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ABSTRACT. Uniform methods based on the use of the Galerkin method and different

Chebyshev expansion sets are developed for the numerical solution of linear integro-

differential equations of the first order. These methods take a total solution

time O(N21n N) using N expansion functions, and a_]so provide error extimates which

are cheap to compute. These methods solve both singular and regular integro-differ-

ential equations. The methods are also used in solving differential equations.
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i. INTRODUCTION.

consider the Galerkin solution for those integro-differential equations of

the first order having the form

Lf(x) g(x) x E [-i,i] I (i.I)

subject to the boundary condition f(a) , a E [-i,i].

1

L Z {Pk(X)-- dy (x,y
k=O dxk

1

I
where f and g are elements of a Hilbert space H I and L: H - H is linear.



776 L. F. ABD-ELAL

We assume that (x,y) and Pk(X) are either regular or have singularities

provided that the singularities are of known and standard form like for example,

weak or logarithmic singularities. For a given Chebyshev expansion set

{ho(x)} c H, the solution f(x) defines approximations
1

N
(N)

h. (x)N(x) Z a
i l

i=0

Using Galerkin technique given in Mikhlin [I], we modify the linear system of

equations

where L

L(N) _a(N) g(N) (1.3)

(N)
is the (N + 1 x N + 1) leading minor of the matrix L with elements

1

L..13 . dx Ti(x) Lhj(x)//l-xp i, j 0,i, N

-i

(1.4)

and g(N) is the leading (N + l)-vector of the vector g with elements

i

gi I dx ri(x) gx)/l-x2 i 0,i ,N

-i

(1.5)

(N)T. is the i
th

Chebyshev polynomial, as usual. Now to determine the vector a

we replace the first equation of the system, (1.3), by the boundary condition

equation
N

(N)f.3 a’ where fj hj(a) (1.6)

Thus the linear system of equations (1.3) is replaced by

L,(N) a_(N) g,(N) (1.7)

where for i >_ i the i-chequation is the (i i)- equation in (1.3) and the vector

(N)
can be determined by solving (1.7). According to [2], provided the set {h.}

J

is suitably complete, the exact solution has the expansion

f(x) Z b
i

h
i

i=0
(i.8)

and b satisfies the infinite matrix equation

L b g (1.9)
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Further, fN f"

In this paper, we consider two different Chebyshev expansion sets:

{h. (x) T. (x)}

and

{h0(x) I, hI(x) x, hi(x) (i x2) Tj_2
leading to three different methods (I), (II), (III).

(i.i0}

(x), j -> 2} (i.ii)

Methods based on different techniques have been described before for solving

integro-differential equations of the first order; Linz [2], Ei-Gendi [3], Abd-elal

[4] in all these papers integro-differential equations of the type (i.i) with

Kl(X,y) 0 are reduced to integral equations and a quadrature rule is used to

establish numerical procedures. All of these methods are limited to integro-diff-

erential equations with no f’ under the integral sign, also they do not treat

boundary conditions in a very uniform way. Ei-Gendi’s method [3] used Chebyshev

expansion (1.2, i. I0) in approximating the solution of the equation and produce

the solution in time 0(N3). The methods we describe in this paper not only over-

come these limitations, but also (the last two methods) produce the solution at a

cost of total solution time 0(N21n N) and give reliable error estimates which are

cheap to compute. Method (I) is a straightforward method in which a Chebyshev

expansion set (i.i0) is used to approximate the solution f(x), and then we solve

the linear system of equations (1.7) to get the coefficient vector a(N); hence,

we consider it a standard method. Method (II) uses a modified Chebyshev expansion

set (I.Ii) to approximate f(x) and so we consider it a modified method. Method

(III) uses Chebyshev expansion set (I.i0) to approximate not only f(x) by expansion

(1.2), but also

f (x) w
i Ti(x)

i=O
(i.i)

by

fN (x) d’(N)l T. (x).
I

(1.13)

We solve the corresponding linear system

e*(N) d
(N) (1.14)
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for the vector d (N). An iterative procedure [5] is used to solve the linear sys-

tems (1.7) and (1.14).

