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1. Introduction. Let M̃ be a (2m + 1)-dimensional manifold endowed with the

almost contact metric structure F , ξ, η, g. These tensor fields satisfy the conditions

F2 =−I+η⊗ξ, η(ξ)= 1, g(FX,FY)= g(X,Y)−η(X)η(Y), (1.1)

for all vector fields X,Y tangent to M̃ .

Let � be the contact distribution of M̃ , defined by the equation η = 0. The study

of the integral submanifolds of � is very difficult for, at least, three reasons: (a) their

abundance (see, e.g., [1, 5, 8]), (b) the nonexistence of a natural structure induced

on the submanifold M , resulting from the equalities η = 0, dη = 0, true along M ,

and (c) for any vector field X tangent to M , the vector field FX is normal to M and

therefore, freely speaking, the geometry of an integral submanifold of � is normal

to the submanifold. However, for maximal integral submanifolds (i.e., dimM = m),

we know many properties (see, e.g., [1, Chapter V]); while for nonmaximal integral

submanifolds, we have so few results.

In this paper, we associate to each nonmaximal integral submanifoldM of M̃ a non-

trivial vector bundle τ(M). The geometry and the topology of this vector bundle are

also studied. In Section 2, we give, in an “appropriate” form, the structure equations

of an integral submanifold in a Sasakian manifold. In Section 3, we study the geome-

try of τ(M), namely, we prove that it has a natural structure of complex symplectic

vector bundle.

It is well known that integral submanifolds of an almost contact manifold are anti-

invariant, [8]. Thus, such a submanifold is analogous to the isotropic (or totally real)

submanifolds of a Kähler manifold, investigated by Chen and Morvan in [2, 4], and we

can use some of their technics in order to study Chern classes of the vector bundle

τ(M). In Section 4, by combining these ideas with some Vaisman’s results [7] con-

cerning the characteristic classes of quaternionic bundles, we obtain stronger results

than for isotropic submanifolds. Namely, we prove that if m−n is even, then all odd

Chern classes of τ(M) are zero. In absence of this supposition on the dimensions, we

prove that the first Chern class of τ(M) is zero when M̃ is a Sasakian space form.
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2. Structure equations of an integral submanifold. Let M̃ be an almost contact

metric manifold. Furthermore, we assume that M̃ is Sasakian and let �(M̃) denote the

set of all vector fields tangent to M̃ . We have [1, page 73]

(∇̃F)Y = g(X,Y)ξ−η(Y)X, X,Y ∈�
(
M̃
)
, (2.1)

where ∇̃ is the Levi-Civita connection associated to the metric g on M̃ . Moreover, we

have the well-known equalities

Fξ = 0, η◦F = 0, η(X)= g(X,ξ), ∇̃Xξ =−FX. (2.2)

Now, let M be an n-dimensional submanifold of the Sasakian manifold M̃ and denote

by h, ∇̃⊥, and A its second fundamental form, normal connection, and Weingarten

operator, respectively. It is well known that n ≤m (see [8] or [1, page 36]), and we

can consider in M̃ local fields of orthonormal frames �= {e1, . . . ,en,en+1, . . . ,em,e1∗ =
Fe1, . . . ,en∗ = Fen,e(n+1)∗ = Fen+1, . . . ,em∗ = Fem,e(m+1)∗ = ξ}, with the property that

the restrictions of e1, . . . ,en to the submanifoldM are tangent toM , so that � are local

frames such that TM⊕span{en+1, . . . ,em} is a Legendrian subbundle of TM̃ .

Afterwards, we will use the following convention on the indices: j ∈ {1, . . . ,m}; j∗ =
j+m; a,b,c ∈ {1, . . . ,n}; a∗ = a+m, b∗ = b+m, c∗ = c+m; λ,µ,ν ∈ {n+1, . . . ,m};
λ∗ = λ+m; α,β,γ,δ∈ {1, . . . ,2m+1}.

