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ON LOCAL PROPERTIES OF COMPACTLY SUPPORTED SOLUTIONS
OF THE TWO-COEFFICIENT DILATION EQUATION
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Let a and b be reals. We consider the compactly supported solutionsϕ :R→R of the two-
coefficient dilation equation ϕ(x) = aϕ(2x)+bϕ(2x−1). In this paper, we determine
sets Ba,b , Ca,b , and Za,b defined in the following way: let x ∈ [0,1]. We say that x ∈ Ba,b
(resp., x ∈ Ca,b , x ∈ Za,b) if the zero function is the only compactly supported solution
of the two-coefficient dilation equation, which is bounded in a neighbourhood of x (resp.,
continuous at x, vanishes in a neighbourhood of x). We also give the structure of the
general compactly supported solution of the two-coefficient dilation equation.

2000 Mathematics Subject Classification: 39B12, 39B22.

1. Introduction. The two-coefficient dilation equation is a functional equation of

the form

ϕ(x)= aϕ(2x)+bϕ(2x−1). (1.1)

This equation is the simplest case of the so-called dilation equation

ϕ(x)=
N∑
n=0

cnϕ(2x−n), (1.2)

where N is a positive integer and c0, . . . ,cN are real (or complex) constants. Equa-

tion (1.2) is also referred to as the two-scale difference equation or the refinement

equation. A nonzero solution of (1.2) is called a scaling function. For a deeper discus-

sion of (1.2), and some related references, we refer the reader to Benedetto and Frazier

[2, Chapter 4].

It is well known that the characteristic function of the interval [0,1) is a scaling

function related to (1.1) with a = b = 1. This scaling function generates the simplest

known wavelet called the Haar wavelet (see, e.g., [3] or [4]). Haar [7] found this wavelet

long before the word wavelet has been introduced.

It is also known that ifϕ :R→R is a nontrivial and compactly supported L1-solution

of (1.1), then a = b = 1 and there exists a real constant c ≠ 0 such that ϕ = cχ[0,1)
almost everywhere (see [5]). Recently, Pittenger and Ryff [9] proved that the above

result is still true if we assume that ϕ is measurable instead of L1.

On the other hand, for every nonzero reals a and b, (1.1) passes very irregular scal-

ing functions. More precisely, if ab ≠ 0, then (1.1) has compactly supported solution

such that its graph meets every Borel subset of [0,1]×R with uncountable vertical

projection (see [8]). Each such function (called a function with a big graph) has rather
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strange properties. In particular, if ϕ0 : [0,1]→R is a function with a big graph, then

the graph of ϕ0 is connected and the set ([0,1]×R)\graph(ϕ0) contains no subset

of [0,1]×R of second category having the property of Baire, and contains no subset

of [0,1]×R of positive inner Lebesgue measure (see [1]).

It is also proved in [8] that if ab ≠ 0 and if |a|> 1 or |b|> 1, then every compactly

supported scaling function of (1.1) is rather irregular in the sense that it is unbounded

in every neighbourhood of each point of [0,1].
The purpose of this paper is to determine all realsa and b for which every compactly

supported scaling function of (1.1) is irregular in the above sense.

2. Notation. We make the following definition.

Definition 2.1. For a,b ∈ R by Ba,b denote the set of all x ∈ [0,1] such that the

zero function is the only compactly supported solution of (1.1) which is bounded in

a neighbourhood of x.

By Ca,b denote the set of all x ∈ [0,1] such that the zero function is the only com-

pactly supported solution of (1.1) which is continuous at x.

And by Za,b denote the set of all x ∈ [0,1] such that the zero function is the only

compactly supported solution of (1.1) which vanishes in a neighbourhood of x.

In the definition, we restrict ourselves to points from [0,1] only, because of asser-

tion (i) of Lemma 2.2 which we repeat from [8] without proof.