The three methods effectively handle singularities in any or all of (x,y),
k 0, i, g(x), the solution f(x), and its derivative f (x), provided that the

singularities are of known form and have a known Chebyshev expansion (see [b]).

These requirements limit the applicability of the method to those cases where the

singularitie-s which appear are of "standard" form- for example, weak singularities

or logarithmic singularities. The methods can also treat some other types of

singularities modifying the integro-differential equation; for example, a simple

pole can be changed to a logarithmic singularity using integration by parts. We

give in section 2 the analysis which leads to the structure of the matrix L
(N)

for

the three methods, while a comparison between the convergence rate attained by the

methods is given in section 3. Section 4 shows, by example, that in the three cases

rapid convergence is obtained.

2. THE MATRIX L(N).

We wish to investigate the construction of the matrix L (N) for the three

different methods considered in this paper. Using the expansion (].2), the matrix

L(N) reduces to

LIN) A B (2.1)

with

A A
(0) + A(I) and B B

(0) + B
(I)

where A(k) and B
(k)

are (N + I x N + i) matrices with elements A. (k)
B

(k)
i

j 0,i ,N; k 0,I defined by

1

Aij(k) dx Pk(X) Ti(x) --dxk {hj(x)} / -x2 (2.2)

-i

1 1

Bij(k) dx Ti(x)//l-’x’2 dy (x,y) --dyk {hj(y)} (2.3)

-I -I

The integrals appearing in Equations(2.2), (2.3) and (1.5) must be approximated

numerically. We do this by relating Aij(k), Bij(k), and gi’ i, j O,1,...,N to
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coefficients n the expansions of Pr(X), Kr(x,y)/l’y7 and g(x)Chebyshev respect-

ively. These later coefficients are evaluated numerically using the fast alorithm

given by Delves, Abd-Elal, and Hendry [6] in which Fourier transform technique is

used Thls algorithm leads to small quadrature errors whether K (x,y) P (x) and
r r

g(x) are singular or regular functions; also, it takes 0(N21n N) operations for

evaluating the coefficients of the expansion for K (x,y) l-y2 and 0(N in N) for
r

evaluating the coefficients of the expansions for P (x) and g(x). Indeed to eval-

(r) (r)
uate Aj BI] and gl of Equations (2.2), (2.3), and (1.5) numerically, let

us assume that the functions P (x) and Kr(x,y)/1-y2 have Chebyshev expansions
r

2’P (x)-- p1
(r)

r](x) r--0,1 (2.4)r
j=0

r
i,j=0

(r)
Ti(x) Tj(y) r 0,i (2.5)

g(x) gj Tj(x)
j--O

where the expansion coefficients

1

pj(r) 2 I dx rj(x) Pr(X)//- r 0,I

-i

satisfy the inequality

Ipj(r) -< C
r

r 0,i

and the expansion coefficients

Kij

i i- dx Ti(x)/l-x2 dy Kr(x,y) Tj (y) r 0,i

-i -i

satisfy the inequality

(r) -Yr -B
[Kij -< Dr

r
i,j > 0

which we can replace by the weaker bounds

.-Yr(r)IKij <- Dr i

(r)IKij < D
r J

i> j

j > i

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)
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Also, gi of Equation (1.5) has the bound

Igil -< G 1 i _> 0

i when j 0

j when j >- 1

and Cr, Dr’ G are constants, denotes a sum with first term halved.

Knowing the numerical values for the coefficients p.(k), K..
(k)

using the fast

algorithm [6], we can easily calculate the elements A. (k)
and B (k)

i
lJ lJ

j 0,1 ,N of the matrices A
(k)

and B
(k)

for methods I, II, and III as follows"

Method (I). In this method we choose the expansion set (i.i0) and by substituting

(2.4) in (2.2) we get for i 0,i N

(0) _(0) (0)
Ai-’3 (pi+j + P li-j ’) J > 0

(o)
when P0(x) 1, then Aij reduces to

(0)
T[, A

i
(0)

Aij(0) 0 for all i,j except A00 i
--for i >_i
2

()
Also Ai0 0

[J-o
() ’-,’Al3 3 [p(1)r i+2r+2 j_+_12 J+12 ])

+ p(1)
]i-2r-2( +2 i -[ +2 1

(2.ii)

j 1,2 N

(i)
reduces to A. (i)

0 for all i,j except for j > 1 iWhen Pl(X) i, then Aij lj

and j of different parity where by different parity, we mean one even and one odd.

