
Intern. J. Math. & Mh. Sci.
Vol. 4 No. 3 (1981) 571-582

571

A NOTE ON SUFFICIENCY IN COHERENT MODELS

D. BASU
Department of Statistics
Florida State University
Tallahassee, Florida 32306

and

S.C. CHENG
Math Department, Creighton University

Omaha, Nebraska 68178

(Paper Received February 18, 1980)

ABSTRACT. Partly of an expository nature, this article brings together a number

of notions related to sufficiency in an abstract measure theoretic setting. The

notion of a coherent statistical model, as introduced by Hasegawa and Perlman [6],

is studied in some details. A few results are generalized and their earlier proofs

simplified. Among other things, it is shown that a coherent model can be connect-

ed in the sense of Basu [2] if and only if no splitting set (Koehn and Thomas, [7])

exists.
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i. INTRODUCTION.

This article is partly of an expository nature and is written mainly for its

pedagogical interest. Given a mathematical model (X, rl, P) for a statistical

experiment, it is of some theoretical interest to inquire whether the family of

sufficient sub-.-fields (subfields) C has a minimum element in some sense. It is

now known that if the model is coherent in the sense of Hasegawa and Perlman [6]

then such a minimum sufficient subfield exists. The case of a coherent model is
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studied in some details in this article. Among other things it is demonstrated

that for a coherent model the notion of connectedness (Basu, [2]) and that of

the nonexistence of a splitting set (Koehn and Thomas, [7]) coincide.

2. NOTATION AND DEFINITIONS.

The basic statistical model is denoted by {X, A, PI, where X is the sample

space, A a o-field of subsets of X, and P {P0: 0 g @} a family of probability

measures on A. By an A-measurable function we mean a measurable map of {X, A1

into {R1, BII. Any sub-u-field C of A will be referred to as a subfield. The

function f is C-measurable if f-iB is contained in C. Given a family
i

(At: t g T} of measurable sets, we write (At: t g T} for the subfield generated

by the family of sets. Likewise, oft: t g T} will stand for the smallest sub-

field C such that each ft is C-measurable. By CV 9 we denote { 91, that is,

the smallest subfield containing both C and 9.

A set N in A is P-null if Po(N) 0 for all g @. Let N denote the class

of all P-null sets. For A, B A, the statement "A B [P]" means that the

symmetric difference A A B is P-null. Similarly, for any two A-measurable func-

tions f and g, we write f g [P] to indicate that {x: f(x) # g(x)} g N.

The completion of a subfield C is defined as C {I. Accordingly,

a subfield C is called complete if C. Let C and 9 be two subfields. We

write C 9[P] if C c , that is, corresponding to each set C in C, there exists

a set D g 9 such that C D[P]. If C9[P] and 9=C[P], then C 9[P]. By a

P-essentially C---measurable function we mean a function f such that f-18=C [P],
i

i.e., f is C-measurable. This is also equivalent to the statement that there

exists a C-measurable function g such that f g [P]. An A-measurable function

is P-integrable if fxlfld P0 < for all O @.

DEFINITION i. (Halmos and Savage, [5]). The statistical model IX, A, P1

is called dominated if every probability measure in P is absolutely continuous

with respect to a fixed o-finite measure % on A.

In this case, we say that the family is dominated by % and write P << %.
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DEFINITION 2. (Basu and Ghosh, [3]). The statistical model {X, A, P1 is

called discrete if

(i) each P0 is a discrete probability measure,

(ii) A is the class of all subsets of X, and

(iii) for each x g X, there exists a 0 g Q such that P0({x}) > 0.

Condition (iii) implies that the empty set is the only P-null set. A dis-

crete model with a countable sample space X is clearly dominated. If P is count-

able, then the model is dominated. We assume that both X and P are uncountable. In

this case, the model will be undominated. As we shall see in the next section,

dominated and discrete models are particular cases of what Hasegawa and Perlman

[6] called a coherent model.

Finally, let us state the notion of sufficiency as follows. A subfield

is sufficient with respect to the model {X, A, P1 if, corresponding to each A in

J" such that IA# E0(IAIC) [P0] for all 0 QA, there exists a C-measurable function I
A

A subfield C is pairwise sufficient with respect to {#(, A, P1 if, for each A in

* such thatand each pair 01, 02 g @, there exists a C-measurable function IA

A E0i(IAIC) [P0i] for i i, 2. (The function IA may depend on eI and e2.)
3. COHERENT STATISTICAL MODEL.

