Ztl is
(Zf,si), where (,) denotes the inner product in R":.

Let T} (w) be the kth jump time of Z?, 5T,§(w>(d”) the unit mass at time T} (w) and

) iy s . i
6ZlTli<w>(ej) is the unit mass at Zle-(w) (w).

Since Zti is a jump process taking values in the vector space R" we can write

zl=zi+ > Azl (2.3)
O<r<t

Here

AZL=ZL— 7L

= ng (e} - Z;—) kgl O7i(w) (dr)éz;li(w) (4) 2.4)
E :il (ej- - Zﬁ_)uzi (dr,eﬁ.).

We assume that each Zti has almost surely finitely many jumps in any finite interval
so that the random measure u?' is o-finite. Let [le(dr,e;) be the predictable com-

pensator of uzi so that (2.5) leads to
Zi=Zi+ ZL (e} —zi )% (dr,et) +wi, (2.5)
j=1
where

W2 S [ (=21 (u” (dr.ef) -7 (dre})). 26)
j=1

Now ﬁzi factors into its Lévy system

g% (dr,et) = p(el,zi_,v)dF(zi_,r), 2.7)
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where dF(Z}:_,r) represents the conditional probability that the next jump occurs at
time 7 given the previous history of the process.

Assume that the nonnegative measure dF(Z._,r) is absolutely continuous with
respect to Lebesgue measure so that

dF(zZi_,v) = f(ZL_,v)dr (2.8)

for some nonnegative function f(-).
On the set [Z]_ # e}] we have, from (2.8) and (2.9), that

a? (dr,eé) = B(e},Zﬁ,,r)f(Zﬁ,,r)dr 4 a?zh (r,w)dr. (2.9)
For 1 <j <n; put
aj;(r,w) == al (r,w). (2.10)
k+#j

Define the matrix Al (v, w) = {afik(r, w)}. Then we have the representation
z;:zhj Al(r, ) ZLdr + W 2.11)
0

We assume here that the Z’s have no common jumps, that is, with AZ} = Zi — 7
and for i # j

S AZLAZL =0, Vt>O0as. (2.12)

O<us<t

Let
Ry =0{Ry,0<u <t} (2.13)
denote the complete filtration generated by the risk process and let
G =0{Rs,Z5;1 <i<3;5 <t} (2.14)

be the complete filtration generated by the risk process R and the processes Zi, i =
1,2,3.

Now, given the filtration %, and, a set of competing hypotheses {Hy,...,Hy }, where
Hy = {Pg, (+); Y},h, i=1,2,3}, we want to determine the dynamics to compute the
posterior probabilities

P(Hp | %), 1<h<M. (2.15)

’

Consider a simple random variable «, where x € { f1,..., fu} and f, = (0,...,1,...,0)
€ RM. The “1” here is in position h. We suppose « is an indicator function such that
x = fy, that is, («, fi) = 1 if and only if hypothesis Hy holds. Then (2.15) may be
rewritten as

P(Hp | Re) = E[{0t, fn) | Re], (2.16)

where the expectation is taken under probability measure P.
In Section 3, we propose dynamics to (2.15) whose solution is a solution of some
stochastic differential equation. Section 4 is concerned with a filtering problem.
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3. M-ary detection filters. Suppose P is a reference probability, under which v,
i=1,2,3, have deterministic compensators H'(dx)dt independent of Z!, i = 1,2, 3.
In order to recover the “real world” probability measure P under which the model dy-
namics introduced in Section 2 hold, define the Radon-Nikodym derivative A such that

ap

— =A 1
a5 |, =M (3.1)

where (see Jacod and Shiryaev [4])
Ar=1+ ZJ J As_ (Vi(s,ZL,x)—1)[vi(dr,dx) - H(dx)dt]. (3.2)
However, in this section, we will be working under the “reference probability” P. By

an abstract version of Bayes’ rule (see [1])

E[Ac(et, fn) | 9] (3.3)

Ploc=fu 19t) = E[( fu) 1 9] = == B

THEOREM 3.1. Let

é E[{, fu)A¢ | Re]. (3.4)

The unnormalized probability q? is given by the equation

ar= 0+ZJ J (zE Zl e >|@tu] i(u,ej.,x)—l)qﬁ[vi(du,dx)—H(dx)du].
(3.5)

Here E[(Z]_,e ) | Ry-1 is evaluated under the probability measure P, given that the
hypothesis Hy, holds

PrROOF. Using (3.2), we have

(o, fu)Ar = (o, fn) ZJ J (o, fn)As— (Vi(s,ZL,x) —1)[vi(ds,dx) — H(dx)ds],

(3.6)
with optional projection on the o-field %,

E[Ae{, fn) | Re]

3

= (o, fn) +E[ > Jot JW (e, frn)As- (Vi(s, 2L ,x) —1)[vi(ds,dx) — H(dx)ds] | %t}.
i-1

(3.7)

Using (3.4) and [7, Chapter 7, Lemma 3.2] to exchange stochastic integration and con-
ditional expectation under P, we have

af = O+ZH [t A (7 (5, 2L, ) 1) | 90| [V (ds,dx)~H (dx)dt]. 3.8)
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Now

E[{ot fi)As- ((5,21,x) ~1) | R ] _
E[Ae | 9]

[(D( fh>( (S Zs !X) ) |%S—]! (3.9)
or

E[{ot, fn)As— (V'(s,Zi,x) = 1) | R ]

o (3.10)
= E[{o, fn) (V' (s, Z5_,x) = 1) | R ] E[As | Rs-],

which, using elementary rules for conditional probabilities and Bayes rule, is

=E[(Vi(s,Zi_,x) =1) | ot = fn, R |E[{ct, fu) | Rs_]E[A¢ | Rs_]

E[(‘vah>AS— | QRS—]
E[As_ | s ]

[(Vi(s,Zi_,x) = 1) | &« = fn,Rs_]ql  (using (3.4))

E
= (E[V(s,Z1,x) | o= fu, s ] = 1) ql.