If �∗ = {ω1, . . . ,ωn,ωn+1, . . . ,ωm,ω1∗ , . . . ,ωn∗ ,ω(n+1)∗ , . . . ,ωm∗ ,ω(m+1)∗ = η} is

the local field of coframes of �, then, at the points of M , we have (locally)

ωλ =ωj∗ =ω(m+1)∗ = 0. (2.3)

On the other hand, by computations we prove that if (ωβ
α) is the connection form of

∇̃, expressed with respect to �, then, on the submanifold M , we have

ωa
(m+1)∗ =ωλ

(m+1)∗ =ωλ∗
(m+1)∗ = 0, ω(m+1)∗

a∗ (X)= g(X,ea), (2.4)

ωj∗
a =ωa∗

j , ωj∗
a∗ =ωj

a, ωj∗
λ =ωλ∗

j , ωj∗
λ∗ =ωj

λ. (2.5)

The curvature forms of M̃ and M are, respectively,

Ω̃αβ =
1
2

2m+1∑
α,β=1

R̃αβγδω
γ∧ωδ, Ωab =

1
2

n∑
c,d=1

Rabcdω
c∧ωd, (2.6)

where R̃αβγδ and Rabcd are the components (with respect to �) of the curvature tensors

of M̃ and M , respectively. Then, at the points of M , we have

Ωab = Ω̃ab−
m∑

λ=n+1

ωa
λ∧ωλ

b−
m∑
j=1

ωa
j∗ ∧ωj∗

b , (2.7)

Ωλµ = Ω̃λµ−
n∑
a=1

ωλ
a∧ωa

µ =
1
2

n∑
a,b=1

Rλµabω
a∧ωb, (2.8)

where Rλµab are the components of the curvature tensor of∇⊥. Finally, from (2.3), (2.4),

and (2.5) and from the general form of the structure equations (see, e.g., [3, page 121]),
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we deduce the structure equations of an integral submanifold of a Sasakian manifold

under the form

dωa =−
n∑
b=1

ωa
b∧ωb, dωa

b =−
n∑
c=1

ωa
c ∧ωc

b+Ωab,

dωλ
µ =−

m∑
ν=n+1

ωλ
ν∧ων

µ−
m∑
j=1

ωλ
j∗ ∧ωj∗

µ +Ωλµ.
(2.9)

3. Geometry of the maximal invariant normal bundle. The normal space T⊥x M at

each point x ∈M has the following orthogonal decomposition

T⊥x M = F(TxM)⊕τx(M)⊕span
{
ξx
}
, (3.1)

where τx(M) is the 2(m−n)-dimensional subspace of TxM , orthogonal to F(TxM)⊕
span{ξx}. Then, τ(M)=⋃x∈M τx(M) is the total space of a subbundle τ(M) of T⊥M
and �τ = {eλ,eλ∗} = {en+1, . . . ,em,e(n+1)∗ , . . . ,em∗} is a local basis in the module Γ(τ)
of its sections. We also denote this bundle by τ(M) and call it the maximal invariant

normal bundle of the integral submanifold M .

Theorem 3.1. Let M be an integral submanifold of the Sasakian manifold M̃ . Its

maximal invariant normal bundle τ(M) has the following properties:

(a) τ(M) is invariant by F , that is, F(τx(M))= τx(M) for each x ∈M ;

(b) τ(M) has a natural structure of complex vector bundle;

(c) if m−n= (dimM̃−dimM)/2 is even, then τ(M) has a quaternionic structure.

Proof. (a) follows easily from (3.1).

(b) Denote by (nλ,nλ∗) the components of the vector �nx ∈ τx(M), relative to the

basis �τ , and let ρ : τ(M) → M be the natural projection. Then, using the classical

notations, the vector charts

Φ : ρ−1(U) �→U×Cm−n, Φ
(
�nx
)= (x,(nλ+inλ∗)), x ∈U, (3.2)

define on τ(M) a complex vector bundle structure.