Let F denote the class of all measurable functions f" X [0, i] and let

s {f0: f0 F, 0 g }

be a collection of members of F that is indexed by 0. Let S {s be the family

of all such collections s.

DEFINITION 3. A member {f0 of S is said to be pairwise coherent if, for

every pair 01, 02 in , there exists a function f12 in F such that f0i f12
[P0i for i i, 2.

DEFINITION 4. A member {fo} of S is said to be countably coherent if, for

every countable subfamily @0 {01’ 02 of @, there exists a function f0
in F such that foi f0[Poi] for all i i, 2

DEFINITION 5. A member {fo} of S is said to be coherent if there exists

a function f in F such that f0 f[Po] for all 0 .
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DEFINITION 6. (Hasegawa and Perlman, [6]). The statistical model

is said to be coherent if every countably coherent member of S is coherent.

In the following lemma, we show that the notions of pairwise coherence and

countable coherence do coincide.

LEMMA 1. If {fe} is a pairwise coherent member of S, then it is countably

coherent.

PROFF. Choose and fix a countable subfamily 00 --{e
l, e2, } of @. For

each pair e e in @ there exists a function fij in F such that
+/-’ j 0’

[Pe and f fe [P ].fij fi i ij
j j

Let

g
i

sup f h inf f and f inf sup f
j ij’ j i ij i j ij

For each fixed i, the functions fil’ fi2’ are P@ -equivalent to fe." The
i 1

supremum of a countable number of Pe -equivalent functions is also Pe -equivalent
i i

to those functions. Thus, gi f@ [Pe ]" Likewise, for each fixed j, we have
i i

hj fo.[Pe.]. Therefore, it follows that gn hn fe [Pe for n i, 2,

3 3 n n
Observe that hn f ! gn for all n. It then follows that

f gn hn fe [Pe for n i, 2,
n n

Hence, {fe} is countably coherent.

In general, the notions of pairwise coherence and coherence do not coincide

as the following example shows.

EXAMPLE i. (Pitcher, [I0]). Let X be the unit interval [0, i], A the

o-field of Borel subsets of X, and P the family of all probability measures on

which are either degenerate at a single point of X or else are absolutely

continuous with respect to the Lebsgue measure. For each P O in P and each

x X, define fe(x) Pe({x}). Then {fe} is pairwise coherent, but not coherent.

In this model, no proper subfield of A can be sufficient. To see this, let

C be an arbitrary sufficient subfield and let P be the probability measure
x

degenerate at x. Then it follows from the sufficiency of C that, for all A in
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A, there exists a C-measurable function I such that

l#(x) fX IA# dPx fX IAdPx IA(X)A

Let C {x: IA#(X) i}. Then A C e C. Hence, C A.

We now show that the model (X, A, P) is coherent if it is either dominated

or discrete.

LEMMA 2. (Hasegawa and Perlman, [6]). If (X, A, P) is dominated, then it

is coherent.

PROOF. Since P is dominated, it follows that there is a countable subfamily

@ {@ O of @ such that P {P @ e @ is equivalent to P Suppose
0 1’ 2’ 0 0 0

that {fo} is countably coherent. Then there exists a function f0 e F such that

f0 f0 [P8 for n i, 2 We now show that f0 fo[P8 for all 8 (C), so
n n

rf o} is coherent. For each 8 @, consider @i @0 {8}. Then there exists a

function fl e F such that fl f8 [P8 for n i, 2, Thus, f0 fl[P0
n n

and so f0 fl [P]" Hence, f0 fl [P8 as required.

LEMMA 3. If {X, A, P) is discrete, then it is coherent.

PROOF. Let {fo} be pairwise coherent. We must show that it is also coherent.

For each 8 @, let S
8 {x X: Po({x}) > 0} denote the countable support of P@.

