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A complex subbundle of the normal bundle to an integral submanifold of the contact
distribution in a Sasakian manifold is given. The geometry of this bundle is investigated
and some results concerning its Chern classes are obtained.
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1. Introduction. Let M be a (2m + 1)-dimensional manifold endowed with the
almost contact metric structure F, &, n, g. These tensor fields satisfy the conditions

F?=-I+ne§ n& =1,  g(FXFY)=g(X,Y)-nX)n(), (1.1)

for all vector fields X,Y tangent to M.

Let 9 be the contact distribution of M, defined by the equation n = 0. The study
of the integral submanifolds of 9 is very difficult for, at least, three reasons: (a) their
abundance (see, e.g., [1, 5, 8]), (b) the nonexistence of a natural structure induced
on the submanifold M, resulting from the equalities n = 0, dn = 0, true along M,
and (c) for any vector field X tangent to M, the vector field FX is normal to M and
therefore, freely speaking, the geometry of an integral submanifold of % is normal
to the submanifold. However, for maximal integral submanifolds (i.e., dimM = m),
we know many properties (see, e.g., [1, Chapter V]); while for nonmaximal integral
submanifolds, we have so few results.

In this paper, we associate to each nonmaximal integral submanifold M of M a non-
trivial vector bundle T(M). The geometry and the topology of this vector bundle are
also studied. In Section 2, we give, in an “appropriate” form, the structure equations
of an integral submanifold in a Sasakian manifold. In Section 3, we study the geome-
try of T(M), namely, we prove that it has a natural structure of complex symplectic
vector bundle.

It is well known that integral submanifolds of an almost contact manifold are anti-
invariant, [8]. Thus, such a submanifold is analogous to the isotropic (or totally real)
submanifolds of a Kdhler manifold, investigated by Chen and Morvan in [2, 4], and we
can use some of their technics in order to study Chern classes of the vector bundle
T(M). In Section 4, by combining these ideas with some Vaisman’s results [7] con-
cerning the characteristic classes of quaternionic bundles, we obtain stronger results
than for isotropic submanifolds. Namely, we prove that if m —n is even, then all odd
Chern classes of T(M) are zero. In absence of this supposition on the dimensions, we
prove that the first Chern class of T(M) is zero when M is a Sasakian space form.
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2. Structure equations of an integral submanifold. Let M be an almost contact
metric manifold. Furthermore, we assume that M is Sasakian and let (M) denote the
set of all vector fields tangent to M. We have [1, page 73]

(VF)Y =g(X,Y)E-n(Y)X, XY e%(M), (2.1)

where V is the Levi-Civita connection associated to the metric g on M. Moreover, we
have the well-known equalities

FE=0, noF=0, nX)=gX,5%), VxE=—-FX. (2.2)

Now, let M be an n-dimensional submanifold of the Sasakian manifold M and denote
by h, V+, and A its second fundamental form, normal connection, and Weingarten
operator, respectively. It is well known that n < m (see [8] or [1, page 36]), and we
can consider in M local fields of orthonormal frames B = {€1,...,€n,Cnils---)Cm,C1% =
Fey,...,enx = Fey,emn+1)x = Fepi1,...,em* = Fem,ean+1)* = &}, with the property that
the restrictions of ey, ..., e, to the submanifold M are tangent to M, so that % are local
frames such that TM @ span{e,,1,...,em} is a Legendrian subbundle of TM.

Afterwards, we will use the following convention on the indices: j € {1,...,m}; j* =
j+m;a,b,cef{l,....n};a*=a+m,b*=b+m,c*=c+m; A,u,ve{n+l,...,m};
A*¥=A+m; &, B,y,0 € {1,....2m+1}.