(c) From (a), we deduce that the space Γ(τ) can be considered as a complex space

with the following multiplication by complex numbers:

(α+iβ)�n=α�n+βF �n, α,β∈R, �n∈ Γ(τ). (3.3)

Endowed with this complex structure, Γ(τ) is an (m−n)-dimensional space, denoted

by Γ c(τ). Moreover, we can define the map Fτ : Γ c(τ)→ Γ c(τ) by Fτ(n) = F �n− iF �n∗
for all n= �n+i�n∗, �n, �n∗ ∈ Γ(τ), and it has the following properties:

Fτ
(
n1+n2

)= Fτn1+Fτn2, Fτ(λn)= λFτn,
(
Fτ
)2

n=−n, (3.4)

for n,n1,n2 ∈ Γ c(τ) and λ∈ C. Hence (see [7, Section 1]), Fτ defines on τ(M) a quater-

nionic structure.
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A natural connection can be defined on τ(M). Firstly, we remark that g(∇⊥X �n,ξ)= 0

for all X ∈ �(M) and �n ∈ Γ(τ), hence the normal vector field ∇⊥X �n has the following

decomposition:

∇⊥X �n= B�nX+∇τX �n, (3.5)

where B�nX ∈ Γ(FTM) and∇τX �n∈ Γ(τ). Moreover, the maps B : Γ(τ)×�(M)→ Γ(FTM)
and ∇τ : �(M)×Γ(τ)→ Γ(τ) have the following properties.

Proposition 3.2. (a)∇τ is an almost complex connection on the maximal invariant

normal bundle of the integral submanifold M , that is, (∇τXF)�n= 0.

(b) B�nX = FAF �nX for all X ∈�(M) and �n∈ Γ(τ).
The proof follows from (3.5) by computation, taking into account (2.1) and (2.2) and

using the Weingarten formula for the submanifold M .

Now, if we extend the scalar product g over Γ c(τ) by

gτ
(
n1,λn2

)= λgτ(n1,n2
)
, gτ

(
n2,n1

)= gτ(n1,n2
)
, (3.6)

for λ∈ C and n1,n2 ∈ Γ c(τ), then we have

gτ
(
Fτn1,Fτn2

)= gτ(n1,n2
)
, (3.7)

hence gτ is a Hermitian scalar product on the complex vector bundle τ(M). Moreover,

�c
τ = {fλ = (1/

√
2)(eλ+ieλ∗), fλ∗ = (1/

√
2)(eλ−ieλ∗)} is an orthonormal local basis

of Γ c(τ) with respect to gτ and fλ∗ = −ifλ, Fτfλ = ifλ = fλ∗ .

For any n1,n2 ∈ Γ c(τ), we put

Ωτ
(
n1,n2

)=−gτ(Fτn1,n2
)
, (3.8)

and a simple computation shows thatΩτ is C-linear with respect to the first argument

and

Ωτ
(
n1,n2

)=−Ωτ(n2,n1
)
, Ωτ

(
Fτn1,Fτn2

)=Ωτ(n1,n2
)
. (3.9)

From these relations and because �c
τ is an orthonormal local basis, we deduce that

Ωτ is a nondegenerate skew-symmetric 2-form on the complex vector bundle τ(M).
Hence, we have the following proposition.

Proposition 3.3. For m−n even, the maximal invariant normal bundle τ(M) of

the integral submanifold M of a Sasakian manifold has a structure of complex sym-

plectic vector bundle with the symplectic form Ωτ .

4. Normal Chern classes of an integral submanifold. As a complex vector bundle,

the basic characteristic classes of the maximal invariant normal bundle τ(M) are the

Chern classes [γk(τ)], represented by the Chern forms

γk = ik

(2π)kk!
δµ1···µk
λ1···λk

τ
Ω
λ1

µ1
∧···∧ τ

Ω
λk
µk , (4.1)
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where
τ
Ω
λ

µ are the curvature forms of ∇τ and δ······ is the multiindex Kronecker symbol.