Lemma 2.2. Assume that a and b are reals and let ϕ : R→ R be a compactly sup-

ported solution of (1.1). Then

(i) suppϕ ⊂ [0,1];
(ii) for every x ∈ (0,1), every positive integer n and any ε1, . . . ,εn ∈ {0,1},

ϕ


 x

2n
+

n∑
i=1

εi
2i


= an−NbNϕ(x), (2.1)

where N = card{i∈ {1, . . . ,n} | εi = 1};
(iii) if b = 0, then ϕ|R\{0} = 0. If a= 0, then ϕ|R\{1} = 0;

(iv) the function ψ :R→R defined by ψ(x)=ϕ(1−x) is compactly supported and

satisfies

ψ(x)= bψ(2x)+aψ(2x−1), (2.2)

for every x ∈R.

It is clear that

Ba,b ⊂ Ca,b ⊂ Za,b ⊂ [0,1], (2.3)

for any reals a and b. Moreover, from assertion (iv) of Lemma 2.2, we conclude that

Ba,b = 1−Bb,a, Ca,b = 1−Cb,a, Za,b = 1−Zb,a, (2.4)

for any reals a and b.
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3. General compactly supported solution. We need only to consider the case where

ab ≠ 0, because of assertion (iii) of Lemma 2.2.

We begin with some elementary properties of compactly supported solutions of

(1.1).

Lemma 3.1. Assume that ab ≠ 0. Let x,y ∈ (0,1) and let ϕ :R→R be a compactly

supported solution of (1.1). Then

(i) if x = z/2k+∑ki=1αi/2i and y = z/2l+∑li=1βi/2i with some z ∈ (0,1), positive

integers k, l and α1, . . . ,αk,β1, . . . ,βl ∈ {0,1}, then

ϕ(y)= al−k+K−LbL−Kϕ(x), (3.1)

where

K = card
{
i∈ {1, . . . ,k} |αi = 1

}
, (3.2)

L= card
{
i∈ {1, . . . , l} | βi = 1

}
; (3.3)

(ii) if y =y/2l+∑li=1βi/2i with some positive integer l and β1, . . . ,βl ∈ {0,1} and

if al−LbL ≠ 1 with L defined by (3.3), then ϕ(y)= 0;

(iii) for every nonnegative integer l and any β1, . . . ,βl ∈ {0,1},

ϕ


 1

2l+1
+

l∑
i=1

βi
2i


= al−LbL[aϕ(1)+bϕ(0)], (3.4)

with L defined by (3.3);

(iv) if a≠ 1, then ϕ(0)= 0. If b ≠ 1, then ϕ(1)= 0.

Proof. To prove (i), observe that from assertion (ii) of Lemma 2.2 we have

ϕ(x)= ak−KbKϕ(z), (3.5)

with K defined by (3.2) and

ϕ(y)= al−LbLϕ(z), (3.6)

with L defined by (3.3). Since ab ≠ 0, we obtain (3.1), by combining (3.5) with (3.6).

Replacing z by y in (3.6) and assuming that al−LbL ≠ 1, we conclude thatϕ(y)= 0

which proves (ii).

The proof of (iii) is by induction on l.
To see that (3.4) holds for l= 0, it is enough to put x = 1/2 in (1.1).

Fix a nonnegative integer l and suppose that (3.4) is satisfied for any β1, . . . ,βl ∈
{0,1} with L defined by (3.3). We will show that

ϕ


 1

2l+2
+
l+1∑
i=1

εi
2i


= al+1−L1bL1

[
aϕ(1)+bϕ(0)], (3.7)
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for any ε1, . . . ,εl+1 ∈ {0,1}, where

L1 = card
{
i∈ {1, . . . , l+1} | εi = 1

}
. (3.8)

Fix ε1, . . . ,εl+1 ∈ {0,1} and put

βi = εi+1, ∀i∈ {1, . . . , l}. (3.9)

If ε1 = 0, then 1/2l+2+∑l+1
i=1 εi/2i ∈ (0,1/2), whence 2(1/2l+2+∑l+1

i=1 εi/2i)−1< 0.

