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The scattering number of a graph G, denoted sc(G), is defined by sc(G)=max{c(G−S)−
|S| : S ⊆ V(G) and c(G−S)≠ 1} where c(G−S) denotes the number of components in G−
S. It is one measure of graph vulnerability. In this paper, general results on the scattering
number of a graph are considered. Firstly, some bounds on the scattering number are
given. Further, scattering number of a binomial tree is calculated. Also several results are
given about binomial trees and graph operations.
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1. Introduction. In a communication network, vulnerability measures the resis-

tance of the network to disruption of operation after the failure of certain stations

or communication links. To measure vulnerability we have some parameters that are

toughness, binding number, vertex integrity, and scattering number [5]. In this paper,

we discuss the scattering number of a graph.

The scattering number of a graph G, denoted sc(G), was introduced in [4]. Formally

the scattering number is defined by

sc(G)=max
{
c(G−S)−|S| : S ⊆ V(G), c(G−S)≠ 1

}
, (1.1)

where c(G−S) denotes the number of components in G−S. A cutset S of a graph

G fulfilling sc(G) = c(G−S)−|S| is said to be a scattering set. The problem “given a

graph G, decide whether the scattering number is larger than zero” is NP-complete.

The scattering number of a graph is closely related to the toughness of a graph and

to the existence of Hamilton cycles and paths. The toughness of a graph G, denoted

t(G), was defined by Chvátal [1]: for the complete graph Kn we have t(Kn) =∞; if G
is not complete, then t(G)=min{|S|/c(G−S) : S ⊆ V(G),c(G−S) > 1}. A graph G is

said to be t-though if t(G)≥ t, that is, |S| ≥ tc(G−S) for any cutset S. It follows from

the definitions that t(G) ≥ 1 if and only if sc(G) ≤ 0 for any graph G [3]. Moreover,

Jung [4] calls the scattering number the “additive dual” of the toughness.

A Hamilton cycle in a graph G is a cycle containing every vertex of G. Similarly,

a Hamilton path in a graph G is a path that contains every vertex of G. If a graph

G has a Hamilton cycle, then sc(G) ≤ 0; and if a graph G has a Hamilton path, then

sc(G)≤ 1 [3].

The following theorem is given by Deogun et al. [3].

Theorem 1.1. (a) The scattering number of a graph G sc(G) ≥ sc(G−V ′)− |V ′|
holds for every subset V ′ ⊆ V(G) in any graph G;
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(b) sc(G)≥ sc(G−v)−1 for every vertex v ∈ V(G) in any graph G;

(c) let G be a connected graph. Then there is a vertex v ∈ V(G) such that sc(G) ≤
sc(G−v)−1;

(d) for every connected graph G sc(G)=maxv∈V(G) sc(G−v)−1.

The path cover number of a graph G is the smallest number of disjoint paths cover-

ing the vertex set of G and is denoted by π(G). For the next theorem a short proof is

given in [3] and this theorem was also proven by Lehel without using order-theoretic

tools [6].

Theorem 1.2 (see [3]). If G is cocomparability graph, then π(G)=max(1,sc(G)).

Now we give some definitions.

Definition 1.3. The connectivity κ = κ(G) of a graph G is the minimum number

of vertices whose removal results in a disconnected or trivial graph.

Definition 1.4. A subset X of V is called a covering of G if every edge of G has

at least one end in X. A covering X is a minimum covering if G has no covering X′

with |X′|< |X|. The covering number, α(G), is the number of vertices in a minimum

covering of G.

Definition 1.5. A subsetX of V is called an independent set ofG if no two vertices

of X are adjacent in G. An independent set X is maximum if G has no independent

set X′ with |X′|> |X|. The independence number of G, β(G), is the number of vertices

in a maximum independent set of G.

In Section 2, some bounds on the scattering number are given. Section 3 gives sev-

eral results about the scattering number and graph operations.

2. Bounds. Firstly, we give two theorems showing the relation between the tough-

ness and the scattering number.

