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CONVEX DYNAMICS IN HELE-SHAW CELLS
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We study geometric properties of a contracting bubble driven by a homogeneous source at
infinity and surface tension. The properties that are preserved during the time evolution
are under consideration. In particular, we study convex dynamics of the bubble and prove
that the rate of the area change is controlled by variation of the bubble logarithmic capacity.
Next we consider injection through a single finite source and study some isoperimetric
inequalities that correspond to the convex and α-convex dynamics.
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1. Hele-Shaw problem. We are concerned with the one-phase Hele-Shaw problem

in two space dimensions. Hele-Shaw [13] was the first who described in 1898 the mo-

tion of a fluid in a narrow gap between two parallel plates. A significant contribution

after his work was made in 1945 by Polubarinova-Kochina [26, 27] and Galin [11], and

then, by Saffman and Taylor [31] who discovered viscous fingering in 1958. New in-

terest to this problem is reflected, for example, in a more than 600 item bibliography

made by Gillow and Howison in the workshop of Hele-Shaw free boundary problems

(http://www.maths.ox.ac.uk/∼howison/Hele-Shaw).

In our first case the phase domain of a moving viscous fluid is the complement to

a simply connected bounded domain occupied by an inviscid fluid (or an ideal gas).

We call it the outer problem and the problem of suction/injection into a bounded

phase domain is called the inner problem. Two driving mechanisms are considered.

The principal one is suction/injection through a single well at infinity. Another one

is surface tension. When surface tension is zero, the main feature of the process is

cusp formation at the moving interface at a finite blow-up time. Examples of such a

scenario have been known since 1945 [11, 26, 27] and a classification of cusps has been

proposed in [14]. Now we present a simple version of the one-phase planar Hele-Shaw

moving boundary problem with suction/injection through a single well at infinity.

We denote by Ω(t) a simply connected domain in the phase z-plane occupied by

the fluid at instant t that contains ∞ as an interior point. The complement to Ω(t)
is a simply connected bounded domain D(t). We assume the sink/source to be of

strength Q(t) that in general depends on time. We will never use this dependence

throughout our paper nevertheless we mention thatQ(t) can be reduced to a constant

Q by a suitable change of variables. The dimensionless pressure p is scaled so that

0 corresponds to the atmospheric pressure. The dimensionless model of a moving

viscous incompressible fluid is described by the potential flow with a velocity field

V = (V1,V2). The pressure p gives rise to the fluid velocity V = −K∇p, where K =
h2/12µ is a positive constant, h is the cell gap, and µ is the viscosity of the fluid
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(see, e.g., [25]). We setK by a suitable scaling to be equal to 1 and put Γ(t)≡ ∂Ω(t). With

z = x+iy a parameterization of Γ(t) is given by the equation φ(x,y,t)≡φ(z,t)= 0.

The initial situation is represented at the instant t = 0 asΩ(0)=Ω0, and the boundary

∂Ω0 = Γ(0)≡ Γ0 is defined parametrically by an implicit function φ(x,y,0)= 0. Since

we consider incompressible fluid, we have the equality ∇·V = 0, which implies that

p is a harmonic function

∇2p = 0, z = x+iy ∈Ω(t)\{∞}. (1.1a)

The zero-surface-tension dynamical boundary condition is given by

p(z,t)= 0 as z ∈ Γ(t). (1.1b)

The resulting motion of the free boundary Γ(t) is given by the velocity field V on Γ(t)
with the normal velocity in the outward direction

vn =V
∣∣
Γ(t) ·n̂(t), (1.1c)

where n̂(t) is the unit outer normal vector to Γ(t). This condition means that the

boundary is formed by the same set of particles at any time. Near infinity we have

p ∼Q log
√
x2+y2 as x,y →∞ that relates to the homogeneous flow. The value of Q

corresponds to the rate of bubble release caused by air extraction, Q < 0 in the case

of a contructing bubble and Q> 0 otherwise.

We can regard this model as the dynamics of an extending/contracting bubble in a

Hele-Shaw cell. This model has various applications in the boundary value problems

of gas mechanics, problems of metal or polymer swamping, and so forth, where the

air viscosity is neglected. More about this problem is found in [6, 17, 22].