For each pair 81, 82 in @, there exists a function f12 in F such that f12
fo.[Po.] for i I, 2. Thus, we have

1 1

fo.(x) fl2(X) for all x g $8., i i, 2. (i)
1 1

Hence, f (x) f (x) for all x S S Now, choose and fix x e X. Let
81 82 81 82

@x {8 g @: x g $8}. Let 80 be a member of @x" Note that x g $80 S
8

for

all 0 @ In view of (1), we have f8 (x) f0(x) for all 8 @ that is,
x

0 x’
fO(x) is constant in 8 @ (for this prefixed x). Let c be the common value of

x x

f8 for 8 e @x’ evaluated at x, that is, fo(x) c for all x X. Since x is
x

for all x g X Clearly, f f8arbitrary, define a function f by f(x) cx

[Po] for all 8 e @ as required.

That the coherent case is not exhausted by the dominated and discrete

cases is shown in the following example.
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EXAMPLE 2. Let {XI, AI, PI be a non-discrete dominated model, let {X2, A2,
P21 be an undominated discrete model, where X1 and X2 are disjoint, P1
{PC: e @i }, and P2 {Pc: e S 02} Let X XI X2, A {Am X: AX

i
g A

i
for

i 1, 2}, and extend P1 and P2 to A by defining

Pc(A) Pe(AXi) for all 8 e@i, i i, 2.

It follows from Lemmas 2 and 3 that both {XI, AI, Pl and IX2, A2, P2 are coherent.

Now we claim that {X, A, P) is also coherent, where P PI P2 {P@:
@}. Suppose that {f@: @ e @} is pairwise coherent with respect to

Each fo’ being an A-measurable function, can be written as

i

f0 I fe on XI

f on X2,
where f is Ai-measurable for i i, 2. Since {fi:@ 8 e @i }, being palrwise coherent

with respect to (Xi, Ai, Pi is coherent, it follows that there exists an Ai-

measurable function 0 < f. < i such that
].

Define

i
fi fe [P@] for all 8 e @i"

f

fl on X
I

f 2 on X2

f is A-measurable. Observe that f@ fi[P8] for all @ e @i i i, 2.Clearly,
8

Therefore, f f@[P@] for all @ e G. However, it should be noted that {X, A, P)

is neither dominated nor discrete.

4. SUFFICIENCY IN THE COHERENT CASE.

For each 8 e 0, let N
8 denote the class of all Ps-null sets, that is,

N@ {N e A: P@(N) 0}. For each subfield C of A, define

[c V
Then is also a subfield of A. It is easy to see that a function f is C-measurable
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if and only if, for each @ e @, there exists a C-measurable function f@ such that

f fs[P@.. Clearly, Cc .
Let {X, A, P) be a coherent model. Then, so is {X, A, P0 for any subfamily

0 of P. However, it is not true that {X, C, P} is coherent for every subfield

C of A. Such an example is explicitly included in Pitcher’s [9] example.

EXAMPLE 3. Let X be the real line and let B be the u-field of all Borel sub-

sets of X. Choose and fix a non-empty, non-Borel set E that excludes the origin

but is symmetric about the origin, i.e., E =-E {x: -x e E}. Let @ be also the

real line, and define a family P {Ps: @ @} of probability measures as follows:

If @ E, then P@ is the discrete measure allotting probabilities 1/2 and 1/2 to

the two points -@ and @. If @ E, then P@ is degenerate at @. We claim that

{X, B, P} cannot be coherent. To see this, for each @ @ and each x E X, define

f@(x) P@({x}).
Then {f@: @ e -} is pairwlse coherent with respect to (X, B, }. Suppose, on the

contrary, that {f@: @ } is coherent. Then there exists a B-measurable function

0 -< f -< 1 such that f f@[P@] for all @ @. TS.is impl.es that

j
1/2 if x e E

f(x)

1 if x E,

which obviously contradicts the initial supposition that E B. However, if we

consider the class A of all subsets of X, then (X, A, } is a discrete model and

hence is coherent.

In the following lemma, however, we show that if (X, A, P) is a eoherent

model, then so is {X, , ) for any subfield C of A.

LEMMA 4. If (X, A, P) is coherent and C is a subfield of A, then (X, C, P)

is coherent.

PROOF. Let {f@: @ } be pairwise coherent with respect to (X, , ).