Theorem 2.1. If t(G)≤ 0, then sc(G)≤ (α(G)/t(G))(1−t(G)).
Proof. For any cutset S, we have

t(G)=min
{ |S|
c(G−S)

}
=min

{
1− c(G−S)−|S|

c(G−S)
}
= 1−max

{
c(G−S)−|S|
c(G−S)

}
, (2.1)

and so

max
{
c(G−S)−|S|
c(G−S)

}
= 1−t(G). (2.2)

Hence,

c(G−S)−|S|
c(G−S) ≤ 1−t(G) �⇒ c(G−S)−|S| ≤ (1−t(G))c(G−S). (2.3)
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On the other hand,

t(G)=min
{ |S|
c(G−S)

}
�⇒ |S|
c(G−S) ≥ t(G), c(G−S)≤ |S|

t(G)
(2.4)

for every cutset S. Since S is a cutset, we have |S| ≤ α(G) and c(G−S)≤ α(G)/t(G).
If t(G)≤ 0, then

(
1−t(G))c(G−S)≤ α(G)

t(G)
(
1−t(G)). (2.5)

By (2.3) and (2.5),

c(G−S)−|S| ≤ α(G)
t(G)

(
1−t(G)), t(G)≤ 0, (2.6)

and so

sc(G)=max
S

{
c(G−S)−|S|}≤ α(G)

t(G)
(
1−t(G)). (2.7)

The proof is completed.

Theorem 2.2. If t(G) > 0, then sc(G)≤α(G)/t(G)−κ(G).
Proof. Consider any cutset S. Then κ(G) ≤ |S| ≤ α(G), obviously. Since t(G) =

min{|S|/c(G−S)}, we have c(G−S)≤ |S|/t(G) and so

c(G−S)−|S| ≤ |S|
t(G)

−|S| ≤ α(G)
t(G)

−κ(G). (2.8)

Hence

sc(G)=max
S

{
c(G−S)−|S|}≤ α(G)

t(G)
−κ(G). (2.9)

The proof is completed.

Next, we give two theorems containing the relation between some graph parameters

and the scattering number.

Theorem 2.3. If a graph G does not contain graph 2K2 as an induced subgraph,

then

sc(G)=


β(G)−α(G), if κ(G)=α(G),
β(G)−α(G)+1, if α(G)= κ(G)+1.

(2.10)

Proof. If a graph G does not contain graph 2K2 as an induced subgraph, then we

have α(G)= κ(G) or α(G)= κ(G)+1. That is, |S| must be α(G) or α(G)−1.

If |S| =α(G), then c(G−S)= β(G),
If |S| =α(G)−1, then c(G−S)= β(G). (2.11)

By (2.11) the proof is completed.
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Theorem 2.4. For any graph G, sc(G)≤ β(G)−κ(G).
Proof. For every S ⊂ V(G), we have c(G−S) ≤ β(G). If S is a cutset, then |S| ≥

κ(G) and c(G−S)−|S| ≤ β(G)−κ(G). So

max
S

{
c(G−S)−|S|}≤ β(G)−κ(G). (2.12)

The proof is completed.

3. Binomial trees and scattering number. In this section, we consider the binomial

tree Bn (Figure 3.1) (see [2]). The binomial tree Bn is an ordered tree defined recursively.

The binomial tree B0 consists of a single vertex. The binomial tree Bn consists of two

binomial trees Bn−1 that are linked together: the root of one is the leftmost child of

the root of the other.

Now we give the scattering number of a binomial tree.

Theorem 3.1. Let n≥ 3 be a positive integer. Then sc(Bn)= 2n−2.

Proof. In Figure 3.1, we call the vertex u top vertex of Bn. Let r be the number

of removing vertices of Bn. If we remove top vertex u of Bn, then Bn−1,Bn−2, . . . ,B1,B0

are components. Hence the number of components is n. Now if we remove top vertex

of Bn−1, then we obtain the components Bn−2,Bn−3, . . . ,B1,B0. Then we have 2(n−1)
components. If we continue to remove the top vertex of each component, then we

have two cases.

Case 1. If r = 2i where 0≤ i≤n−1, then the number of remaining components is

exactly (n−i)2i where 0≤ i≤n−1. Hence

sc
(
Bn
)= max

0≤i≤n−1

{
(n−i)2i−2i

}
. (3.1)

Case 2. If 2i−1 < r < 2i where 2≤ i≤n−1, then the number of remaining compo-

nents is exactly (n−(i−1))2i−1+(r −2i−1)(n−(i+1)). Hence

sc
(
Bn
)= max

2≤i≤n−1

{(
n−(i−1)

)
2i−1+(r −2i−1)(n−(i+1)

)−r}. (3.2)

Now we can show that

max
2≤i≤n−1

{(
n−(i−1)

)
2i−1+(r −2i−1)(n−(i+1)

)−r}≤ max
0≤i≤n−1

{
(n−i)2i−2i

}
. (3.3)
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Then

sc
(
Bn
)= max

0≤i<n
{
(n−i)2i−2i

}
. (3.4)

The function (n−i)2i−2i takes its maximum value at i= 	n−1/ ln2−1
. It is obvious

that 	n−1/ ln2−1
 = n−2 for every n ≥ 3. Hence if we substitute this value in the

function (n−i)2i−2i, then the proof is completed.