One of the typical properties of problem (1.1) is the fact that its character depends

on the direction of evolution of the free boundary. In the case of fluid suction (Q> 0)

the problem is ill-posed in the Hadamard sense. This means that an arbitrary small

perturbation of the boundary Γ0 of the initial domain Ω0 can produce an O(1)-order

deformation of Γ(t) in an arbitrary small time t. The injection problem (Q < 0) is

well-posed at least for the weak solution (Elliott and Janowsky [5]).

One of the main features of problem (1.1) is as follows: starting with an analytic

boundary Γ0 we obtain a one-parameter (t) chain of the solutions p(z,t) (and equiv-

alently φ(x,y,t)) that exist during a period t ∈ [0, t0) developing possible cusps at

the boundary Γ(t) in a blow-up time t0. It is known [36] that in the Hele-Shaw problem

(1.1) the classical solution exists locally in time. Recently [12, 16, 30], it became clear

that this model could be interpreted as a particular case of the abstract Cauchy prob-

lem, thus, the classical solvability (locally in time) may be proved using the nonlinear

abstract Cauchy-Kovalevskaya theorem.

In most practical experiments the zero-surface-tension process is never observed.

An approximation of the practical situation is given by introducing surface tension. At

the same time the nonzero-surface-tension model regularizes the ill-posed problem.

That is why the consideration of the surface tension influence is of importance.

The model with nonzero surface tension is reduced to the condition for the pressure

p on the boundary given by the product of the curvature � of the boundary and surface
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tension γ > 0. We rewrite problem (1.1) with the following new conditions:

∇2p = 0, in z ∈Ω(t), (1.2)

p = γ�(z), on z ∈ Γ(t), (1.3)

vn =−∂p∂n, on z ∈ Γ(t). (1.4)

A similar problem appears in metallurgy in the description of the motion of phase

boundaries by capillarity and diffusion [22]. Condition (1.3) is found in [31] (it is

also known as the Laplace-Young boundary condition, see, e.g., [2], or the Gibbs-

Thomson condition [16]). It takes into account how surface tension modifies the pres-

sure through the boundary interface.

The problem of the solution existence in the nonzero-surface-tension case is more

difficult. Duchon and Robert [3] proved the local existence in time of the weak so-

lution for all γ. Recently, Prokert [29] obtained even global existence in time and

exponential decay of the solution near equilibrium for bounded domains. The results

are obtained in Sobolev spaces W 2,s with sufficiently big s. We refer the reader to the

works by Escher and Simonett [7, 8, 9, 10] who proved the local existence, uniqueness,

and regularity of classical solutions to one- and two-phase Hele-Shaw problems with

surface tension when the initial domain has a smooth boundary. The global existence

in the case of the phase domain close to a disk was proved in [8]. More about results

on existence for general parabolic problems can be found in [10].

Mathematical treatment for the case of the zero-surface-tension model of a con-

tracting bubble was presented in [6]. In particular, the problem of the limiting config-

uration was solved. It was proved that the moving boundary tends to a finite number

of points that gave the minimum to a certain potential. There an interesting problem

was proposed: to describe domains whose dynamics presents only one limiting point.

Howison [17] proved that a contracting elliptic bubble has the homothetic dynamics

to a point (in particular, this is obvious for a circular one). Entov and Ètingof [6] have

shown that a contracting bubble which is convex at the initial instant preserves this

property until the moment when its boundary reduces to a point. This type of domains

is called simple in [6].

We will generalize this result proving that if the initial bubble is starlike with respect

to a fixed inner point, then locally in time this property is preserved. Moreover, we

will give some estimates of the rate of the change of the boundary capacity by the rate

of the area change.