Then it is also palrwise coherent with respect to {X, A, P). Since (X, A, P) is

coherent, there exists an A-measurable function 0 K f < 1 such that f f@[P@]
for all @ @. Since each f@ is -measurable, it is seen that f must be
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measurable with respect to . This proves that {X, , P1 is coherent.

>0,Let denote the convex hull of P, that is, P {Q: Q YaiP0., a
i

Za i, 0
i i

LEMMA 5. IX, A, P1 is coherent if and only if IX, A, P1 is coherent.

PROOF. The "only if" part is what needs to be proved. Let {fQ" Q e } be

pairwise coherent with repsect to {X, A, Pl. Then the subset {f0:0 0} of

{fQ: } is pairwise coherent with respect to {X, A, PI. Since {X, A, P1 is

coherent, there exists an A-measurable function 0 < f <- i such that f f0[P0]
for all 0 O. We now claim that f fQ[Q] for all Q g . Choose and fix Q .
Then Q Y.aiP0., where 0 i g @, a

i
> 0, and Eai i. For each pair Q, P0.’ there

exists an -measurable function 0 <_ fi <- 1 such that

fi fQ[Q]
and

fi f0. f[P0. ]"
1 1

Since {P0.: i i, 2 } Q, it follows that
l

f f f [P0 for i i, 2,
i Q i

Hence, f fQ[Q] as required.

LEMMA 6. Let C be a subfield of A such that {X, C, P) is coherent. If P

is closed for countable convex combinations (i.e., P P), then C C.

PROOF. Since C c C, it suffices to show that C c C. Let f be a C-measurable

function such that 0 < f < i. Then, for each 0 e @, there exists a C-measurable

function 0 f0 i such that f f0[P0]. For each pair 01, 02 e @, let

Q (P01 + P0 )/2. Then Q P P and so f f [Q]. Since {P0 P0 Q’ we have
2 Q 1 2

fQ f f0 [P@i for i i, 2. Thus, we have shown that {f0:0 e @} is pairwise
i

coherent with respect to (X, C, P). Therefore, there exists a C-measurable

function 0 f0 < i such that fo fo[P@] for all @ e @, and hence f f0[P].
This shows that .

LEMMA 7. (X, C, P) is coherent if and only if (X, , P) is coherent.
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PROOF. Let us first prove the "only if" part. Let {fs: 8 e 8} be pairwise

coherent with respect to {X, , P). For each @ , there exists a C-measurable

< I such that f@ g@[P@]. For each pair 81’ 82 e @, there existsfunction 0 -< g@

a -measurable function 0 < f < i such that f12 12 foi[Poi for i i, 2. Since

< i such that f12 2
there is a C-measurable function 0 <

g12 gl [P]’ it follows

that g12 g@i[P@i for i i, 2. Hence, {g@: 8 e } is pairwise coherent with

respect to {X, C, P). Since {X, C, P) is coherent, there exists a C-measurable

function 0 _< f < 1 such that f g@ f@[Ps] for all @ g @. Therefore,

is coherent.

To prove the "if" part, let {f@: @ e } be pairwise coherent with respect

to IX, C, P). Then, it is also pairwise coherent with respect to

Thus, there exists a C---measurable function 0 < < 1 such that - f@[P@] for all

@ e . Since there is a C-measurable function 0 < f < 1 such that f [P], we

have f f s[P8] for all 8 e @ as required.

Under the assumption of coherence, we now prove a number of results on

sufficiency.

PROPOSITION i. Suppose that (X, C, P) is coherent. If C is palrwise

sufficient, then C is sufficient.

PROOF. Chose and fix A e A. For each 8 e @, let 0 < f@< 1 be a version

of E@(IAIC). Since C is pairwise sufficient, for each pair @i’ @2 ’ there

< f [P for i I, 2.exists a C-measurable function 0 <_ f12 -i such that f12
Thus, {f@: @ e } is pairwise coherent with respect to

is coherent, there exists a C-measurable function 0 <- f < 1 such that f f@[P@]
for all @ @. That is, C is sufficient.

COROLLARY i. Suppose that (X, A, ) is coherent and . If C is pairwise

sufficient, then C is sufficient.

