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It is shown that, for the spectral operators of scalar type, the well-known characteriza-
tions of the generation of C0- and analytic semigroups of bounded linear operators can
be reformulated exclusively in terms of the spectrum of such operators, the conditions on
the resolvent of the generator being automatically met and the corresponding semigroup
being that of the exponentials of the operator.
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1. Introduction. As known, the celebrated criteria of the generation of C0- and an-

alytic semigroups of bounded linear operators contain conditions on the geometry of

the spectrum of the generator along with rather stringent restrictions on its resolvent

behavior [6, 7, 12, 15].

For a normal operator in a complex Hilbert space, the restrictions on the resolvent

can be dropped, being automatically satisfied when the conditions on the spectrum

of the generator are met [6, 13].

If A is such an operator and EA(·) is its spectral measure (resolution of the identity),

the generated semigroup consists of its exponentials in the sense of the corresponding

operational calculus [4, 13]

etA =
∫
σ(A)

etλdEA(λ), t ≥ 0. (1.1)

It is the purpose of the present note to highlight the fact that the criteria acquire

purely geometrical form in the more general case of a spectral operator of scalar type

(scalar operators) in a complex Banach space [2, 5].

Observe for that matter that, in a Hilbert space, the scalar operators are the opera-

tors similar to normal ones [14].

2. Preliminaries. Henceforth, unless specifically stated otherwise, A is a scalar op-

erator in a complex Banach space X with a norm ‖·‖ and EA(·) is its spectral measure.

For such operators, there is an operational calculus for Borel measurable functions

on the spectrum [2, 5].

If F(·) is a Borel measurable function on the spectrum of A, σ(A), a new scalar

operator

F(A)=
∫
σ(A)

F(λ)dEA(λ) (2.1)
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is defined as follows:

F(A)f := lim
n→∞Fn(A)f , f ∈D(F(A)),

D
(
F(A)

)
:=
{
f ∈X∣∣ lim

n→∞Fn(A)f exists
}
,

(2.2)

where

Fn(·) := F(·)χ{λ∈σ(A)||F(λ)|≤n}(·), n= 1,2, . . . , (2.3)

(χα(·) is the characteristic function of a set α), and

Fn(A) :=
∫
σ(A)

Fn(λ)dEA(λ), n= 1,2, . . . , (2.4)

being the integrals of bounded Borel measurable functions on σ(A), are bounded

scalar operators on X defined in the same way as for normal operators (see, e.g.,

[4, 13]).

The properties of the spectral measure EA(·) and the operational calculus, which

underlie the entire argument henceforth, are exhaustively delineated in [2, 5]. We just

note here that, due to its strong countable additivity, the spectral measure EA(·) is

bounded, that is, there is an M > 0 such that

∥∥EA(δ)∥∥≤M, for any Borel set δ. (2.5)

Observe that, in (2.5), the same notation as for the norm in X, ‖ · ‖, was used to

designate the norm in the space of bounded linear operators on X, �(X). We will also

adhere to this rather common economy of symbols in what follows for the norm in

the dual space X∗.

On account of compactness, the terms spectral measure and operational calculus

for spectral operators, repeatedly referred to, will be abbreviated to s.m. and o.c.,

respectively.

3. C0-semigroups

Proposition 3.1. A scalar operator A in a complex Banach space X generates a

C0-semigroup of bounded linear operators if and only if, for some real ω,

Reλ≤ω, λ∈ σ(A), (3.1)

in which case the semigroup consists of the exponentials

etA =
∫
σ(A)

etλdEA(λ), t ≥ 0. (3.2)

Proof. Condition (3.1), being a constituent of the general C0-semigroup genera-

tion criterion [6, 7, 15], obviously remains necessary. Thus, we are only to prove its

sufficiency.