Moreover, 2(1/2l+2 +∑l+1
i=1 εi/2i) = 1/2l+1 +∑li=1βi/2i. Hence, by assertion (i) of

Lemma 2.2 and (3.4), we get

ϕ


 1

2l+2
+
l+1∑
i=1

εi
2i


= aϕ


 1

2l+1
+

l∑
i=1

βi
2i


= al+1−LbL

[
aϕ(1)+bϕ(0)]. (3.10)

To conclude that (3.7) holds it is enough to observe that, by (3.3), (3.8), (3.9), and the

fact that ε1 = 0, we have L= L1.

Similarly, if ε1 = 1, then 1/2l+2 + ∑l+1
i=1 εi/2i ∈ (1/2,1), whence 2(1/2l+2 +∑l+1

i=1 εi/2i) > 1. Moreover 2(1/2l+2+∑l+1
i=1 εi/2i)−1 = 1/2l+1+∑li=1βi/2i. Hence, by

assertion (i) of Lemma 2.2 and (3.4), we get

ϕ


 1

2l+2
+
l+1∑
i=1

εi
2i


= bϕ


 1

2l+1
+

l∑
i=1

βi
2i


= al+1−(L+1)bL+1[aϕ(1)+bϕ(0)]. (3.11)

To conclude that (3.7) holds also in this case, it is enough to observe that, by (3.3),

(3.8), (3.9), and the fact that ε1 = 1, we now have L+1= L1.

To get (iv) notice that, by assertion (i) of Lemma 2.2, we have ϕ(0) = aϕ(0) and

ϕ(1)= bϕ(1). Therefore if a≠ 1, then ϕ(0)= 0, and if b ≠ 1, then ϕ(1)= 0.

From now on, let

M=
{
p
2k

∣∣∣ p,k∈ Z} (3.12)

and let ∼ be an equivalence relation on R defined by

x ∼y ⇐⇒ there exists an integer k such that 2kx−y ∈M. (3.13)

Let [x] denote the equivalence class of x. This equivalence relation has previously

been used by Förg-Rob [6]. The next lemma can be found in [6].
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Lemma 3.2. If x ∈ (0,1) \M and y ∈ (0,1), then x ∼ y if and only if there are

some z ∈ (0,1), positive integers k, l, and nonnegative integersm, n such thatm< 2k,

n< 2l, x = (z+m)/2k and y = (z+n)/2l.
The general compactly supported solution of (1.1) can be obtained by describing

it on every equivalence class of the relation ∼. The next two theorems show how to

do it.

Theorem 3.3. Assume that ab ≠ 0. The general compactly supported solution of

(1.1) on the set M can be obtained in the following way. Let ϕ|M\[0,1] = 0 and

(i) if a≠ 1 and b ≠ 1, then ϕ|M∩[0,1] = 0;

(ii) if a ≠ 1 and b = 1, then ϕ(0) = 0, choose arbitrarily ϕ(1) and for every non-

negative integer l and for any β1, . . . ,βl ∈ {0,1} accept (3.4) with L defined by

(3.3);

(iii) if a = 1 and b ≠ 1, then ϕ(1) = 0, choose arbitrarily ϕ(0) and for every non-

negative integer l and for any β1, . . . ,βl ∈ {0,1} accept (3.4) with L defined by

(3.3);

(iv) if a = 1 and b = 1, then choose arbitrarily ϕ(0) and ϕ(1), and for every non-

negative integer l and for any β1, . . . ,βl ∈ {0,1} accept (3.4) with L defined by

(3.3).

Proof. According to assertions (iii) and (iv) of Lemma 3.1, it is enough to show that

the functionϕ, defined in each of the cases (i), (ii), (iii), and (iv), satisfies (1.1) for every

x ∈M. The proof of this fact is similar to the proof of assertion (iii) of Lemma 3.1, so

we omit it.

