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ABSTRACT. In the references [1, 2, 3] a perturbed iterative scheme (PIS) has
been studied both theoretically and computationally to solve nonlinear equations.
In this article a more general analysis of its convergence properties has been
done.
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1. INTRODUCTION.

A perturbed iterative scheme (PIS) has been developed in [1, 3] to solve
nonlinear equations. It is a functional iterative scheme obtained by adding a
predetermined perturbation parameter to nonlinear Gauss-Seidel iterations. PIS
has a simple algorithm. Other similar iterations [6, 7, 8] had more restricted

applications and complicated algorithms. Theorems on convergence properties of
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P1S, derived in [1] for one nonlinear system, were modified in [3] for coupled
nonlinear systems. In this article more generalized convergence properties of
PIS have been analyzed by applying decaying matrices [5]. A practical demonstra-
tion of this concept is also given. Theorems on convergence of PIS derived in
[1, 2, 3] may be interpreted as particular cases of those derived in this paper.

2. ALGORITHM OF PIS [1].

Let us consider a nonlinear system:

Fi(xl, x2,...xn) =0,i=1, 2,...n (2.1)

This equation may be expressed as F(x) = 0 where x = (xl X, oo xn)T,
F : Dc R® > R? (R® is the real n-dimensional space). We assume that (2.1)
admits a root x = x* € D. Our objective is to develop a perturbed iterative
scheme (PIS) to solve (2.1) and compute x*. If (2.1) is written as:

X; = Gy (xy, X5,...x), i =1, 2,...n (2.2)
nonlinear Gauss-Seidel iteration at same kth step is:

<% =&k (2.3)

where xli‘ = value of xi at the kth (not exponent) iteration and

K _ -1 -1
ok Gi(xll‘, x‘2° x’i‘_l, x’l‘ xkn ). (2.4)

Let G : DxDc R® x R? + D. Then (2.3) may be expressed as

* = cxk, xk°1) (2.5)
and, x* = ox*, x") (2.6)

DEFINITION 1: In such a case, x* is called a fixed image of G on D x D.

Now (2.3) may be perturbed as follows:

x5 =Wk 4ok (2.7)
To compute the perturbation parameter wl;, we assume that ¥ i,k: (i) v)i"s are
small, such that terms of the order (mvll.‘_)2 nmay be neglected, (ii) (BG:.L / Bxi)k #1,

and (1i1) (3%, / ax21¥ is bounded.
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If (2.7) converges after (k-1) iterations, xt'l = x? = x;. Then,
w? + G§ = Gi(xﬁ cee x?_l, w? + G? ’ i:% cee xt’l). Expanding the right side by

Taylor's series and using the above assumptions we get

k=@ -dh /s -a6h (2.8)

1

where E? = Gi(x§ - x?_l, G?, x?li cee xﬁ-l) and

X
3;G4 = (8G; / 9xy) k -1 -1
i i/ 0k ak o, ek, T Ll oKL

Thus in (2.7), w§'s are computed in terms of quantities known apriori. The
convergence criterion is:

max lw?l <€ (2.9)
i

where € is positive and arbitrarily small.

3. ANALYSIS OF CONVERGENCE.

By convergence we mean %im xK = x*. Now (2.7) may be expressed as:
=40
K = vk + gxK, k1) (3.1)

where wK = (w{ cee wg)T € RB. Let G be continuous on D x D.

THEOREM 1: A necessary condition for convergence is that, for saome norm

lim || W] = 0 (3.2)
ke
PROOF: Assuming that (2.7) converges to x*, %12 xK = x* and
lim G (X, x*-1) = G(x*, x*) = x*. Then, (3.1) gives lim wX = g, which implies
koo ko

(3.2).

To prove that (3.2) may also be a sufficient condition for convergence, the
following concept is used:

DEFINITION 2: A sequence of commuting square matrices Al, Az,...An is
called a sequence of decaying matrices or simply D-matrices if

ki_’g Al Az cee Ak=¢ (3.3)
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Each By is called a D-matrix. Obviously, the etements of Ak are variable and
they change as k changes. Several properties of D-matrices are given in [S5].
The one we need is:

LEMMA 1: A sufficient condition such that 2y is a D-matrix is that for
some particular norm and ¥ k > K,

lall<a<a (3.4)
PROOF: For any nomm, ||a; A, ..o Al < [l a)ll [ &yl ...l |l . Also,

“Ak" = 0 iff A = . Proof is now rather trivial.