We say that γk(τ) is the kth normal Chern form of the submanifoldM and the purpose

of this section is to obtain some results concerning the computation of γk(τ) and the

kth normal Chern class [γk(τ)] of M .

Theorem 4.1. LetM be an n-dimensional integral submanifold of a Sasakian man-

ifold of dimension 2m+1. If m−n is even, then

[
γ2k+1(τ)

]= 0 for k= 0,1, . . . ,
[
m−n−1

2

]
. (4.2)

Proof. By Theorem 3.1(c), the maximal invariant normal bundle τ(M) has a

quaternionic structure, and then we can apply [7, Proposition 2.1].

Now, we will analyse the first normal Chern form and its associated class in absence

of the supposition that m−n is even.

Theorem 4.2. The first normal Chern form of the n-dimensional integral subman-

ifold M in a Sasakian manifold of dimension 2m+1, m>n, is given by

γ1(τ)= 1
2π

m∑
λ=n+1

Ωλ
∗
λ . (4.3)

Proof. Using (3.5), (2.1), and the Weingarten formula, we obtain the components

of the curvature tensor
τ
R of ∇τ under the form

τ
R
λ∗

λab= Rλ
∗
λab+g

(
Beλeb,Beλ∗ ea

)−g(Beλea,Beλ∗ eb), (4.4)

and then its curvature form is
τ
Ω
λ∗

λ =Ωλ
∗
λ . On the other hand, from (2.9), it follows the

complex form of the second structure equation of τ(M), namely,

dφλµ =−
m∑

ν=n+1

φλν∧φνµ+Φλµ with φλ =ωλ+iωλ∗ ,

φλµ =ωλ
µ+iωλ

µ∗ , Φλµ =
τ
Ω
λ

µ +i
τ
Ω
λ

µ∗ .

(4.5)

But Φλλ = i
τ
Ω
λ

λ∗ , and then we have

γ1(τ)= i
2π

m∑
λ=n+1

Φλλ =−
1

2π

m∑
λ=n+1

τ
Ω
λ

λ∗= −
1

2π

m∑
λ=n+1

Ωλλ∗ (4.6)

and the proof is complete.

Let �n be a vector field normal to the integral submanifold M of the Sasakian man-

ifold M̃ . For X ∈ �(M), the equality α�n(X) = g(F �n,X) defines a 1-form α�n on M .

In [6], this form is used for the study of some remarkable vector fields on M (Leg-

endrian, Hamiltonian, and harmonic variations). Another 1-form on M is defined by

θ =∑n
a=1ωa∗

a , and we can state the following proposition.



486 GHEORGHE PITIŞ

Proposition 4.3. The forms α�n and θ have the following properties:

(a) αξ = 0 and θ =−nαH , where H is the mean curvature vector of M ;

(b) α�n is closed if and only if

g
(∇⊥X �n,FY )= g(∇⊥Y �n,FX) (4.7)

for all X,Y ∈�(M);
(c) the exterior derivative of θ is given by

dθ =
n∑

b,c=1

(
S̃bc∗ −

∑
λ
Rλ

∗
λbc−

1
2

n∑
a=1

R̃a
∗
abc

)
ωb∧ωc, (4.8)

where S̃ is the Ricci tensor of M̃ .

Proof. (a) We have the well-known equality

∇̃Xeα =
m∑
β=1

ωβ
α(X)eβ (4.9)

for any X ∈�(M̃), and, by using (2.4) and (2.5), we obtain

θ
(
eb
)= n∑

a=1

g
(∇̃ebea,ea∗), b ∈ {1,2, . . . ,n}. (4.10)

Taking into account (2.1) and the Gauss formula, we deduce

θ
(
eb
)= n∑

a=1

g
(
h
(
ea,eb

)
,ea∗

)= n∑
a=1

g
(∇̃eaeb,Fea)

=−
n∑
a=1

g
(
F
(∇̃eaeb),ea)=−

n∑
a=1

g
(∇̃eaeb∗ ,ea)=

n∑
a=1

g
(
eb∗ ,∇̃eaea

)

=
n∑
a=1

g
(
eb∗ ,h

(
ea,ea

))=ng(eb∗ ,H)=−ng(eb,FH)=−nαH(eb).

