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ABSTRACT. Necessary formulas are developed for obtaining cubic, quartic,

quintic, and sextic spline solutions of nonlinear boundary value problems.

These methods enable us to approximate the solution of the boundary value

problems, as well as their successive derivatives smoothly. Numerical

evidence is included to demonstrate the relative performance of these four

techniques.
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1. PRELIMINARIES

Let a finite interval [a,b] be partitioned into (N + i) equal parts by the
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insertion of N Knots {x defined by x a + nh, h (b a)/(N + i),
n n

n 0(1)N + i, and let s(x) be a spline function of degree m on [a,b]. Thus,

in each subinterval Ixi, Xi+l], s(x) is a polynomial of degree at most m and

cm-is (x) e [a,b]. We shall designate this polynomial by

j=m
jP.(x) aij (x- xi) i 0(1)N, x e ixi, Xi+l]. (i.i)

l
j=0

In this paper we shall present some methods for the continuous approximation

of the solution of the two point real nonlinear boundary value problem

y (x) f(x, y(x)), a < x -< b

y(a) A y(b) B 0 (1.2)

by the use of spline functions of orders up to six. The function f(x, y(x)) is

a continuous function of two variables with f continuous and nonnegative in
Y

the strip S defined by S: a < x < b, < y < It is well-known that the

boundary value problem (1.2) with these conditions has a unique solution

(Henrici ill, . 347).

2. CUBIC SPLINE SOLUTION (m 3)

The possiblities of using spline functions for obtaining smooth approximations

of the solution of boundary value problems were first briefly discussed by

Ahlberg et al. [2]. Following this,Bickley [3] and Albasiny et al. [4]

have demonstrated the use of cubic spline function for obtaining an approximate

solution of (1.2) when

f(x, y(x)) p(x) y’(x) + q(x) y(x) + r(x).

The authors of the latter have,in particular ,established via different

notations than ours,the recurrence relation

Yi-i 2Yi + Yi+l (h2/6)[Mi-i + 4M.l + Mi+I], (1.3)
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Y0 A YN+I B 0, i I(1)N, Mi fi’

where Yi denotes spline approximation to y(xi) y(x) being the exact solution

of the system (1.2). The unknowns Yi’ i I(1)N are first obtained by solving

the tridiagonal system of nonlinear algebraic equations (1.3), Mi, i 0(1)N +i

are subsequently computed by M
i fi fi f(xi’ Yi where we designate

Pi(xj Yj’ Pi (xj) Mj, xj e ixi, Xi+l].

Finally the coefficients of (i.I) are determined from the relations

ai,0 (Mi+l Mi)/(6h)’ ai, I Mi/2

ai,2 (Yi+l Yi)/h h(Mi+l + 2Mi)/6’ ai,3 Yi (1.4)

We can also show that

Yi’ ai,2 i 0(1)N

-(YN+I YN)/h + h(2’+im + M )/6 i N + i.
N

The approximate values of y(x) and its derivative at the points other than

knots are obtained by evaluating or differentiating the corresponding cubic

spline polynomial.

3. SOLUTION OF NONLINEAR EQUATIONS (i. 3)

The method which we shall use to obtain the solution of the system (1.3)

is a generalization of Newton’s method which we summarize very briefly for

the sake of completeness (Henrici [I], p.355). Let the nonlinear equations

(1.3) in N unknown Yi be written in the form

i(Yl’ Y2 Yn 0, i I(1)N

or,in vector form,



154 R.A. USHANI

(3.2)

where -- (i), Y (yl) are N dimensional vectors. Let M(Y) (mlj) denote

the matrix with elements

i, j I(1)N.

Then the Newton’s method for the solution of (3.1) is written in the form

y(p+l) y(p) [M(y(p))]-i (y(p)), (p 0,i, ).

(3.3)

(3.4)

In our case ,the elements mij are given as follows:

mij

2 + (4h2/6)gi i

-1 + (h2/6)gj, i J 1

0 l-Jl>

where gi fy(xi’ yi). The vector (Y) is usually referred to as residual

vector. The criterion for stopping the iterations defined by (3.4) is that

the residual vector (Y(p)) be such that

II(Y(P))II l(YCe)) < , (p 0,, ), (3.6)

where e is a preassigned small positive quantity.