2. Polubarinova-Galin equation with surface tension. In order to present the equa-

tion for the moving boundary Γ(t), we introduce the auxiliar parametric domain which

is the exterior part of the unit disk, and by the Riemann mapping theorem there ex-

ists a unique conformal univalent map F(ζ,t) from the domain U∗ = {ζ : |ζ| > 1}
onto the phase domain Ω(t), such that F(ζ,t) = aζ +a0+a−1/ζ +··· , a > 0. The

function F(ζ,0) = F0(ζ) produces a parameterization of Γ0 = {F0(eiθ), θ ∈ [0,2π)}
and the moving boundary is parameterized by Γ(t) = {F(eiθ,t), θ ∈ [0,2π)}. The

normal velocity vn of Γ(t) in the outward (with respect to Ω(t)) direction is given
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by vn = −∂p/∂n. Later on, throughout the paper we use the notations Ḟ = ∂F/∂t,
F ′ = ∂F/∂ζ.

We introduce the complex potential W(z,t), z ∈ Ω(t), so that ReW(z,t) = p(z,t).
Then ∇p = W̄ ′, and near infinity we have the expansion

W(z,t)= Q
2π

logz+w0(z,t), as z ∼∞, (2.1)

where w0(z,t) is a regular function in Ω(t).
The normal outer vector at the boundary Γ(t) is given by the formula

n̂=−ζ F
′

|F ′| , ζ ∈ ∂U∗. (2.2)

Therefore, the normal velocity is obtained as

vn =V·n̂=−Re
(
∂W
∂z
ζ
F ′

|F ′|
)
. (2.3)

The superpositionW ◦F(ζ,t) is an analytic function in U∗\{∞} and has a logarithmic

singularity about infinity. Its real part solves the Dirichlet problems (1.2) and (1.3),

therefore,

W ◦F(ζ,t)= Q
2π

logζ− γ
2π

∫ 2π

0
�
(
eiθ,t

)eiθ+ζ
eiθ−ζ dθ+iC. (2.4)

Differentiating (2.4) we get

ζ
∂W
∂z
f ′(ζ,t)= Q

2π
− γ
π

∫ 2π

0

�
(
eiθ
)
ζeiθ(

eiθ−ζ)2 dθ, ζ ∈U∗. (2.5)

Integrating by parts we obtain

ζ
∂W
∂z
f ′(ζ,t)= Q

2π
− γ

2πi

∫ 2π

0

∂�
∂θ
eiθ+ζ
eiθ−ζ dθ. (2.6)

On the other hand, we have vn =−Re ḞeiθF ′/|F ′|, and applying the Sokhotskĭı-Plemelj

formulae [23] we, finally, get

Re Ḟ(ζ,t)ζF ′(ζ,t)= Q
2π

−γ
(
H
[
i
∂�
∂θ

]
(θ)

)
, (2.7)

ζ = eiθ , where the Hilbert transform in (2.7) is of the form

H[ψ](θ)≡− 1
π

p.v.θ
∫ 2π

0

ψ
(
eiθ′

)
dθ′

1−ei(θ−θ′) . (2.8)

Galin [11] and Polubarinova-Kochina [26, 27] first have derived (2.7) for γ = 0 and

gave rise to deep investigation in this direction. So, (2.7) for γ = 0 is known as the

Polubarinova-Galin equation (see, e.g., [14, 19, 20]).
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Equation (2.7) yields a Löwner-Kufarev type equation making use of the Schwarz-

Poisson formula

Ḟ = ζF ′pF(ζ,t), ζ ∈U∗, (2.9)

where

pF(ζ,t)= 1
2π

∫ 2π

0

1∣∣f ′(eiθ,t)∣∣2

(
Q
2π

−γH
[
i
∂�
∂θ

]
(θ)

)
eiθ+ζ
eiθ−ζ dθ. (2.10)

We call (2.9) a Löwner-Kufarev type equation because of the analogy with the linear

partial differential equation that describes the homotopy deformation of a simply

connected univalent domain to the initial one (see, e.g., [1, 4, 28]). The classical Löwner-

Kufarev equation produces a subordination Löwner chain. Unlike the classical Löwner-

Kufarev equation, equation (2.9) is not quasilinear, contains an integral operator pF ,

and produces a special type of chain (nonsubordinate in general). Nevertheless, it is

quickly noticed that in the case of extending bubble (Q> 0) and small surface tension

γ we have Re Ḟ(ζ,t)ζF ′(ζ,t) > 0, and the Löwner-Kufarev theory implies that the

chain of the domains Ω(t) is subordinate, that is, Ω(s)⊂Ω(t) for s > t.
Of course, (2.7) tends to the equation for the zero-surface-tension model as γ → 0.