Theorem 3.4. Assume thatab ≠ 0 and letx ∈ (0,1)\M. The general compactly sup-

ported solution of (1.1) on [x] can be obtained in the following way. Let ϕ|[x]\(0,1) = 0

and consider two cases:

(i) there exists some y ∈ [x]∩(0,1) such that y = y/2l+∑li=1βi/2i, where l is a

positive integer and β1, . . . ,βl ∈ {0,1}, and al−LbL ≠ 1 with L defined by (3.3).

Then, let ϕ|[x]∩(0,1) = 0;

(ii) the first case does not hold. Choose arbitrarily ϕ(x), represent x as x = z/2k+∑k
i=1αi/2i with some z ∈ (0,1), a positive integer k and α1, . . . ,αk ∈ {0,1}, and

for every y = z/2l+∑li=1βi/2i, where l is a positive integer and β1, . . . ,βl ∈
{0,1}, put (3.1) with K defined by (3.2) and L defined by (3.3).

Proof. On account of assertions (i) and (ii) of Lemma 3.1, it is sufficient to prove

that the function ϕ given by (3.1) is well defined and ϕ(y) = aϕ(2y)+bϕ(2y−1)
for every y ∈ [x]. The proofs of these two facts can be adapted from the proof of [8,

Lemma 3].

4. Local properties of compactly supported solutions. As a consequence of as-

sertion (iii) of Lemma 2.2 (see also (2.4)) we obtain the following result concerning the

case where ab = 0.

Remark 4.1. Observe that

B1,0 = B0,1 =∅.
C1,0 = Z1,0 = {0}, C0,1 = Z0,1 = {1}. (4.1)
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and if a≠ 1, then

Ba,0 = Ca,0 = Za,0 = B0,a = C0,a = Z0,a = [0,1]. (4.2)

To determine the sets Ba,b, Ca,b, and Za,b in the case where ab ≠ 0 we will need four

lemmas. The first one can be found in [8, Theorem 1].

Lemma 4.2. Assume that ab ≠ 0. If |a| > 1 or |b| > 1, then every compactly sup-

ported solution of (1.1), which is bounded in a neighbourhood of a point of [0,1], van-

ishes everywhere.

Proofs of the next three lemmas are similar to each other.

Lemma 4.3. Assume that ab ≠ 0. If |a| < 1 and |b| < 1, then every compactly sup-

ported solution of (1.1), which is bounded in a neighbourhood of a point of [0,1], van-

ishes everywhere.

Proof. On account of assertion (iv) of Lemma 2.2, it is sufficient to consider only

the case |a/b| ≥ 1.

Let ϕ : R → R be a compactly supported solution of (1.1) which is bounded in a

neighbourhood U of a point x0 ∈ [0,1]. Since {m/2n | n ∈ N, m ∈ {0, . . . ,2n−1}} is

a dense subset of [0,1], we may (and do) assume that there are a positive integer l
and β1, . . . ,βl ∈ {0,1} such that

x0 =
l∑
i=1

βi
2i
∈ (0,1), z

2l
+x0 ∈U∩(0,1), ∀z ∈ (0,1). (4.3)

Fix x ∈ [0,1]. According to assertion (i) of Lemma 2.2, the proof will be finished if

we show that ϕ(x)= 0.

If x ∈M, thenϕ(x)= 0, by assertions (iv) and (iii) of Lemma 3.1 (in this case we do

not need the boundedness of ϕ on U ).

Now let x ∈ (0,1)\M. Then for every positive integer n, there are some zn ∈ (0,1)
and αn,1, . . . ,αn,l+n ∈ {0,1} such that

x = zn
2l+n

+
l+n∑
i=1

αn,i
2i
. (4.4)

Applying assertion (i) of Lemma 3.1 (with y = zn/2l+x0), we have

ϕ
(
zn
2l
+x0

)
= al−(l+n)+Ln−LbL−Lnϕ(x)=

(
1
a

)n(
a
b

)Ln−L
ϕ(x), (4.5)

with L given by (3.3) and Ln = card{i ∈ {1, . . . , l+n} | αn,i = 1}. Since the left-hand

side of (4.5) is bounded with respect to n, we conclude that ϕ(x)= 0, and the proof

is complete.