From (3.1), we immediately infer that {λ∈ C | Reλ >ω} ⊆ ρ(A), where ρ(A) is the

resolvent set of A.
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Furthermore, for z >ω, we have

∥∥R(z,A)n∥∥=
∥∥∥∥
∫
σ(A)

(z−λ)−ndEA(λ)
∥∥∥∥ by the properties of the o.c.

≤ 4M sup
λ∈σ(A)

|z−λ|−n where M is a constant from (2.5)

= 4M
[
dist

(
z,σ(A)

)]−n
by (3.1)

≤ 4M
(z−ω)n .

(3.3)

Whence, by the C0-semigroup generation criterion (see, e.g., [6]), it follows that A
generates a certain C0-semigroup of bounded linear operators {T(t) | t ≥ 0}.

From condition (3.1), we also obtain the estimate

∣∣etλ∣∣= etReλ ≤ eωt, t ≥ 0, λ∈ σ(A), (3.4)

which, by the properties of the o.c., implies that exponentials (3.2) form a semigroup

of bounded linear operators.

To prove that {etA | t ≥ 0} is a C0-semigroup, it is enough to demonstrate its conti-

nuity at 0 in the weak sense [15].

For any f ∈X and an arbitrary g∗ ∈X∗,

∣∣〈etAf −f ,g∗〉∣∣=
∣∣∣∣
∫
σ(A)

(
etλ−1

)
d
〈
EA(λ)f ,g∗

〉∣∣∣∣
≤
∫
σ(A)

∣∣etλ−1
∣∣dv(f ,g∗,λ), (3.5)

by the properties of the o.c., 〈·,·〉 being the pairing between the space X and its

dual, X∗, where v(f ,g∗,·), the total variation of the complex-valued Borel measure

〈EA(·)f ,g∗〉, is a finite positive Borel measure.

By the Lebesgue Dominated Convergence theorem, whose conditions as easily seen

are readily met, the latter integral approaches 0 as t→ 0.

Finally, we need to prove that T(t)= etA, t ≥ 0.

We first show that, for arbitrary f ∈D(A) and g∗ ∈X∗,

d
dt
〈
etA,f∗

〉= 〈AetAf ,g∗〉, t ≥ 0. (3.6)

Note that, by the properties of the o.c., for all f ∈D(A),

eAtf ∈D(A), AetAf = etAAf , t ≥ 0. (3.7)

Fix a t ≥ 0 and choose a small segment [a,b] ⊂ [0,∞) so that t is its left endpoint

if t = 0 and the midpoint otherwise. For all sufficiently small increments ∆t ≠ 0 such
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that t+∆t ∈ [a,b], and arbitrary f ∈D(A) and g∗ ∈X∗, we have

∣∣∣∣∣
〈
e(t+∆t)Af −etAf

∆t
−AetAf ,g∗

〉∣∣∣∣∣ by the properties of the o.c.

=
∣∣∣∣∣
∫
σ(A)

[
e(t+∆t)λ−etλ

∆t
−λetλ

]
d
〈
EA(λ)f ,g∗

〉∣∣∣∣∣
≤
∫
σ(A)

∣∣∣∣∣e
(t+∆t)λ−etλ

∆t
−λetλ

∣∣∣∣∣dv(f ,g∗,λ) �→ 0 as ∆t �→ 0,

(3.8)

by the Lebesgue Dominated Convergence theorem,

∣∣∣∣∣
(
e(t+∆t)λ−etλ)

∆t
−λetλ

∣∣∣∣∣ �→ 0 as ∆t �→ 0, λ∈ σ(A). (3.9)

For λ∈ σ(A),
∣∣∣∣∣e

(t+∆t)λ−etλ
∆t

−λetλ
∣∣∣∣∣ by the total change theorem

≤ 2 max
a≤s≤b

∣∣λesλ∣∣= 2 max
a≤s≤b

esReλ|λ| by (3.1)

≤ 2 max
a≤s≤b

esω|λ| without restricting generality, ω can be regarded to be positive

≤ 2ebω|λ|.
(3.10)

Since f ∈ D(A), ∫σ(A) |λ|dv(f ,g∗,λ) < ∞ for any g∗ ∈ X∗ [3, 5]. Thus, for any

f ∈D(A) and g∗ ∈D(A∗), where A∗ is the adjoint of A (D(A) is dense in X),

d
dt
〈
etAf ,g∗

〉= 〈AetAf ,g∗〉= 〈etAf ,A∗g∗〉, t ≥ 0, (3.11)

that is, e·Af is a weak solution of the equation

y ′(t)=Ay(t) (3.12)

on [0,∞) in the sense of [1].