If B* = {w!,...,0" 0" . ™o, .. ", oD wmt wmtDT = Y s

the local field of coframes of %, then, at the points of M, we have (locally)

A= @l = mD* — . (2.3)

w
On the other hand, by computations we prove that if (wg) is the connection form of
V, expressed with respect to @, then, on the submanifold M, we have

* 1)*
w(amH)* = wi\erl)* = w/(\erl)* =0, w(m+ (X) = (X:ea)s (2.4)

i* j Ji* J
wu =w? , W« = Wq, wy =wj , w)\* = Wy. (2.5)

The curvature forms of M and M are, respectively,

_ 1 2m+1 1 n
O =5 > Rfsw’rw’,  Of = 5 > R 0 A, (2.6)
ch 1 c,d=1

where Rg‘yé and Rj.; are the components (with respect to &) of the curvature tensors
of M and M, respectively. Then, at the points of M, we have

m m

=0 > wﬁ/\wﬁ—Zw?*Aw{;, (2.7)
A=n+l =1
n
- > wirwd =< Z R}, w0 A w? (2.8)
=1 ab 1

where R 4 are the components of the curvature tensor of V+. Finally, from (2.3), (2.4),
and (2. 5) and from the general form of the structure equations (see, e.g., [3, page 121]),
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we deduce the structure equations of an integral submanifold of a Sasakian manifold
under the form

n

n
dw®=-> wirwl, dwl=-> w?rw+Qf,
b=1 c=1
m m (2.9
A A v A J* A
dwy, = z wy AWy, ij* Awyu +Qy.
=n+1 Jj=1

3. Geometry of the maximal invariant normal bundle. The normal space T M at
each point x € M has the following orthogonal decomposition

TiM = F(TxyM) & T (M) @ span {Ex }, (3.1)

where T, (M) is the 2(m —n)-dimensional subspace of TxM, orthogonal to F(T,yM) &
span{&,}. Then, T(M) = Uyecpy Tx (M) is the total space of a subbundle T(M) of T+M
and B+ = {ex,er+} = {en+1,---»€m,€(n+1)*,---,€m=* } 1S @ local basis in the module T'(T)
of its sections. We also denote this bundle by T(M) and call it the maximal invariant
normal bundle of the integral submanifold M.

THEOREM 3.1. Let M be an integral submanifold of the Sasakian manifold M. Its
maximal invariant normal bundle T (M) has the following properties:
(@) T(M) is invariant by F, that is, F(Tx(M)) = Tx (M) for each x € M;
(b) T(M) has a natural structure of complex vector bundle;
(©) ifm—n=(dimM —dimM)/2 is even, then T(M) has a quaternionic structure.

PROOF. (a) follows easily from (3.1).

(b) Denote by (n},n") the components of the vector #iy € Ty (M), relative to the
basis B+, and let p : T(M) — M be the natural projection. Then, using the classical
notations, the vector charts

d:p L U) — UXC™™, d(1iy) = (x,(n*+in'")), xeU, (3.2)

define on T (M) a complex vector bundle structure.
(c) From (a), we deduce that the space I'(T) can be considered as a complex space
with the following multiplication by complex numbers:

(x+if)ri=ori+PFr, o« BeER, nel(T). (3.3)
Endowed with this complex structure, I'(T) is an (m —n)-dimensional space, denoted
by I'“(T). Moreover, we can define the map F™ :T°(t) — I'“(T) by F"(n) = Fri — iFni*
for allm =7 +in*, 7i,71* €'(T), and it has the following properties:

FT(ni+m) =F'ny+Fn,, FT(An) = AF™n, (F')’n= —n, (3.4)

forn,n;,n, eI'“(t) and A € C. Hence (see [7, Section 1]), FT defines on T7(M) a quater-
nionic structure. a
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A natural connection can be defined on 7 (M). Firstly, we remark that g(V#,&) =0
for all X € ¥(M) and 7 € T'(T), hence the normal vector field V7 has the following
decomposition:

Vid = By X + VA, (3.5)

where B; X e ['(FTM) and V7 € I'(T). Moreover, the maps B:I'(T) X% (M) — T'(FTM)
and VT : X (M) xI'(1) — I'(T) have the following properties.

PROPOSITION 3.2. (a) VT is an almost complex connection on the maximal invariant
normal bundle of the integral submanifold M, that is, (VxF)# = 0.
(b) Bi X =FAp; X forall X e X(M) and 1 €T (T).