But it turns out that the solution in the limiting γ-surface-tension case need not always

be the corresponding zero-surface-tension solution (see the discussion in [32, 33, 34]).

This means that starting with a domainΩ(0)≡Ω(0,γ) we come to the domainΩ(t,γ)
at an instant t using surface tension γ and to the domain Ω(t) at the same in-

stant t in the zero-surface-tension model. Then the domain limγ→0Ω(t,γ) = Ω(t,0)
is not necessarily the same as Ω(t) (see numerical evidence in [2, 24]). Obviously, the

nonzero-surface-tension model never produces cusps, moreover, starting with an an-

alytic boundary Γ0 the curves Γ(t) remain analytic during the time of existence of the

solution.

3. Convex and starlike contracting bubble. A simply connected domain Ω on the

Riemann sphere, ∞ ∈ Ω, 0 �∈ Ω is said to be starlike if each ray starting at the origin

intersectsΩ in a ray. Of course, the complement ofΩ to the Riemann sphere is starlike

with respect to the origin. Let a univalent function F map the exterior part U∗ of the

unit disk onto Ω, so that F(ζ) ≠ 0 for any ζ ∈ U∗ and F(ζ) = aζ+a0+
∑∞
n=1anζ−n

about infinity. If Ω is starlike, then the function F is also called starlike, F ∈ Σ∗. A

necessary and sufficient condition for a locally univalent function F(ζ), ζ ∈U∗, with

the above normalization to be univalent and starlike is the following inequality:

Re
ζF ′(ζ)
F(ζ)

> 0, ζ ∈U∗. (3.1)

We denote by t0 the blow-up time and we consider the dynamics of the contract-

ing bubble in the Hele-Shaw cell. Let F(ζ,t) be the family of functions satisfying the

Polubarinova-Galin equation (2.7) and D0 = Ĉ\Ω0, D(t)= Ĉ\Ω(t).
Theorem 3.1. Let Q < 0 and surface tension γ be sufficiently small. If the initial

domain Ω0 (and D0) is starlike with the analytic boundary, then there exists t = t(γ)≤
t0, such that the family of domains Ω(t) (in sequel, the family of univalent functions
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F(ζ,t) and the domains D(t)) preserves this property during the time t ∈ [0, t(γ)]. In

particular, for γ = 0 the family Ω(t) preserves this property in so far as the solution

exists and 0∈D(t).
Proof. We have that the contracting bubble contains the origin and is starlike

with respect to the origin at the initial instant. If a starlike function F(ζ) = aζ +
a0+a−1/ζ+··· ∈ Σ∗ is defined outside of the unit disk, then the function f(ζ) =
1/F(1/ζ) is holomorphic in the unit disk U and starlike (f ∈ S∗) with respect to the

origin. The inequality

Re
ζf ′(ζ)
f(ζ)

> 0, ζ ∈U (3.2)

provides the necessary and sufficient condition for the function f to be univalent and

starlike.

Equation (2.7) can be rewritten in terms of this holomorphic function as

Re ḟ (ζ,t)ζ f ′(ζ,t)=−∣∣f(ζ,t)∣∣4
(
Q
2π

−γ
(
H
[
i
∂�
∂θ

]
(θ)

))
, (3.3)

|ζ| = 1, Q < 0. If we consider f in the closure of U , then the inequality sign in (3.2)

can be replaced by (≥) where equality can be attained for |ζ| = 1.