Since A generates the C0-semigroup {T(t) | t ≥ 0}, such a solution is unique for any

f ∈X and is the orbit T(t)f , t ≥ 0 [1].

Therefore, for any f ∈D(A): etAf = T(t)f , t ≥ 0. Whence, by the density of D(A)
in X, we conclude that

etA = T(t), t ≥ 0. (3.13)
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4. Analytic semigroups

Proposition 4.1. A scalar operator A in a complex Banach space X generates an

analytic semigroup of bounded linear operators if and only if, for some real ω and

0< θ <π/2,

σ(A)⊆ {z ∈ C ∣∣ ∣∣arg(z−ω)∣∣≥π/2+θ}, (4.1)

where arg· is the principal value of the argument from the interval (−π,π].
The semigroup is analytically continuable into the sector Σθ = {z ∈ C | |argz| < θ}

by the formula

ezA =
∫
σ(A)

ezλdEA(λ), z ∈ Σθ. (4.2)

Proof. Condition (4.1) is necessary since it is a constituent of the general criterion

of generation of analytic semigroup [6, 7, 15]. Thus, we need to validate its sufficiency

only.

First, we infer that ρ(A)⊆ {z ∈ C | |arg(z−ω)|<π/2+θ}.
For an arbitrary 0< ε < θ and any z such that |arg(z−ω)|<π/2+θ−ε, there are

two possibilities:

(a) π/2−θ < |arg(z−ω)| ≤π/2+θ−ε,
(b) |arg(z−ω)| ≤π/2−θ.

In the first case,

∥∥R(z,A)∥∥=
∥∥∥∥
∫
σ(A)

(z−λ)−1dEA(λ)
∥∥∥∥ by the properties of the o.c.

≤ 4M sup
λ∈σ(A)

|z−λ|−1 where M is a constant from (2.5)

= 4M
[
dist

(
z,σ(A)

)]−1 ≤ 4M
|z−ω|sinε

.

(4.3)

In the second case,

∥∥R(z,A)∥∥=
∥∥∥∥
∫
σ(A)

(z−λ)−1dEA(λ)
∥∥∥∥ by the properties of the o.c.

≤ 4M sup
λ∈σ(A)

|z−λ|−1 = 4M
[
dist

(
z,σ(A)

)]−1 ≤ 4M
|z−ω| .

(4.4)

Thus, for any 0< ε < θ,

∥∥R(z,A)∥∥≤ 4M cscε
|z−ω| whenever

∣∣arg(z−ω)∣∣< π
2
+θ−ε. (4.5)

Condition (4.1) and the latter estimate imply thatA generates an analytic semigroup

{T(t) | t ≥ 0} (see, e.g., [6]).

The fact that the exponentials

ezA =
∫
σ(A)

ezλdEA(λ), |argz|< θ, (4.6)
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are bounded linear operators with the semigroup property can be easily inferred from

(4.1). And the fact that etA = T(t), t ≥ 0, can be substantiated in the same way as in

the case of C0-semigroups above.

5. Some final remarks. The author intentionally did not entertain the idea of de-

veloping here similar arguments for differentiable C0-semigroups [6, 12] and, for that

matter, the C0-semigroups with orbits belonging to the Gevrey or, more generally,

Carleman classes of ultradifferentiable vector functions leaving that for a discussion

in a more general context (for the case of the normal operators, see [8, 9, 10, 11]).
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