Definition 3.2. The tensor product of two graphs G = (V(G),E(G)) and H =
(V(H),E(H)), denoted byG⊗H, has the vertex set V(G)×V(H), the Cartesian product

of V(G) and V(H), and an edge between vertices (x,y) and (u,v), if and only if

{x,u} ∈ E(G) and {y,v} ∈ E(H).
Theorem 3.3. Let m≥ 4 and n≥ 4 be positive integers. Then

sc
(
Bm⊗Bn

)=max
{
2n−1,2m−1}. (3.5)

Proof. The graph Bm⊗Bn has the graphs Bm and Bn as subgraphs. We consider

these graphs, respectively. Let r be the number of removing vertices from Bm⊗Bn.

Then we have two cases, depending on Bm or Bn.

Case 1. Let u1,u2, . . . ,u2m be the vertices of Bm and let v be the top vertex of Bn.

If we remove the vertices uiv (i = 1,2, . . . ,2m), then the remaining components are

Bm⊗Bn−1, Bm⊗Bn−2, . . . ,Bm⊗B1, and 2mB0. Now let the top vertex of Bn−1 be v′. If

we remove the vertices uiv′ (i = 1,2, . . . ,2m), then we obtain the components Bm⊗
Bn−2, . . . ,Bm⊗B1 and 2mB0. If we continue to remove the vertices as mentioned above,

then we obtain the following cases for r .

(a) If r = 2m2i where 0≤ i≤n−2, then the number of components is (n−i)2i+2m2i

and

sc
(
Bm⊗Bn

)= max
0≤i≤n−2

{
2i(n−i)}. (3.6)

(b) If r = k2m where 2i−1 < k< 2i and 2≤ i≤n−2, then the number of components

is (n−(i−1))2i−1+(k−2i−1)(n−(i+1))+2mk and

sc
(
Bm⊗Bn

)= max
2i−1<k<2i,2≤i≤n−2

{
2i+k(n−i−1)

}
. (3.7)

(c) If r = k2m and 2n−2+1 ≤ k ≤ 2n−1, then the number of components is k2m+
2(2n−1−k) and

sc
(
Bm⊗Bn

)= max
2n−2+1≤k≤2n−1

{
2(2n−1−k)}. (3.8)

But we can show that

max
2i−1<k<2i,2≤i≤n−2

{
2i+k(n−i−1)

}≤ max
0≤i≤n−2

{
2i(n−i)},

max
2n−2+1≤k≤2n−1

{
2(2n−1−k)}≤ max

0≤i≤n−2

{
2i(n−i)}.

(3.9)
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Consequently, sc(Bm⊗Bn) = max0≤i≤n−2{2i(n− i)}. The function 2i(n− i) takes its

maximum value at i = 	n−1/ ln2
. It is obvious that 	n−1/ ln2
 = n−1 for every

n≥ 4 and so

sc
(
Bm⊗Bn

)= 2n−1. (3.10)

Case 2. Let v1,v2, . . . ,v2n be the vertices of Bn and let u be the top vertex of Bm.

If we remove the vertices uvi (i = 1,2, . . . ,2n), then the remaining components are

Bm−1⊗Bn, Bm−2⊗Bn, . . . ,B1⊗Bn, and 2nB0. Now let the top vertex of Bm−1 be u′. If

we remove the vertices u′vi (i = 1,2, . . . ,2n), then we obtain the components Bm−2⊗
Bn, . . . ,B1⊗Bn and 2nB0. If we continue to remove the vertices as mentioned above,

then we obtain the following cases for r .