We suppose that there exists a critical map f ∈ S∗, which means that the image of

U under the map ζf ′(ζ,t)/f(ζ,t), |ζ| ≥ 1 touches the imaginary axis, say there exist

such t′ ≥ 0 and ζ0 = eiθ0 , that

arg
ζ0f ′

(
ζ0, t′

)
f
(
ζ0, t′

) = π
2

(
or − π

2

)
, (3.4)

and for any ε > 0 there are such t > t′ and θ ∈ (θ0−ε,θ0+ε) that

arg
eiθf ′

(
eiθ,t

)
f
(
eiθ,t

) ≥ π
2

(
or ≤−π

2

)
. (3.5)

For definiteness we put the sign (+) in (3.4). Without loss of generality, assume t′ = 0.

Since f ′(eiθ,t)≠ 0, our assumption about the sign in (3.4) yields

Im
ζ0f ′

(
ζ0,0

)
f
(
ζ0,0

) > 0 (3.6)

(the negative case is considered similarly).

Since ζ0 is a critical point and the image of U under the mapping ζf ′(ζ,0)/f(ζ,0)
touches the positive imaginary axis at the point ζ0 = eiθ0 , we deduce that

∂
∂θ

arg
eiθf ′

(
eiθ,0

)
f
(
eiθ,0

) ∣∣∣∣
θ=θ0

= 0,

∂
∂ r

arg
reiθ0f ′

(
reiθ0 ,0

)
f
(
reiθ,0

) ∣∣∣∣
r=1−

≥ 0.

(3.7)



CONVEX DYNAMICS IN HELE-SHAW CELLS 645

Calculation gives

Re

[
1+ ζ0f ′′

(
ζ0,0

)
f ′
(
ζ0,0

) − ζ0f ′
(
ζ0,0

)
f
(
ζ0,0

)
]
= 0, (3.8)

Im

[
1+ ζ0f ′′

(
ζ0,0

)
f ′
(
ζ0,0

) − ζ0f ′
(
ζ0,0

)
f
(
ζ0,0

)
]
≥ 0. (3.9)

We derive

∂
∂t

arg
ζf ′(ζ,t)
f (ζ,t)

= Im
∂
∂t

log
f ′(ζ,t)
f (ζ,t)

= Im

(
(∂/∂t)f ′(ζ,t)
f ′(ζ,t)

− (∂/∂t)f (ζ,t)
f (ζ,t)

)
. (3.10)

We now differentiate (3.3) with respect to θ. Since the left-hand side is real analytic

with respect to θ and the solution to (2.7), and therefore to (3.3), exists and is unique,

the right-hand side is differentiable and its derivative is bounded on [0,2π]. Denote

by

A(θ,t) := ∂
∂θ
H
[
i
∂�
∂θ

]
(θ). (3.11)

Then we have

Im
(
F ′(ζ,t)

∂
∂t
F ′(ζ,t)−ζF ′(ζ,t)Ḟ(ζ,t)−ζ2F ′′(ζ,t)Ḟ(ζ,t)

)

=−4|f |4 Im
ζf ′

f

(
Q
2π

−γH
[
i
∂�
∂θ

]
(θ)

)
+γ|f |4A(θ,t),

(3.12)

for ζ = eiθ . This equality is equivalent to the following:

∣∣f ′(ζ,t)∣∣2
Im

(
(∂/∂t)f ′(ζ,t)
f ′(ζ,t)

− (∂/∂t)f (ζ,t)
f (ζ,t)

)

= Imζf ′(ζ,t)ḟ (ζ,t)
(
ζf ′′(ζ,t)
f ′(ζ,t)

− ζf
′(ζ,t)

f (ζ,t)
+1

)

+4|f |4 Im
ζf ′

f

(
Q
2π

−γH
[
i
∂�
∂θ

]
(θ)

)
−γ|f |4A(θ,t).

(3.13)

Substituting (3.3), (3.8), and (3.10) in the latter expression we finally have

∂
∂t

arg
ζf ′(ζ,t)
f (ζ,t)

∣∣∣∣
ζ=eiθ0 , t=0

= Q
∣∣f (eiθ0 ,0

)∣∣4∣∣f ′(eiθ0 ,0
)∣∣2 Im

(
1− e

iθ0f ′
(
eiθ0 ,0

)
f
(
eiθ0 ,0

) + e
iθ0f ′′

(
eiθ0 ,0

)
f ′
(
eiθ0 ,0

) +6
eiθ0f ′

(
eiθ0 ,0

)
f(eiθ0 ,0)

)

−γ
∣∣f (eiθ0 ,0

)∣∣4∣∣f ′(eiθ0 ,0
)∣∣2

(
4Im

ζf ′

f
H
[
i
∂�
∂θ

]
(θ)+A(θ,t)

)
.