(4.11)

(b) From the definition of the 1-form α�n, we obtain

dα�n(X,Y)= g
(∇̃X(F �n),Y )−g(∇̃Y (F �n),X). (4.12)

On the other hand, using (2.1), we have

∇̃X
(
F �n

)= F(∇̃X �n)−η(�n)X, (4.13)

and then, applying the Weingarten formula in (4.12), it follows that

dα�n(X,Y)= g
(∇̃⊥Y �n,FX)−g(∇̃⊥X �n,FY ). (4.14)

(c) From (2.4) and (2.5) and taking into account the second structure equation of M̃

dωα
β =−

2m∑
γ=1

ωα
γ ∧ωγ

β+Ω̃αβ , (4.15)
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we obtain

dθ =−
m∑

λ=n+1

n∑
a=1

ωa∗
λ ∧ωλ

a−
n∑
b=1

n∑
a=1

ωa
b∧ωb∗

a

−
m∑

λ=n+1

n∑
a=1

ωa
λ∧ωλ∗

a +
n∑
a=1

Ω̃a
∗
a .

(4.16)

Using (2.5) again, the above equality becomes

dθ = 2
n∑
a=1

m∑
λ=n+1

ωλ
a∧ωλ∗

a +
n∑
a=1

Ω̃a
∗
a . (4.17)

Now, applying the Gauss formula for the submanifold M in (4.9), we have

n∑
b=1

[
ωb
a(X)eb+ωb∗

a (X)eb∗
]+ m∑

λ=n+1

[
ωλ
a(X)eλ+ωλ∗

a (X)eλ∗
]=∇Xea+h(X,ea)

(4.18)

for any X ∈�(M). It follows that

ωµ
a(X)= g

(
h
(
X,ea

)
,eµ

)

=
n∑
b=1

Xbg
(
h
(
ea,eb

)
,eµ

)= n∑
b=1

Xbhµba =
n∑
b=1

hµbaω
b(X),

(4.19)

where hαac are the components of h(ea,ec) with respect to the basis �τ . Therefore, we

have

ωα
a =

n∑
a=1

hαacωc (4.20)

for any α= λ or α= λ∗. Finally, from (4.17) and (4.20) we deduce

dθ =
n∑

a,b,c=1

(
hλabh

λ∗
ac −hλachλ

∗
ab
)
ωb∧ωc+

n∑
a=1

Ω̃a
∗
a . (4.21)

Because M̃ is Sasakian, its curvature tensor R̃ satisfies the following equality [1,

page 75]:

R̃(X,Y)ξ = η(Y)X−η(X)Y , X,Y ∈�
(
M̃
)
, (4.22)

hence the Ricci tensor S̃ of M̃ is given by

S̃(X,Y)=
2m∑
α=1

�̃
(
eα,X,eα,Y

)−g(X,Y), (4.23)

for all X,Y ∈ �(M̃) orthogonal to ξ, where �̃ is the Riemann-Christoffel curvature

tensor field of M̃ .
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Using (2.3), from the first equality in (2.6), we deduce

n∑
a=1

Ω̃a
∗
a = 1

2

n∑
a,b,c=1

R̃a
∗
abcω

b∧ωc (4.24)

at any point of the submanifold M . Moreover, using the first Bianchi identity relative

to M̃ , we have

R̃a
∗
abc = �̃

(
ea∗ ,ea,eb,ec

)= �̃
(
ec,ea∗ ,ea,eb

)+�̃
(
ec,ea,eb,ec∗

)
. (4.25)

On the other hand, on a Sasakian manifold, the following equalities are true [1, page

93]:

�̃(FX,FY ,FZ,FU)= �̃(X,Y ,Z,U), (4.26)