Also, the system of nonlinear equations (3.2) has a unique solution Y, to

which the successive approxtions Y(P) defined by (3.4) convergeprovided

0 < o orS"( < 0.5, (3.7)

where for Y y(O) the initial approximation the matrix M(Y (0)) has an

inverse r such that
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(3.8)

11 r (y(0) !1

_<y i I(1)N,I Ykj ,k--

(3.9)

(3.10)

(Note for a vector v (vi), ]lv[[ max
i

and for a matrlx M (mlj>, I[MI[ max I [mljl

We can verify that (3.7) will be satisfied for the system (1.3) if

h2G < 6 with G max f and
(x,y) y

64(b- a)4[h2Q4/12 + R]H < i/2, (3.11)

where the function Q(x) providing the initial approximation is such that

Q4 max [QiV(x)[, R max iQ"(x) f(x, Q(x))[, and
x x

y)
(x,y)

fyy’

In deriving (3.11),we use the theory of monotone matrices as given by

Henrici ([I], p. 360). If the initial approximation vector y(0) (Q(xi))
be such that the quantity R is small, then it follows from (3.11) that

the solution of the system (1.3) obtained by Newton’s method will converge

to the solution of (1.2) for all sufficiently small values of h.

4. QUARTIC SPLINE SOLUTION

We now consider (i.i) for m 4. With the analogy of section 2

on cubic spline, we can determine the five coefficients of (i.i) in terms

of Yi’ Yi+l’ Mi’ Mi+l and D
i
where we now write
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P’. (x.) D x [x
i,

].
i 3 J J Xi+l

A simple calculation gives

ai,0 -(Yi+l- Yi)/h4 + Di/h3 + (MI+I + 2Mi)/(6h2)

ai, I 2(Yl+1 yl)/h
3 2Dl/h2 (Mi+I + 5Mi)/(6h)

ai,2 Mi/2’ ai,3 Di’ ai,4 Yi’ i 0(1)N.

Continuity of the first and third derivative at x x
i

gives the relations

[that is P’ (xi) P’i (xi) and Pi-I"’ (xi) e’"i (xi)
i-I

f 4h3 + 3h2 + 2hai i,
4 ai_ a

iai-l, 0 ai-l, 1 2 1,3 ,3

4hai_l, + ai_l, 1 ai, 1

which on using (4.1) reduce to

(4.2)

and

D
i
+ Di_1 2(y

i Yi_l)/h + h(M
i Mi_l)/6 (4.3)

Di + Di-i (Yi+l Yi)/h h(Mi+l + 8Mi + Mi-l)/12" (4.4)

We equate the expressions on the right side of the equality sign in (4.3) and

(4.4) respectively and obtain

2(Yi Yi-i)/h + h(Mi Mi-l)/6 (Yi+l Yi)/h h(Mi+l + 8Mi + Mi-1)/i2

which collapses,on simplification, to the recurrence relation

Yi-i- 2Yi +Yi+l (h2/12)[Mi-i + 10Mi + Mi+l]’ (4.5)

which is the same as the well-known Noumerov’s formula. As before, we first

determine the unknowns Yi’ i I(1)N by solving the system of nonlinear
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algebraic equations by Newton’s iterative method explained in the previous

section and then compute Di, i l(1)N+l, using (4.3) in conjunction with

(Usmani, [ 5 ])

h
2 f(x0, Y0

DO [-Y0 + Yl (5 + )/12 (h3/12) x ]/[h(l + (h2/12)g0 ]. (4.6)

And now the knowledge of Yi’ Di’ Mi’ i 0(1)N+I enables us to produce the

coefficients of quartlc spline as given by (4.1). An approximation of the

third derivative at knots is given by

Yi 6ai, l, i 0(1)N

24haN, 0 + 6aN, I -12(YN+I yN)/h3 + 12DN/h
2 (4.7)

+ 3(+ + )/h, i N+I.

5. QUINTIC SPLINE SOLUTION

We now consider (I.i) for m=5.

ivSet Pi (xj) Sj, xj e [x
i, Xi+l]. As before, we can compute the coefficients

of (i.i) in terms of Yi’ Yi+l’ Mi’ Mi+l’ Si’ Si+l in the form (Spath, [6])

ai, 0 (Si+I Si)/(120h), ai, I Si/24 (5.1)

ai,2 (Mi+l Mi) / (6h) h(Si+l + Si)/36, ai, 3 M./21

ai,4 (Yi+l Yi)/h h (Mi+1 + 2Mi)/6 + h3(7Si+1 + 8Si)/360

ai,5 Yi’ i 0(1)N,

From the continuity of first and third derivatives at x xi, we have

7Si+l + 16Si + 7Si i 60(Mi+l + 4M. + /h2 360 + y )/h4 (5 2)
i Mi-l) (Yi+l 2Yi i-i