=E[(V!(s,Zi_,x) = 1) | & = fn, %5 ]

E[As | %]
(3.11)

Using the notation Zt ZJ 1 Zt, >e gives (3.5). O

Note that the normalized form of (3.5) is given by

ph _ f/l?
g = .
Z?il q%

(3.12)

As an example: suppose that the set of candidate models consists of two models, that
is, « € {(1,0),(0,1)} and p} = P(x = (1.0) | %¢) = E[(x,(1,0)) | %] and pf = P(x =
(0,1) | Rt) = E[(x,(0,1)) | R¢]. Define the log-likelihood or test statistic process,

1 1
lt:ln<pt2) :1n<qg). (3.13)
pi di

Large values of [ are in favor of model 1 whereas, small values of [ are in favor of
model 2.

4. The filtering problem. Equation (3.5) contains E [(Z{l_,e}) | Ry 1. The following
result gives the dynamics of the unnormalized version of this filter. Here we assume
that the random matrix A is adapted to the filtration %. Again we work under the
“reference probability” P, under which vi, i = 1,2, 3, have deterministic compensators
Hi(dx)dt independent of Zi,i=1,2,3.

THEOREM 4.1. Let

oi(l,m,n) = E[(2],e})(Z2,e5) (2}, el A | 9t ]. (4.1)
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The unnormalized probability process o (£, m,n) satisfies the stochastic integral equa-
tion
or(l,m,n) = oo(f,m,n)

+ é Jot Juv ou_(,m,n) (\7i(u,e§,x) - 1) [vi(dr,dx)—H(dx)dt]

t
+ ! (u1 )O—u k ,mmn du
%L Ay, (U, w) o (ky ) 42)

t
+ZJ Aoy, (U, 0) 0 (€, k2, 1) du
ky V0
t -
+ZJ ay, (u,w) oy (£, m, k3)du.
ks 70

PrROOF. Note that (2.11) gives
<Z§,e}> = <Z(%,ej,> + Jot <A1 (u,w)Zi,e})du+ <Wt1,e}>
(4.3)
- <Z&,e}z> +Zﬂ ap, (u,w) <Z,14_,e,1<1 >du+ <Wt1,e},>.
ky
Since the processes Z; and Z? share no common jumps,
(7o) (22.03) = (Zhel) (2 eh) + [ (ziosel) (azi.es)
H[, (Z ) (azied)
—(z3,eI\{(Z2.¢%) +kzj; a2, ) (Zhel) (22 e2, Ydu
2
+%JZ all,kl(u,w)<25,efn> <Z}4,,e,lq>du
H[ (k) (aviiel) « [ (ziseb) (awi.ed,),
(zt.eb)(z2,e3,) (2},e5) = (Zd,eh) (25, e5) (23, e}
o[, (e (Z2 e ) (azied)
t
o], (Zienha((zieh) (7ieh))
= (25,e})(78,e3) (23,e3)

+> Lt Ay (U, ) <Z1lue}> <Zﬁ'e$n> <Z§L,e,§3>du
k3

o3 [ by, tw,) (Z2,08) (22,65 (2Ll Yau
k1
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t
2 3,3\ /72 ,2 1,1
+> JO A, (U, ) <Zu,en> <Zu,em> <Zu,ek1>du
k2

237,e3’1> <Z,3,,efn> <dleuell/>

(4.4)

Using (3.2) and recalling that the processes 7/, ZtZ, Zf, and A; share no common jumps
under P

d(A(zheh) (z2,e3)(Z8,e))) = (2t ey (2},e%) (Z3,e3 ) AN

4.5)
+Atd(<ztlve}> <Zt2’e3"> <Z?,e%>>,

S0
At <Ztl ,e},> <Zl:‘2’e$n> <Z?,e§l>
= <Z(1),e}2> <Zg:e12n> <Zg,e§l>
3
i l:Zi Jot Juv Au- <Z114_,e%,> <Zﬁ_,efn> <Zi_,e§1>

x (Z <Zﬁ,,e§>\7i (u,e},x) - 1) [vi(du,dx) —H(dx)du]

J

+> Jot ayp, (U, w)Ay <Zli, e{l,> <Z,i, e$n> <Z,’3, ey, >du o
k3

o3[ by e n(Zhet )z (Zhee, Ve
ky

+3 [ @ N (2 eh) (7006}, ) (Zheh)
k2
+ martingales.

Simplifying the integrand in the stochastic integral in (4.6) gives

3
S L[ e (2 ez i)z )

J

X (Z <Z{L,,e}>f/i(u,e§,x) - 1) [vi(du,dx)—H(dx)du]
4.7)

3
-3 ] ANz (7 )

x (Vi (u,et,x) —1)[vi(du,dx) - H(dx)du].
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Conditioning each side of (4.6) on %, under the measure P, and using again [7, Chapter
7, Lemma 3.2] to exchange stochastic integration and conditional expectation estab-
lishes the result. O

In this paper, a risk model described by M candidate models was discussed. Detec-
tion filters were derived using measure change techniques.
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