�̃(FX,Y ,Z,U)+�̃(X,FY ,Z,U)= dη(Y ,Z)g(U,X)+dη(Z,X)g(Y ,U)
+dη(U,Y)g(X,Z)+dη(X,U)g(Y ,Z), (4.27)

for all X,Y ,Z,U ∈ �(M̃) orthogonal to ξ. But dη(ea,eb) = 0, hence, from (4.27), we

deduce

�̃
(
ea∗ ,ec,ea,eb

)+�̃
(
ea,ec∗ ,ea,eb

)= 0 (4.28)

and therefore, using (4.23) and (4.26), from (4.25) we obtain

n∑
a=1

R̃a
∗
abc =

n∑
a=1

[
�̃
(
ea,eb,ea,ec∗

)+�̃
(
ea∗ ,eb,ea∗ ,ec∗

)]

= S̃(eb,ec∗)+
m∑

λ=n+1

[
�̃
(
ec∗ ,eλ,eλ,eb

)+�̃
(
eλ,eb∗ ,eλ,ec

)]
.

(4.29)

Now, from (4.27), we give

�̃
(
ea∗ ,eλ,eλ,eb

)+�̃
(
ea,eλ∗ ,eλ,eb

)= 0 (4.30)

and then

n∑
a=1

R̃a
∗
abc = S̃

(
eb,ec∗

)+ m∑
λ=n+1

[
�̃
(
eλ∗ ,ec,eλ,eb

)+�̃
(
eλ∗ ,eb,ec,eλ

)]
. (4.31)

Applying the second Bianchi identity in the above equality, we obtain

n∑
a=1

R̃a
∗
abc = S̃

(
eb,ec∗

)− m∑
λ=n+1

�̃
(
eλ∗ ,eλ,eb,ec

)
; (4.32)

and taking into account the Ricci equation

�̃
(
eλ∗ ,eλ,eb,ec

)=�⊥(eλ∗ ,eλ,eb,ec)−g([Aeλ∗ ,Aeλ]ec,eb), (4.33)
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we deduce

n∑
a=1

R̃a
∗
abc = S̃bc∗ −

m∑
λ=n+1

Rλ
∗
λbc+

m∑
λ=n+1

n∑
d=1

(
AdλcA

b
λ∗d−Adλ∗cAbλd

)
, (4.34)

where, by Abλa, we denote the components of the Weingarten operator of M , relative

to �. Now, (4.8) follows from (4.17), (4.34), and (2.6).

Theorem 4.4. Let M be an integral submanifold of the Sasakian space form M̃(c).
(a) The first normal Chern class [γ1(τ)] of M is zero.

(b) If the mean curvature vector of M is parallel, then its first normal Chern form

γ1(τ) is zero.

Proof. (a) Recall that in a Sasakian space form M̃(c), the curvature tensor R̃ and

the Ricci tensor S̃ have the following expressions (see, e.g., [1, pages, 97–98]):

R̃(X,Y)Z = c+3
4

[
g(Y ,Z)X−g(X,Z)Y ]

+ c−1
4

[
η(X)η(Z)Y −η(Y)η(Z)X+g(X,Z)η(Y)ξ−g(Y ,Z)η(X)ξ
+g(Z,FY)FX−g(Z,FX)FY −2g(X,FY)FZ

]
,

S̃(X,Y)= m(c+3)+c−1
2

g(X,Y)− (m+1)(c−1)
2

η(X)η(Y),

(4.35)

for all X,Y ,Z ∈�(M̃). From these equalities, we easily deduce R̃a
∗
abc = 0, S̃bc∗ = 0, and

taking into account (2.8) from Proposition 4.3(c), we obtain

dθ =−2
m∑

λ=n+1

Ωλ
∗
λ . (4.36)

From Theorem 4.2 and from Proposition 4.3(a) and (c), it follows that

dαH =− 1
n
dθ = 4π

n
γ1(τ), (4.37)

and then the assertion (a) is proved.

(b) From (4.36) and using Proposition 4.3(b), we obtain γ1(τ)= 0.
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