Si+1 + 4S
i
+ Si_1 6(Mi+1 2M.l + Mi_l)/h2. (5.3)

From the preceding two relations, it follows that
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S
i 30(Yi+I 2y

i
+ yi_l)/h

4
3(Mi+1 + 18M

i
+ Mi_l)/(2h2), i I(1)N (5.4)

On substituting the values of S., j i-l, i, i+l either in (5.2) or in

(5.3), we readily derive the desired relation

(Yi-2 + Yi+2 + 2(Yi-i + Yi+l 6Yi (h2/20)[(Mi-2 + Mi+2)

+ 26(Mi_1 + Mi+l) + 66Mi] i 2(1)N-I. (5.5)

This recurrence relation only gives (N-2) equations in the N unknowns Yi"
In an analogous manner we derive two more relations, namely

(i) 4Y0 7Yl + 2Y2 + Y3 (h2/12)[4 + 41 + 14 + M3]
(ii) YN-2 + 2YN-I 7YN + 4YN+I (h2/12)[-2+ 14-i+ 41+ 4+i]. (5.6)

Now the determination of N unknowns Yi can be effected by solving the nonlinear

algebraic equations (5.5) and (5.6). The knowledge of Yi’ i 0(1)N+I, enables us

to compute Mi, i 0(1)N+I and finally Si, i I(1)N using (5.4). The

quantities SO and SN+1 can be computed from the formulas

(i) S0 0"l[(48/h4)(-2Y0 + 5Yl 4Y2 + Y3 + h2M0) 21SI 12S2 S3]’
(ii) SN+1 0.I[ (48/h4)(yN_2 4YN_1 + 5y

N 2YN+1 + h2+l) 21S
N

12SN_1 SN_2]. (5.7)

In fact we use (5.7) for N 3 and for N>3 we can use more accurate formulas

obtained from

Yi-2- 4Yi-i + 6Yi- 4Yi+l + Yi+2-- (h4/120)[Si-2 + 26Si-i + 66Si +

268
i+l

+ S
i+2

which is easily derived on eliminating Mi’s from (5.2) and (5.3).

Finally, the knowledge of Yi’ Mi’ Si’ i 0(1)N+I enables us to write down the

coefficients of (i.i) as given by (5.1). We also have

(5.8)
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i 0(1)NYi ai,4

(YN+I YN)/h + hC2MN+I + )/6 h3CSSN+1 23SN)/360 (5.9)

i N + i, and

Yi’’’ 6ai,2 i 0(1)N

N)/h + h (ZSN+ + SN) / 6, +/- N+. (5.o)

6. SEXTIC SPLINE SOLUTION

We finally consider (i.i) for m 6. With the analogy of the previous

sections, we compute the coefficients of (i.i) in terms of Yi’ Yi+l’ Di’ Mi’
Mi+I, Si, and Si+1 in the form

ai,0 (Yi+l Yi)/(3h6) Di/(3hS) (Mi+l + 2Mi)/(18h4)
+ (7Si+l + 8Si / (I080h2)

(6.z)

ai,l -(Yi+l Yi)/h5 + Di/h4 + (Mi+l + 2Mi)/(6h3)
(4Si+l + llSi / (360h)

ai, 2 Si/24

ai,3 5(Yi+1 yi)/(3h3) 5Di/(3h2 (2Mi+1 + 13Mi)/(18h)
+ h(Si+1 4Si)/216

ai, 4 Mi/2 ai, 5 Di, ai, 6 Yi,i O(1)N.

Continuity of the first, third, and fifth derivatives at x x
i
givesthe

relations

D
i
+ Di_1 2(y

i Yi_l)/h + h(M
i Mi_l)/6 h3(s

i Si_i)/360 (6.2)
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Di + Di-I (Yi+l Yi-i)/h h(2Mi+l + 21Mi + 7Mi-i)/30 + h3(Si+l (6.3)

9S
i
+ 2Si+i)/360,

Di + Di-i (Yi+l Yi-I)/h h(Mi+l + 3Mi + 2Mi-I)/6 + h3(4Si+l (6.4)

+ 21Si + 5Si__l)/360"

From (6.2), (6.3) and (6.2), (6.4),we derive the following relations

h
2

Yi+l 2Yi + Yi-i (Mi+l + 13Mi + Mi-l)/15 h4(si+l 8Si (6.5)

+ Si_l)/360’

h
2

4M
i
+ Mi_I) (2Si+1 + 1IS

iYi+l 2Yi + Yi-I (Si+l + /6 h4 (6.6)

+ 2Si_I)/180.