Lemma 4.4. Assume that ab ≠ 0. If |b| < |a| = 1 or |a| < |b| = 1, then every com-

pactly supported solution of (1.1), which is bounded in a neighbourhood of a point of

[0,1], vanishes outside of the set M∩[0,1].
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Proof. According to assertion (iv) of Lemma 2.2, we can assume that

|a| = 1, |b|< 1. (4.6)

Let ϕ : R → R be a compactly supported solution of (1.1), which is bounded in a

neighbourhood U of a point of [0,1]. Without loss of restriction, we can assume that

there are a positive integer k and ε1, . . . ,εk ∈ {0,1} such that

U =

 k∑
i=1

εi
2i
,
k∑
i=1

εi
2i
+ 1

2k


. (4.7)

Fix x ∈ (0,1)\M. Since the set [x] is a dense subset of R we choose a y ∈ [x]∩U .

On account of assertion (i) of Lemma 2.2, Lemma 3.2, and assertion (i) of Lemma 3.1

it is enough to show that ϕ(y)= 0.

Clearly, for every positive integer n there are some zn ∈ (0,1) and αn,k+1, . . . ,αn,k+n
∈ {0,1} such that

y = zn
2k+n

+
k∑
i=1

εi
2i
+

k+n∑
i=k+1

αn,i
2i
. (4.8)

Let Ln = card{i ∈ {k+ 1, . . . ,k+n} | αn,i = 1} for every positive integer n. The

sequence (Ln :n∈N) is increasing and

lim
n→∞Ln =+∞. (4.9)

Now, for every positive integer n, we put

yn = zn
2k+n

+
k∑
i=1

εi
2i
, (4.10)

and observe that yn ∈U . Moreover, by assertion (i) of Lemma 3.1, we have

ϕ
(
yn
)= (a

b

)Ln
ϕ(y). (4.11)

Since the left-hand side of (4.11) is bounded with respect to n, we conclude from (4.6)

and (4.9) that ϕ(y)= 0, which completes the proof.

Lemma 4.5. Let (a,b)∈ {(−1,1),(1,−1),(−1,−1)}, letϕ be a compactly supported

solution of (1.1), and let x ∈ (0,1). Let

S+ =
{
y ∈ [x]∩(0,1) :ϕ(y)=ϕ(x)},

S− =
{
y ∈ [x]∩(0,1) :ϕ(y)=−ϕ(x)}. (4.12)

Then, S+∪S− = [x]∩(0,1) and S+ and S− are dense subsets of [0,1].
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Proof. By Lemmas 3.1 and 3.2, it is evident that S+∪S− = [x]∩(0,1). It remains

to prove that S+ and S− are dense subsets of [0,1]. Since [x]∩(0,1) is a dense subset

of [0,1], it is sufficient to show that for every y ∈ [x]∩(0,1) and for every positive

integer n, there exists some yn ∈ [x]∩(0,1) such that |y−yn|< 1/2n and ϕ(yn)=
−ϕ(y).

We first assume that x ∈M∩(0,1). Fix y ∈M∩(0,1) and write it in the form

y = 1
2l+1

+
l∑
i=1

βi
2i
, (4.13)

where l is a nonnegative integer and β1, . . . ,βl ∈ {0,1}. For every positive integern≥ 2,

we put

yn = 1
2l+n+1

+
l∑
i=1

βi
2i
+

l+n∑
i=l+2

1
2i
, (4.14)

and observe that yn ∈M∩(0,1) and |y−yn| = 1/2l+n+1 < 1/2n. Moreover, assertion

(iii) of Lemma 3.1 gives

ϕ
(
yn
)= abn−1ϕ(y). (4.15)

Thus ϕ(y2n+1)=−ϕ(y), if a=−1 and ϕ(y2n)=−ϕ(y), if a= 1.