PROOF. Since (X, A, P) is coherent, it follows from Lemma 4 that {X, , P)

is coherent. Since U C, {X, U, P) is coherent. In view of Lemma 7, (X, C, P)

is coherent. Consequently, the result follows from Proposition i.
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CORALLARY 2. Let C P[P8 P8 for all pairs 8I, 82 a @. If C is pairwise
1 2

sufficient and {X, D, P) is coherent, then D is sufficient.

PROOF. Since C is pairwise sufficient and Cc O[P@I’ P@2 for all 81, 82
G, it is easy to verify that is also pairwise sufficient. Since (X, , P]

is coherent, it follows from Proposition 1 that is sufficient.

COROLLARY 3. Suppose that {X, A, P) is coherent and C is sufficient. If

02
C D[POl P for all Ol, 02 e @ and , then is sufficient

PROOF. Since {X, A, F) is coherent and , it follows from Lemmas 4 and 7

that {X, , P) is coherent. In view of Corollary 2, we therefore conclude that )

is sufficient.

We now show that if {X, A, P) is coherent, then so is (X, C, P) for any

sufficient subfield C. To this end, we shall need the ’following lemma.

LEMMA 8. (Pitcher, 1965). If C is sufficient, then U .
PROOF. Let A . Since C is sufficient, there exists a C-measurable

function IA such that IA# E O(IAIC) [Po] for all O . Note that IA IA is -measurable. Thus, for each , there exists a C-measurable function f such

that IA I f0[Po] and so

fX(IA- IA#)2de o /X(IA- l)fode o

/xE@[(IA IA%)folC]dP8
/xfoEo(IA IA% IC)HP
0.

Hence, IA IA[P 8] for all 8. Since IA% is C-measurable, it follows that

A . Therefore, C.

PROPOSITION 2. If (X, A, P) is coherent and C is sufficient, then (X, C, P)

is coherent.

PROOF. Since C is sufficient, 6 in view of Lemma 8. Since (X, A, P)

is coherent, it follows from Lemma 4 and 7 that (X, C, P) is coherent.

5. BASU’ S THEOREM.

As before, (X, A, P) is our basic model, where P {P@: 8 e @}. Two
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probability measures P81 and P82 in P are said to be overlapping if, for any set

(A) > 0. We write eI <=> 82 if P8 and P(A) 1 implies that P82 i 82
A in A PSI
overlap. If there exists a finite number of parameter points el, 82, 8k

such that

81 <=> 82 <=> <=> 8k <=> 8’

then we say P8 and PS’ are connected. The family P is called connected if

every pair of probability measures in the family are connected.

THEOREM i. (Basu, [2]). If T is a sufficient statistic, P is connected,

and V is a statistic which is independent of T for all 8 e 0, then the distribution

of V does not depend on 8.

A set A in A is called splitting set if there is a partition 00’ @I’ of @

such that

Ps(A)

0 if 0 00

i if 8 01
The above theorem has been generalized by Koehn and Thomas [7] as follows:

THEOREM 2. Let T be a sufficient statistic. There exists a statistic V,

independent of T for all 8 @, whose distribtuion depends on 8 if and only if

there exists a splitting set.

We now demonstrate that the two notions of connectedness of P and the

nonexistence of a splitting set are equivalent in the coherent case.

LEMMA 9. Let {X, A, P) be coherent. Then P is connected if and only if

there exists no splitting set.

PROOF. Clearly, the connectedness of P implies the nonexistence of a split-

ting set. For each 8 e 0, let A8 be a set such that Ps(As) i and Ps(B) > 0 if

+ B C A8. Suppose that P is not connected. Choose and fix 80 E . Let

@0 {8 @: P8 and Ps0are connected}. Since P is not connected, i @\0 is

not empty. For each 8 , let f8 IA8"
It is easy to show that {fs: 8 }

is pairwise coherent. Since (X, A, P) is coherent, there exists an A-measurable
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function 0 < f < i such that IAe f[Pe] for all @ g @. Let A-- A@.
OgO0

Since AO is the support of Pe, it is easily seen that

P0(A) P@(A@) i for all g 00"
Note that A Ae if @ g @i" Thus,

P@(A) 0 for all g @I"
That nonexistence of a splitting set is weaker than the connectedness

property is seen from the following example.

EXAMPLE 4. Let P be a family consisting of all two-point distributions and

the standard normal distribution. Then P is not connected and this does not

possess a splitting set.
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