From (6.5) and (6.6), we deduce

h4Sz (Yi+l 2Yi Yi-i (Mi+l z
20 + 2h

2 + 28M. + Mi_l)/3 (6.7)

h2M" + Yi 1
h4

z (Yi+I 2Yi (Si+l + 28Si + Si_l)/360. (6.8)

From (6.5)and (6.7) [Note we can also use (6.6) and (6.7)],we obtain on

eliminating S
i

s the recurrence relation

(Yl-2 + Yi+2 + 8(Yi-i + Yi+l 18Yi

(h2/30)[(Mi_2 + Mi+2) + 56(Mi_1 + Mi+I) + 246Mi], (6.9)

i 2(1)N-I, which gives (N-2) nonlinear algebraic equations in the N unknowns

Yi" We develop two more equations similar to those given by (5.6) in the form

(i) 10y
0

19y
I + 8y

2
+ Y3 (h2/12)[10M0 + 101MI + 20M2 + M3]’ (6 .i0)

(ii) YN-2 + 8YN-I 19YN + 10YN+I (h2/12)[-2 + 20 + I01 + I0+i].
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We first solve (6.9) and (6.10) and determine Yn’ n I(1)N; M
i

are then

determined as before. The knowledge of Yl and M
i
enables us to compute $i,

i I(1)N using (6.7). As in section 5, SO and SN+1 are computed from (5.7)

or (5.8) depending according as N 3 or N > 3. Having determined Yi’ Mi’
S
i, i 0(1)N+I, we evaluate the coefficients of (i.i) as given by (6.1).

The first derivatives at the knots are computed recursively from the formula

(6.2) using the starting value for the first derivative as given below

(see Usmani [7], eqn. 3.6 (i)):

DO [- 5"5Y0 + 9Yl -4"5Y2 + Y3- h4(8S0 + 151Sl + 52S2 $3)/280]/(3h) (6.11)

This formula is suitable for N -3. However, for N > 3, a

more accurate formula, namely

D
O

5 5y
0
+ 9y

I
4 5y

2 + Y3 h4 8n Sn,
n=0

(6.12)

i
where (80, i,...85)= 33600 (937, 18240, 5990, 140, -135, 28), could be used

(see Usmani, [7], eqn. 3.7(i)).

Finally, the third and fifth derivatives are given by the following formulas:

Yi 6ai, 3
i 0(1)N (6.13)

IODN/h2YN+I -10(YN+I- YN + + (8MN+I + 7)/(3h) + h(SSN+I 2SN)/36,

y(5) 120ai,1 i O(1)N

(5)
120(YN+1 yN)/h

5 120DN/h4 20(+1
+ 2)/h

3
N+I

(6.14)

+5(IISN+I + 10SN)/(6h).

7. CONVERGENCE

Define
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e
i

y(xi) y+/-

and E (en), T (tn) are N-dimensional vectors; then the error equation

in any of the four methods is obtained in a standard manner in the form

where M is a tridlagonal matrix for cubic and quartic spline functions and

M is a five band matrix for quintic and sextlc spllne solutions of the boundary

value problem (1.2). It is easily seen that the truncation error associated

with (i.3) is 0(h4) and IM-III -< (b a)2/(8h2) where the elements of M are

given by (3.5). Thus we easily deduce that for a cubic spline solution of (1.2)

(Henrici, [i])

i[E[I -< Kh2 (7.2)

and, from this, it follows that as h / 0 (i.e. N / ) the cubic spline solution

Yi / Y(Xi)" Thus cubic spline solution based on (1.3) is a second order

convergent process. We can similarly prove that the quartlc spllne solution

based on (4.5) is a fourth order convergent process.

In order to prove the convergence of the quintic solution based on (5.5)

and (5.6), we observe that the truncation error is given by

h6y(6)(l)/48’ x0 < i < x3

t
i

h6y (6)(xi)/120 + 0(h7), i 2(1)N-

h6y(6) (N)/48’ XN-2 < N < XN+l
We can establish that

[[rl[ < h6M6/48 M
6

max [y(6)(x)l
x

(7.3)

(7.4)

The elements of the corresponding matrix M are given below

m12 2 + (14h2g2/12), mN,N_1 2 + (14h2gN_i/12). (7.5)
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m13 i + (h2g3/12) raN,N-2 -I + (h2gN_2/12)

mlj 7 + (41h2gi/12) i=j =i, N

6 + (66h2g/30) i j 2(1)N-I

2 + (26h2gj/20)
i + (h2gj/20) li-j[ =2

0, otherwise.