The proof follows from (3.5) by computation, taking into account (2.1) and (2.2) and
using the Weingarten formula for the submanifold M.
Now, if we extend the scalar product g over I'“(7) by

g™ (n,Amp) =Ag" (n,n2),  gT(mp,my) = g7 (ny,my), (3.6)
for A € C and n;,n, €I'°(1), then we have
g"(F'my,F'np) = g7 (n1,m2), (3.7)

hence g7 is a Hermitian scalar product on the complex vector bundle T (M ). Moreover,
RBE = {fr = (1//2)(ex +iexx), fax = (1/+/2)(ex —ier+)} is an orthonormal local basis
of T¢(T) with respect to g7 and fax = —ify, F7fr = ifa = frx.

For any n;,n; € I'“(7), we put

Q7 (ny,n;) = —g7(F™ny,ny), (3.8)

and a simple computation shows that Q7 is C-linear with respect to the first argument
and

QT(nl,nz) =—QT(112,111), QT(FTIll,FTIlz) =QT(H1,112). (39)

From these relations and because %< is an orthonormal local basis, we deduce that
Q7 is a nondegenerate skew-symmetric 2-form on the complex vector bundle T (M).
Hence, we have the following proposition.

PROPOSITION 3.3. For m —n even, the maximal invariant normal bundle T (M) of
the integral submanifold M of a Sasakian manifold has a structure of complex sym-
plectic vector bundle with the symplectic form Q7.

4. Normal Chern classes of an integral submanifold. As a complex vector bundle,
the basic characteristic classes of the maximal invariant normal bundle T (M) are the
Chern classes [yx(T)], represented by the Chern forms

Ak

-k 1
i v T
54! qum/\"'/\Quk'

Yk = m Ap--Ap (4.1)
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A
where Q,, are the curvature forms of V7 and §:.: is the multiindex Kronecker symbol.
We say that y (T) is the kth normal Chern form of the submanifold M and the purpose
of this section is to obtain some results concerning the computation of y, (7) and the
kth normal Chern class [y, (T)] of M.

THEOREM 4.1. Let M be an n-dimensional integral submanifold of a Sasakian man-
ifold of dimension 2m+ 1. If m —n is even, then

[Yars1(T)] =0 fork:O,l,.._,[L’H].

> (4.2)

PROOF. By Theorem 3.1(c), the maximal invariant normal bundle T(M) has a
quaternionic structure, and then we can apply [7, Proposition 2.1]. ]

Now, we will analyse the first normal Chern form and its associated class in absence
of the supposition that m —n is even.

THEOREM 4.2. The first normal Chern form of the n-dimensional integral subman-
ifold M in a Sasakian manifold of dimension 2m+ 1, m > n, is given by

1 m
yim=-— > o} (4.3)
2Tr)\:n+1

PrROOF. Using (3.5), (2.1), and the Weingarten formula, we obtain the components
T
of the curvature tensor R of V™ under the form

TA*

Ryap= RQZb +g(BeAeb,BeA* eq) —g(BeAea,BeA* ep), (4.4)

)\*
.
and then its curvature formis Q, = Qﬁ* On the other hand, from (2.9), it follows the
complex form of the second structure equation of T(M), namely,

m
dph=— > Pindy+@) with P = w0 +icw,
v=n+l1l (4-5)
A A
d)ﬁ = wi‘, +iwﬁ*, <I>ﬁ =Qp 1y -

A
.
But ®} =i O+, and then we have

am A=n+1 2m A=n+1

i m N 1 mo oA 1 m A
YI(T) = E Z (1)/\ = 5 Z QA*: - Z Q)\* (46)
A=n+1

and the proof is complete. O

Let 7i be a vector field normal to the integral submanifold M of the Sasakian man-
ifold M. For X € %(M), the equality «;(X) = g(F7i,X) defines a 1-form «; on M.
In [6], this form is used for the study of some remarkable vector fields on M (Leg-
endrian, Hamiltonian, and harmonic variations). Another 1-form on M is defined by
6 =>"_, w2, and we can state the following proposition.
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PROPOSITION 4.3. The forms «;; and 0 have the following properties:
(@) g =0 and 0 = —n«y, where H is the mean curvature vector of M;
(b) oy is closed if and only if

forall X,Y e X(M);
(c) the exterior derivative of 0 is given by

n n
N 1 <k
a0- 3 (S-SRl 3 RE o o,
b,c=1 A a=1

where S is the Ricci tensor of M.
PROOF. (a) We have the well-known equality
m
Vyea= > wh(X)ep
B=1

for any X € ¥(M), and, by using (2.4) and (2.5), we obtain
n ~
0(es) = > g(Ve,earear), be{l,2,...,n}
a=1