(3.14)
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The right-hand side of this equality is strictly negative for small γ because of (3.6) and

(3.9). Therefore,

arg
eiθf ′

(
eiθ,t

)
f
(
eiθ,t

) <
π
2

(3.15)

for t > 0 (close to 0) in some neighbourhood of θ0. This contradicts the assumption

of the existence of the critical map and, equivalently, the hypothesis that Ω(t) fails to

be starlike for some t > 0 and ends the proof.

Of course, we can shift any inner point z0 of the bubble to the origin by a linear

transform. So the above result can be rewritten as follows: if we find a point z0 in the

initial bubble D0 with respect to which D0 is starlike, then the domains D(t) are also

starlike with respect to the same point z0 during the existence of the solution or up

to the time when z0 ∈ Γ(t). This means that if D0 is simple, z0 is a limiting point at

which D(t) contracts, and D0 is starlike with respect to z0, then D(t) remains starlike

up to the instant when all air is removed (there exist nonconvex simple domains, see

[6]).

In particular, a convex domain D0 is starlike with respect to any point from D0, and

therefore, the convex dynamics is also preserved that was proved earlier in [6].

Now, we present an isoperimetric inequality which implies that the rate of the area

variation of a contracting bubble of zero surface tension is controlled by the rate of

the variation of its capacity.

Proposition 3.2. Denote by S(t) the area of a contracting bubble D(t), and γ = 0.

Then Ṡ ≥ 2πaȧ, where a= capD(t).

Proof. A simple application of the Green theorem implies that the rate of the area

change is expressed as Ṡ =Q. Let Q< 0. From (2.7) we deduce that

ȧ= a 1
4π2

∫ 2π

0

Q∣∣F ′(eiθ,t)∣∣2dθ ≤ a
1

4π2

∫ 2π

0
Re

Q
F ′
(
eiθ,t

)2dθ =
Q

2πa
= Ṡ

2πa
, (3.16)

where a= F ′(∞, t).

4. Convex dynamics and integral means. Now we discuss the problem of injection

of a fluid within the complex plane through a finite source that can be thought of as

the origin. The governing equations are of the form

∇2p =−Qδ(0), in z ∈Ω(t),
p = γ�(z), on z ∈ Γ(t),

vn =−∂p∂n, on z ∈ Γ(t).
(4.1)

Here p stands for pressure in the phase simply connected bounded domain Ω(t)
occupied by the fluid, � is the mean curvature, and γ is the surface tension. Q is

negative and corresponds to the strengthen of the source. The problem of injection

is well-posed, Q< 0. We refer the reader to [14, 18, 20, 21, 24] where a lot of curious

features concerning the problem of suction can be found.
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We consider the auxiliar Riemann map z = f(ζ,t) from the unit disk U onto the

phase domain Ω(t), f(0, t) ≡ 0, f ′(0, t) > 0. The Polubarinova-Galin equation for the

moving boundary Γ(t)= ∂Ω(t) is given as

Re ḟ (ζ,t)ζf ′(ζ,t)=− Q
2π

+γ
(
H
[
i
∂�
∂θ

]
(θ)

)
, (4.2)

ζ = eiθ , where the Hilbert transform in (4.2) is of the form

H[ψ](θ)≡ 1
π

p.v.θ
∫ 2π

0

ψ
(
eiθ′

)
dθ′

1−ei(θ−θ′) . (4.3)

In [15] we prove that if the initial domain Ω0 is starlike with respect to the origin, then

during the whole time of the existence of the solution to (4.2) the domainsΩ(t) remain

to be starlike for γ = 0, or locally in time for γ sufficiently small [35]. Of course, if the

initial domain is convex, then in general, the convex dynamics is not preserved even

in the next instant. But locally in time we can guarantee the convex dynamics if the

initial domain is α-convex. The necessary and sufficient condition for the domain Ω
to be convex is the inequality for the Riemann map

Re

(
1+ ζf

′′(ζ)
f ′(ζ)

)
> 0, ζ ∈U. (4.4)

A domain (or equivalently a function) is said to be α-convex if the zero in the above

inequality is replaced by a positive number α∈ (0,1].
Proposition 4.1. Denote by S(t) the area of the phase domainΩ(t). Then Ṡ =−Q.