The error analysis depends on the properties of the matrix M and M where M

is a five band matrix obtained from M by setting each gt O, so that M

(mi) and.

i mN,N 7, (7.6)

mij 6, i j, i 2(1)N-I

O, otherwise.

From the theory of monotone matrices (Henrici, [i]),it follows that both M

and are monotone matrices if 13h2G < 20. Also, it is easily seen that

M PQ, (7.7)

(Pij (qijwhere P ), Q are tridiagonal matrices with Pii 2, Pij i,

]i J 1; qii 4, qij 1, ]i j] 1. Also,

M-I < -i [p-l + Q-I]/6, (7.8)

and
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II - il < IIN-Xll _< [(b a)2/(8h2) + 1/2]/6.
This follows from Fischer and Usmani [8]. Now from (7.1), (7.4), and

(7.9)

(7.9), it ollows that

IEll < h4(b a)2M6/2304 + 0(h6) 0(h4). (7.10)

Following a similar t.echniqu% we can establish that for m sextic spline

solution

lEll < h6.
8. NUMERICAL ILLUSTRATIONS

We solve two nonlinear boundary value problems of the form (1.2).

y’’ 0 5(x + y + 1) 3 y(0) y() 0,

with y(x) 2/(2 x) x- i. The function Q(x) is chosen to satisfy the

system Q" 0.5(x + 1) 3, Q(0) Q(1) 0 so that Q(x) [(i + x)
5

31x

i]140;

y’’ xp(y), y(0) y(1) 0,

with y(x) n(2) + 2 n[C sec{C(x- 0.5)/2}], C 1.3360557.

(8.2)

Here Q(x) [sinh x + sinh (i x)]/sinh 1 i. The numerical calculations

are made using double precision arithmetic in order to keep the rounding

errors to a minimum. The numerical results are briefly summarized in

Tables i- 3.

9. CONCLUDING REMARKS

Our numerical results on test problems indicate that results based on

quintic and sextic spline are only marginally better than those obtained by

quartic spline solution. Moreover, in order to obtain nonlinear equations

equal to the number of unknowns in quintic and sextic spline solution, an

ad hoc procedure is used near the boundaries of the interval. Also, the

matrices that arise are five band matrices whereas in case of cubic and
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quartic spline solution the bandwidth of the matrices that arise is three,

which makes them slightly simpler to implement. Since formulas (1.3)

and (4.5) satisfy the conditions of Theorem 7.4 (Henrici [I]), Richardson’s

h
2

extrapolation method can be used to push the accuracy of these formulas

to 0(h4) and 0(h6) respectively, whereas in case of quintic and sextic spline

solut ions we can only use h-extrapolation technique to improve the numerical

solution. The latter techniques also suffer from a disadvantage that they

require approximate formulas for S
O
and SN+I [see (5.7)]. Similarly, in

sextic spline solution, in order to compute Di, i I(1)N+I, we must provide

D
O

[see (6.11)].

Finally, in the opinion of this author, one should rely on quartic spline

solution for a smooth approximation of the solution and its successive

derivates for the nonlinear boundary value problem of the type (1.2).

Table I

Observed max. error IEII for (s.x) in Yi based on

N h cubic quartic quintic sextic spllne

i 1/2 0.212-1 0.287-2

3 1/4 0.480-2 0.248-3 0.205-3 0.208-3

7 i/8 0. ii 7-2 0.164-4 0. 648-5 0. 780-5

0.i05-5 0.216-6 0.204-6

* -iWe write 0.212-1 for 0.212 x i0
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Table II

h 1/8, observations based on quintic spline solution

Problem

(8.2)

number of iterations Ii  ’c)11

0. 703-1

0.578-3

0.349-7

0.167-15

0.545-3

0.106-7

0.555-11

0.648-5

0.493-7

Table III

Problem (8.2), h 0.25, observed max. errors based on sextic spline solution

xi Yi Yi Yi Yi

0.0 0.0 0.407-5 0.851-8 0.459-2

0.25 0. 340-5 0. 333-4 0. 313-5 0. 511-2

O. 50 O. 288-5 O. 387-4 O. 257-5 O. 620-2

O. 75 O. 340-5 O. 442-4 O. 313-5 O. 725-2

i. 0 0.0 0. 504-3 0. 851-8 0. 816-4
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