Let H: DxDCc R xR +p ¥ (x5, y), (s, B) € D x D. Let us express

B, v%) - B, B) = A 6K - a) + B (K - 8) (3.5)
where Ak' Bk are square matrices (n x n) and, ai,j = an element of Ak =
al;_'j(xk, yk, a, B); bl;'j = an element of By = b]i"j(xk, yk, a, B). As k changes,

x*, yK and hence a’_{’j, bljf,j change. Let |x| = (J%] [%5] --- ]xnl)T.

DEFINITION 2: If ¥(xX, yX), (o, B) € D x D, A, B, are continuous,

o = | -ap7 (3.6)
is bounded, and
B = |- a0t myl (3.7)

is continuous and form a sequence of D-matrices, the mapping H : Dx D ¢ R® x R
<+ D is called a D-mapping on D x D.

THEOREM 2: If in (3.1) G is a D-mapping and (3.2) is true, PIS (3.1) will
converge to x*, a fixed image of G on D x D. Furthermore, if p(Ek) (the spectral
radius of Ek) <1 ¥k > K, x* is the unique fixed image of G on D x D.

PROOF: Subtracting (2.6) from (3.1) and using (3.5) we get o - x* =
W (XK - x*) 4 B (KT - xM),

Then, [k = x*| < o) |wk| + By |xK~1 - x*| (3.8)
where Cy and Ey are defined in (3.6) and (3.7) respectively. Now, using (3.8)

recurrently,



CONVERGENCE ANALYSIS FOR NONLINEAR SYSTEMS 387

k .
|xk - x*| ij{an Egp --- Ejup G313 + B By ol By (X0 - 2
ko 5
= (Bx Ex-1 - EBxg+1) j;sl (Exy Bxg-1 -+ By41) G5 |w|
k . R
+Z (Ex Ex—y «-- Ej'l'l) Cj IWJ| + Ex Exy ... Ej |x° -x |. (3.9)
j=k°+l
(3.2) implies that for some k 2 kgtl, |wk| < €. Also, since E, is a D-matrix,

]]‘.;:.zEl Ey oo Ep = ¢ and ]]‘._.1.2 Eko+l Eko+2 cee Ep = #. Hence Cj being bounded ¥j,

from (3.9) we get l]€+12 |xk - x*| = @ which establishes convergence.

In order to prove uniqueness, we assume that x = y* is a second root. Then,
x* - y* = elx®, x*) - 6y, ¥H) = ALt - v") + Bux* - ¥, Thus,
|x‘t - y*l = |(I - 2,1 B,l |x" - y*t = Eq Ix' - y*l. Since p(Ey) < 1, ¥k > K and
«©

Ej * Ei as k > ®, p(E,) < 1. This gives (I - E,)"} = ] E} > #. Hence
j=0

(1 - E,)lx. - y*l = @, implies x* = y*.

It may be observed thaf Ak and Bk are respectively lower and upper triangu-
lar matrices with variable elements. If A+ By is a tridiagonal matrix it is
rather easy to check when G is a D-mapping [9]. However, in general (I - Ak)-l
is not quite simple to find. In such cases, theorem 2 cannot be used and the
following approach may be taken.

THEOREM 3: Let ¥k,

Gk , 1) - ctx*, x*) = A 6K - x") + B KL - xT) (3.10)
where (I - Ak)'l is bounded. Let for some particular norm and ¥k > K,
llall+ I B ll <o <1, Furthermore if (3.2) is true, PIS given by (3.1) will
converge to x* and x* is the unique fixed image of G on D x D.
PROOF: Let Mg = (I - AL By, since || agll s I Bll <o <1,

lagll <a<1and ta-|[agllrc - || aglh™ < a. also,
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Nl =l @ -2 gl < fmll 7 @ - linlly < @-linglly 7 a- I
< a < 1. Hence M, is a D-matrix. Subtracting (2.6) from (3.1) and using (3.10)
we get: ¥ - x* =wK + Ak(xk -x*) + Bk(xk'l - x*). Thus, || =& - x*"
sllha-ap I+ Ml N -x®ll. xe 0 = max || - 207,

[|* - x*|l < o v*|| + a || X1 - x*|| . (3.11)
(3.2) suggests that for some k > kq+l, || wX|| < €. Hence applying (3.11)

recurrently we get:

| xk - x*||<e - akko § ako=3 ||wi]|+e-0- a-at+o¥|x®-x".
i=1

Since 0 < a < 1, as k¥, Ika-x*" + 0.

To prove uniqueness, let x = y* be the other root. Then, x* - y'
=cx*, x*) - ely*, ¥ = A" -y 4B " - yN or - I h [ x* - vl < 0.
Since ||Hk||< a € 1% >Kand as k+», Mk-rn,, we have “x' -y’"io giving
x* = y*.