This obvious proposition follows from the statement of the problem as well as from

Green’s theorem.

Proposition 4.2. Let a univalent map z = f(ζ) be α-convex in U and let f have

the angular derivatives almost everywhere in the unit circle. Then,

1
2π

∫ 2π

0

1∣∣f ′(eiθ)∣∣2dθ ≤
28(1−α)

π
B
(

5
2
−2α,

5
2
−2α

)
, (4.5)

where B(·,·) stands for the Euler beta-function. The inequality is sharp. In particular,

1
2π

∫ 2π

0

1∣∣f ′(eiθ)∣∣2dθ ≤
41−4α

2π
(3−4α)(1−4α)
(1−α)(1−2α)

B
(

1
2
−2α,

1
2
−2α

)
(4.6)

for 0≤α< 1/4.

Proof. If a function f is α-convex in U , then the analytic function g(z)≡ zf ′(z)
is α-starlike (S∗α ), that is, it satisfies inequality (3.2) replacing 0 by α in its right-hand

side. Functions from S∗α admit the following known integral representation:

g(z)∈ S∗α ⇐⇒ g(z)= zexp
{
−2(1−α)

∫ π
−π

log
(
1−eiθz)dµ(θ)}, (4.7)

where µ(θ) is a nondecreasing function of θ ∈ [−π,π] and
∫π
−π dµ(θ)= 1.
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If µ(θ) is a piecewise constant function, then we have a set of complex-valued

functions gn(z) that admit the following representation:

gn(z)= z∏n
k=1

(
1−eiθkz)2(1−α)βk ∈ S

∗
α , θk ∈ [−π,π], βk ≥ 0,

n∑
k=1

βk = 1. (4.8)

Using the known properties of Stieltjes’ integral and Vitali’s theorem it is easy to show

that the set of function (4.8) is dense in S∗α , that is, for every function g(z)∈ S∗α there

exists a sequence {gn(z)} satisfying (4.8) that locally uniformly converges to g(z) in

U . Therefore, we need to prove our result for g(z)= gn(z).
Now, we present a chain of inequalities

1
2π

∫ 2π

0

1∣∣gn(eiθ)∣∣2dθ =
1

2π

∫ 2π

0

n∏
k=1

∣∣1−ei(θ−θk)∣∣4(1−α)βkdθ

≤ 1
2π

∫ 2π

0

n∑
k=1

βk
∣∣1−ei(θ−θk)∣∣4(1−α)dθ

= 1
2π

n∑
k=1

βk
∫ 2π

0

∣∣1−ei(θ−θk)∣∣4(1−α)dθ

= 1
2π

∫ 2π

0

∣∣1−eiθ∣∣4(1−α)dθ

= 41−α

2π

∫ 2π

0
(1−cosθ)2(1−α)dθ

= 28(1−α)

π
B
(

5
2
−2α,

5
2
−2α

)
.

(4.9)

The last assertion of Proposition 4.2 follows from the formulae of reduction of the

beta-function.

The next theorem follows from Propositions 4.1 and 4.2 similarly to the proof of

Proposition 3.2.

Theorem 4.3. Let Ω(t) be a phase domain occupied by a fluid injected through the

origin with surface tension γ = 0, the area of Ω(t) be S(t), and a(t) be the conformal

radius of Ω(t)with respect to the origin. Then Ṡ ≤ 2πaȧ. If, moreover,Ω(t) isα-convex

at an instant t, then

2π2aȧ
28(1−α)B

(
5/2−2α,5/2−2α

) ≤ Ṡ ≤ 2πaȧ. (4.10)
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