Now, we assume that x ∈ (0,1)\M. Fix y ∈ [x]∩(0,1) and assume that

y = z
2k
+

k∑
i=1

εi
2i
, (4.16)

where k is a positive integer, z ∈ (0,1) and ε1, . . . ,εk ∈ {0,1}. Clearly, for every positive

integern there are some zn ∈ (0,1) andαn,k+1, . . . ,αn,k+n ∈ {0,1} such that (4.8) holds.

For every positive integers n, we put

yn = zn
2k+4n +

k∑
i=1

εi
2i
+

k+n∑
i=k+1

αn,i
2i

+ 1
2k+2n (4.17)

and observe that |y −yn| < 1/2n and yn ∈ [x]∩ (0,1), by Lemma 3.2. Moreover,

assertion (i) of Lemma 3.1 gives

ϕ
(
yn
)= a3n−1bϕ(y). (4.18)

Thus ϕ(y2n+1)=−ϕ(y), if b =−1 and ϕ(y2n)=−ϕ(y), if b = 1.

The proof is complete.

Now, we can formulate our main result.
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Theorem 4.6. Assume that ab ≠ 0.

(i) If |a| ≤ b = 1 or |b| ≤ a= 1 or a= b =−1, then Ba,b =∅.

(ii) If max{|a|,|b|}≠ 1 or |a|< 1=−b or |b|< 1=−a, then Ba,b = [0,1].
(iii) The sets C1,1 and Z1,1 consist of two elements only, 0 and 1.

(iv) If a≠ 1 or b ≠ 1, then Ca,b = Za,b = [0,1].
Proof. Assertion (i) follows from Theorems 3.3 and 3.4, which allow (in each of the

considered cases) to construct a nonzero, bounded and compactly supported solution

of (1.1).

To get assertion (ii), it is sufficient to use Lemmas 4.2, 4.3, and 4.4 with assertions (iv)

and (iii) of Lemma 3.1.

Now, let a = b = 1. First, observe that since the function ϕ : R → R, given by

ϕ(0) = 1, ϕ(1) = −1 and ϕ(x) = 0 for every x ∈ R \ {0,1}, is a compactly sup-

ported solution of (1.1), we have Z1,1 ⊂ {0,1}. Hence, according to (2.3) and (2.4), the

proof of (iii) will be completed if we show that 0∈ C1,1. For this purpose, assume that

ϕ is a compactly supported solution of (1.1) which is continuous at 0. This jointly with

assertion (i) of Lemma 2.2 implies that ϕ vanishes outside of (0,1]. Moreover, from

Lemmas 3.2 and 3.1, we see that for every x ∈ [0,1] the function ϕ|[x]∩(0,1) is con-

stant and since [x]∩(0,1) is a dense subset of [0,1], we conclude thatϕ|[x]∩(0,1) = 0.

Consequently, ϕ vanishes everywhere, except the point 1. To get that ϕ(1) = 0, it is

enough to use assertion (iii) of Lemma 3.1.

Using similar argumentation as above, we conclude that assertion (iv) follows from

Lemma 4.5 in the case (a,b) ∈ {(−1,1),(1,−1),(−1,−1)}; otherwise it is enough to

use Lemmas 4.2, 4.3, and 4.4 with assertion (iii) of Lemma 3.1.

We finish with two propositions which proofs are left to the reader.

Proposition 4.7. For every reals a and b, every compactly supported solution of

(1.1) is either bounded on R or unbounded in every neighbourhood of each point of

[0,1].

Proposition 4.8. For every reals a and b, every compactly supported solution of

(1.1) is either constant on (0,1) or discontinuous at every point of [0,1].
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