It may be easy to prove:

THEOREM 4: A sufficient condition such that nonlinear Gauss-Seidel itera-
tions xX = G(xK, x¥~1) will converge to x = x* is that Ey = [a - Ak)"l Bk' is a
D-matrix where Ay and B, are defined in (3.5).

PROOF: In (3.9) we set W& = 0 and the proof follows.

4. AN APPLICATION.

Solve: 0.25x2 - x; + 0.75x, = 0, 0.5x)X, = X, + 0.005 = 0. In
[-0.5, 0.5] x [-0.5, 0.5], this system has a root given by x; = 3.7606 x 10~3 and
x2 = 5.00942 x 10”3, We express the system as x; = Gy (Xy, X3}, Xy = Gy(xX3, X5),
where Gj (x;, X3) = 0.25x§ + 0.75x; Gy(x;, X3) = 0.5x)xp + 0.005. Denoting the
roots by xI, x;: Gl(xlf'l, x§'1) - Gl(x;, x;) = 0.25(x§‘1 + x;) (x’{"l - xi)
+0.756X™L - x3), and G, (¥, x571) - G, (x], x3) = 0.5x57L0xK - x7)

+ O.Sx;.(x‘yl - x;). Thus, G0, =1 - c(x*, x*) = Ak(xk -x") + Bk(xk'l -x%
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0 0 0.25(X"1 + x])  0.75
where Ay = 1B =
0.5x51 o 0 0.5x)
0.25/x%"1 + x| 0.75

Then, B, = [(1 - 3,)71p, | =
o M P o.125|x§'1(x§'1 + x;)| |o.375x§'1 + 0.5x;|

Obviously, if ¥k (xl{, xlzt) e bxD, D= [-0.5, 0.5], “ Ek“ e la < 1 (since
*
*1
bounded, G is a D-mapping. Hence, iterations will converge iff (3.2) is true.

X -1
= 0). Thus E, is continuous and a D-matrix. Also, since Cy = |(I - By) | is

The algorithm, now, requires the following to be computed sequentially at any kth
tteration: (1) &§ = 0.25GX™1% + 0.75%7Y; (41) 136y / ik, k-1 = 0.56% ;
1" 72

(ii1) E’{ = O.25(Gk;|,)2 + 0.75x)2‘-1 ; (iv) w’{ = (Ekl - Glf) / {1 - 1361 / 3*11c’1‘, ’22(_1}’
(v) x§ = w§ +65; (vi) ¢k = 0.5x§x§'1 +0.005 ; (vii) [3G, / ax)) k. c§ = o.s:{ :

(viii) G = 0.5x§Gh + 0.005 ; (ix) w5 = (G5 - G5) / {1 - 1363 / 3x2) x x}s
10 G2

5

(x) xlz‘ = w]; + Gg Convergence follows iff max l“J;_I <eg. If €=10" and

i=1,2
(xg, xg) € D x D, PIS converges in 5 iterations. This simple example explains
the convergence principle as developed in theorem 2. It shows that in order to

prove that Ep is a D-matrix, some prior knowledge of the roots is required.

5. DISCUSSIONS.

PIS has some limitations [1]. In order to prove that G is a D-mapping some
apriori knowledge of x* is required (as is evident in section 4). PIS is not
quite effective to solve equations with multiple roots. For example the system:
x = sin(x) cos(y) + sin(z), y = sin(y) cos(z) + sin(x). =z = sin(z) cos(x) + sin(y)
has three roots: (0, 0, 0), (1.249, 1.249, 1.249) and (-1.249, -1.249, -1.249).
with x0, y0, 20) = (1, 1, 1), (9999, 9999, 9999), (0.1, -0.1, 0.005), (-9.0,

-9.0, 0.00003), (76, 900, 8000), (-3, -3, 3) it converged to the second root, with
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(0, y02 20 = (5555, 3333, 1111), (56, 92, -9), (-1, -1, 13), (49, 78, 100) it
converged to the third root but the first root was not found. The reason for
this is still under investigation. If, in some cases, v{'s are identically equal
to zero, PIS becomes less effective [1]. PIS may be interpreted as a combination
of Gauss-Seidel and Lieberstein's methods [1]. It was compared with other
similar methods in [1, 3]. Although Newton's method has a quadratic rate of
convergence it requires in general initial estimates to be close to the root and
evaluations of Jacobians at each iteration. PIS requires none. Thus for large
systems whereas Newton's method is not practical to use, PIS can be easily used
[1, 3]1. In [1] it has been proved that PIS has a quadratic rate of convergence.
Also, since PIS-algorithm is relatively simple, computer programming is rather
easy. Since no matrices are stored, requirement for computer memory storage is
also small.
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