(a) If r = 2n2i where 0 ≤ i ≤m−2, then the number of components is (m− i)2i+
2n2i and

sc
(
Bm⊗Bn

)= max
0≤i≤m−2

{
2i(m−i)}. (3.11)

(b) If r = k2n where 2i−1 < k< 2i and 2≤ i≤m−2, then the number of components

is (m−(i−1))2i−1+(k−2i−1)(m−(i+1))+2nk and

sc
(
Bm⊗Bn

)= max
2i−1<k<2i,2≤i≤m−2

{
2i+k(m−i−1)

}
. (3.12)

(c) If r = k2n and 2m−2+1 ≤ k ≤ 2m−1, then the number of components is k2n+
2(2m−1−k) and

sc
(
Bm⊗Bn

)= max
2m−2+1≤k≤2m−1

{
2
(
2m−1−k)}. (3.13)

But we can show that

max
2i−1<k<2i,2≤i≤m−2

{
2i+k(m−i−1)

}≤ max
0≤i≤m−2

{
2i(m−i)},

max
2m−2+1≤k≤2m−1

{
2
(
2m−1−k)}≤ max

0≤i≤m−2

{
2i(m−i)}.

(3.14)

Consequently, sc(Bm⊗Bn)=max0≤i≤m−2{2i(m−i)}. The function 2i(m−i) takes its

maximum value at i = 	m−1/ ln2
. It is obvious that 	m−1/ ln2
 =m−1 for every

m≥ 4 and so

sc
(
Bm⊗Bn

)= 2m−1. (3.15)

By (3.10) and (3.15) we have sc(Bm⊗Bn)=max{2m−1,2n−1}.
The proof is completed.

Definition 3.4. Let G1 and G2 be two graphs. The union G =G1∪G2 has V(G)=
V(G1)∪ V(G2) and E(G) = E(G1)∪ E(G2). The join is denoted V(G1)+ V(G2) and

consists of V(G1)∪V(G2) and all edges joining V(G1) with V(G2). For three or more

disjoint graphs G1,G2, . . . ,Gn, the sequential join G1+G2+···+Gn is (G1+G2)∪(G2+
G3)∪···∪(Gn−1+Gn).
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Theorem 3.5. If n is an even number, then sc(B0+B1+···+Bn)= 4/3−2n/3.

Proof. To prove this theorem we have two cases.

Case 1. If we remove the vertices of graphs B1,B3, . . . ,Bn−1, then the remaining

components are B0,B2, . . . ,Bn and the number of removing vertices is
∑n/2
i=1 |V(B2i−1)| =∑n/2

i=1 22i−1. Moreover, we must delete 22(i−1) more vertices from each B2i where 0 <
i ≤ n/2 (except B0). Hence 2∗22(i−1) components are obtained from each B2i where

0< i≤n/2 (except B0). Then the number of removing vertices is exactly

|S| =
n/2∑
i=1

22i−1+
n/2∑
i=1

22(i−1) (3.16)

and the number of components is exactly

c
((
B0+B1+···+Bn

)−S)= 2
n/2∑
i=1

22(i−1)+1. (3.17)

So

sc
(
B0+B1+···+Bn

)= 1− 1
4

n/2∑
i=1

22i. (3.18)

Case 2. If we remove the vertices of graphs B0,B2, . . . ,Bn, then the remaining com-

ponents are B1,B3, . . . ,Bn−1 and the number of removing vertices is
∑n/2
i=0 |V(B2i)| =∑n/2

i=0 22i. Moreover, we must delete 22i−3 more vertices from each B2i−1 where 1 <
i ≤ n/2 (except B1). Hence 2∗22i−3 components are obtained from each B2i−1 where

1< i≤n/2 (except B1). Then the number of removing vertices is exactly

|S| =
n/2∑
i=1

22(i−1)+
n/2∑
i=0

22i (3.19)

and the number of components is exactly

c
((
B0+B1+···+Bn

)−S)= 2
n/2∑
i=2

22i−3+1. (3.20)

So

sc
(
B0+B1+···+Bn

)=−5−
n/2∑
i=2

22i. (3.21)

By (3.18) and (3.21), we have

sc
(
B0+B1+···+Bn

)=max
i


1− 1

4

n/2∑
i=1

22i,−5−
n/2∑
i=2

22i


. (3.22)

Since
∑
at = at/(a−1)+c(t) where a≠ 1, we have

sc
(
B0+B1+···+Bn

)=max
i

{
4
3
− 2n

3
,
1
3
− 4

3
2n
}
= 4

3
− 2n

3
. (3.23)

The proof is completed.
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Theorem 3.6. If n is an odd number, then sc(B0+B1+···+Bn)= 2/3−2n/3.

Proof. The proof follows directly from Theorem 3.5.
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