Taking into account (2.1) and the Gauss formula, we deduce

M=

0(es) = S g(h(easen),ea) = S 9(Tesen,Fea)

a=

—

a=1

n n
=- Z g(F(veaeb)yeu) =- Z g(ﬁeaeb*yeu) = Z g(eh*,@eaea)
a=1 a=1

(b) From the definition of the 1-form «;;, we obtain
doi(X,Y) = g(Vx(F1i),Y) - g(Vy (Fri),X).
On the other hand, using (2.1), we have
Vx(Fi) = F(Vx7i) —n(1)X,
and then, applying the Weingarten formula in (4.12), it follows that

Ao (X,Y) = g(Vii,FX) - g (VA FY).

= S glev hlearea)) = ngleve, H) = —nglep, FH) = —no(en).
a=1

4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(c) From (2.4) and (2.5) and taking into account the second structure equation of M

2m
dwf = - > wirwy+Qf,
y=1

(4.15)
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we obtain

n n n
2. w =2 2 wirwy
n

m
A:;ll +1a=1 b;l a=1 (4.16)
Z Z w?\ A wa Z QZ*'
A=n+1a=1 a=1
Using (2.5) again, the above equality becomes
dG—ZZ Z W) A w) +ZQ“* (4.17)
a=1A=n+1
Now, applying the Gauss formula for the submanifold M in (4.9), we have
n m
D> [wh(X)ep+wh (X)eps]+ D [wd(X)er+w) (X)eax] = Vyea+h(X,eq)
b=1 A=n+1
(4.18)
for any X € Z(M). It follows that
wﬁ(X) = g(h(X;ea)seu)
n n (4.19)

n
>. X"g(h(ea,ep), Z Py = > My’ (X)),
b=1 b=1

where h§. are the components of h(eg,e.) with respect to the basis B+. Therefore, we
have

n
= > h¥%w° (4.20)
a=1

for any & = A or & = A*. Finally, from (4.17) and (4.20) we deduce
n n B
do= 3 (hh,hi —hichd,) w0l nw+ 3 08 4.21)

a,b,c=1 a=1

Because M is Sasakian, its curvature tensor R satisfies the following equality [1,
page 75]:

RX,VE=n(X-nX)Y, X,YeX(M), 4.22)

hence the Ricci tensor S of M is given by

2m
SIX,Y) = > %h(ex,X,ea,Y) —g(X,Y), (4.23)

a=1

for all X,Y € ¥(M) orthogonal to &, where % is the Riemann-Christoffel curvature
tensor field of M.
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Using (2.3), from the first equality in (2.6), we deduce
L 1 &
> 08 = 5 > R4, P A we (4.24)
a=1 a,b,c=1

at any point of the submanifold M. Moreover, using the first Bianchi identity relative
to M, we have

RY,. = R(ear,eq,ep,ec) = R(ec,eqar,ea,ep) +R(ec,eq,ep, 00+ ). (4.25)

On the other hand, on a Sasakian manifold, the following equalities are true [1, page
93]
R(FX,FY,FZ,FU) =R(X,Y,Z,U), (4.26)
R(FX,Y,Z,U)+%(X,FY,Z,U) =dn(Y,Z)g(U,X) +dn(Z,X)g(Y,U)

(4.27)
+dn(U,Y)g(X,Z)+dn(X,U)g(Y,Z),

for all X,Y,Z,U € ¥(M) orthogonal to E. But dn(eq,ep) = 0, hence, from (4.27), we
deduce

R(eax,ec,eq ep) +R(eq,ecx,ea,ep) =0 (4.28)

and therefore, using (4.23) and (4.26), from (4.25) we obtain

n

n
SR =D [Rleaep,ea ecr) +T(ear,ep,eqx,ec+)]

a=1 a=1
i mo ) (4.29)
= S(eh,ec*) + z [gt(ec*,e;\,e;\,eh) +97t(eA,eh*,eA,ec)].
A=n+1
Now, from (4.27), we give
R (eqx,er,en,ep) +R(eq, ers,en,ep) =0 (4.30)
and then
no_ ; . m . .
> RY. =S(epecx)+ D [Rler,ec,er en) +R(eax,ep,ec,er)]. 4.31)
a=1 A=n+1
Applying the second Bianchi identity in the above equality, we obtain
n m
- . .
S R, =S(epecs)— > Flea,en ep,ec); (4.32)
a=1 A=n+1

and taking into account the Ricci equation

R(ers,er ep,ec) = R*-(ers,er,ep,ec) — g([Aeys, Acy lec, en), (4.33)
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we deduce

n m m n
S RYGe =Sper— D Rhpet D D (AL AR, — AL AR, (4.34)
a=1 A=n+1 A=n+1d=1

where, by Aﬁa, we denote the components of the Weingarten operator of M, relative
to %B. Now, (4.8) follows from (4.17), (4.34), and (2.6). |

THEOREM 4.4. Let M be an integral submanifold of the Sasakian space form M(c).

(a) The first normal Chern class [y, (T)] of M is zero.

(b) If the mean curvature vector of M is parallel, then its first normal Chern form
y1(T) is zero.

PROOF. (a) Recall that in a Sasakian space form M(c), the curvature tensor R and
the Ricci tensor S have the following expressions (see, e.g., [1, pages, 97-98]):

R(X,Y)Z = %[WY,Z)X—g(X,Z)Y]
+%[n(X)n(z)Y—n(Y)n(z)X+g(x,z>n(Y)§—g(Y,z>n(X>§ 435)
+9(Z,FY)FX -g(Z,FX)FY -2g(X,FY)FZ], '
S'(X,Y) _ Mg(x’y)_wn(x)n(y),

2 2

for all X,Y,Z € ¥(M). From these equalities, we easily deduce Rg;C =0, Spe+ =0, and
taking into account (2.8) from Proposition 4.3(c), we obtain
o *
ao=-2 > . (4.36)
A=n+1

From Theorem 4.2 and from Proposition 4.3(a) and (c), it follows that

dogy = —Ld0 = 2y (1), 4.37)
n n
and then the assertion (a) is proved.
(b) From (4.36) and using Proposition 4.3(b), we obtain y; (1) = 0. |
REFERENCES

[1]  D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, vol.
509, Springer-Verlag, Berlin, 1976.

[2]  B.-Y. Chen and J.-M. Morvan, Deformations of isotropic submanifolds in Kdhler manifolds,
J. Geom. Phys. 13 (1994), no. 1, 79-104.

[3] S.Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol I, Interscience Pub-
lishers, New York, 1963.

[4] J.-M. Morvan, Classes caractéristiques des sous-variétés isotropes | Characteristic classes of
isotropic submanifolds], C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 9, 269-272
(French).

[5]  Gh. Pitis, On parallel submanifolds of a Sasakian space form, Rend. Mat. Appl. (7) 9 (1989),
no. 1, 103-111.



490 GHEORGHE PITIS

[6] __, Stability of integral submanifolds in a Sasakian manifold, Kyungpook Math. J. 41
(2001), no. 2, 381-392.

[7] I Vaisman, Exotic characteristic classes of quaternionic bundles, Israel J. Math. 69 (1990),
no. 1, 46-58.

[8] K. Yano and M. Kon, Anti-invariant submanifolds of Sasakian space forms. II, J. Korean
Math. Soc. 13 (1976), no. 1, 1-14.

GHEORGHE PITIS: DEPARTMENT OF EQUATIONS, FACULTY OF MATHEMATICS AND INFORMATICS,
TRANSILVANIA UNIVERSITY OF BRASOV, ROMANIA
E-mail address: gh.pitis@info.unitbv.ro


mailto:gh.pitis@info.unitbv.ro