(i)
Aoo
lj

[s] is the integer part of s, and means halving the term with

2r + 2( j + i j + i
2 2

1) O.

Substituting (2.5) in (2.3), we get for i 0,1,...,N

B (0) ?r
2

K.. (0)
J 4

(i)
Bi@ 0

(i) =Bij 2J
r=O

Ki,2r+2 J+i2 --J+i ]),

j 0,i N

j 1,2,...,N

(2.13)

(2.14)
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Notice that we take 0(N21n N) operations to get the matrices A(0), B (0), but from

(2.12) and (2.14) it is clear that we take 0(N3) operations to obtain the matrices

A(I)
and B

(I)
and in general, tliis makes method I take 0(N3) operations to set up

the matrix L*(N" unless explicit forms for A (i)
(for example, case Pl(X) i) and

Bo
(i)

are achieved; then, it takes 0(N21n N) operations to get the matrix L*(N)"

Method II. In this method we choose the expansion set (i.ii). For i 0,i ,N

A.. (0)

_(o) (o)+p j =0 1Pi+j li- jl

(0) + P
(0") 1 (0) (0) 1 (0) (0)

[(Pi+j-2 li-j+2[ (Pi+j + Pli-jl (Pi+lj-4 + Pli-lj-4ll )1

(o),,,qen Po(x) 1, Ai_.j reduces to

(0)
7, AI

t0)

_
Aij(0) 0 for all i,j except, A00 i 2

j >_ 2

(0) (0) - (0) -3 A(0)A02 A22 -- AI3 8 i,i + 2
for i >_ 2,

A
(0) -7

A
(0) -__

ii 8
for i >_ 3,

i,i + 4 8
for i >_ 0

Also

(I)
Aio =0

(1) (1)
Ail Pi

(1) (1) (1)
Ai2 2

(p + p

(1) (j 4)7 (1) + P
(1) j- (1) (1)

Aij 8 (Pi + j 3 i-j+31 8 Pi+j-i + P li-j+ll j > 3

(i)
reduces toWhen Pl(X) i, Aij

(1) (1) (1) (1)
Aij 0 for all i,j except A01 7, AI2 -, A03 -

(2.16)

(2.15)

A (I)
i,i + 3 4 (i- i) for i > i, A

I) --i + 2, i + 3 4
(i + 3) for i >_ 0

Corollary (II.i).

IAij
-0(0)] _< A0 (i j) i > j

-0
_< A0 (j i j > i
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orollar (II.2.

IAij (1) < AI (i- j) i > j

-El< A
i

j(j i) j > i

Both Corollaries (11.1,2) follow directly using inequality (2.8) and Equations

(2.15,16) respectively. A
0

and A
I

are constants.

2(0) (0)
Bi0 -- Kio

2(o) (o)
Bil =- Kil

Bij
2(0) K

i
1 (0) (0)-- J 21 7 (Kij + Ki, J 41 )l j >_ 2

(2.17)

(I)
Bi0 0

2(1) (1)
Bil -- Ki0

2(1)
Bi2 -- Kil

2
(i) Tmz] [( z) K1)

i,j 3 2 x,J i
j >- 3

(2.18)

Corollary (11.3).

IBij -YO(0) < B0
x i > j

.-B0
-<B0 3 j > i

C.orollary (II.4.).
-71IBij(1) < BI x i > j

^-(l- 1
<B

1
j j > i

Corollary (11.3,4) follows directly from inequalities (2.10) and Equations

(2.17,18) respectively. B0 and BI are constants.

Method (III).. In this method we use expansion set (i.i0), and hence approximate

f(x) by (1.2) and f’(x) by (1.13). Using the relation connecting a
i

and d
i

[7]:

ai (di i di + 1
)/ 2i, i 1,2 ,N (2.19)
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hence
N

fN(x) a
0
+ . dj [Tj (x)/ 2(j + i) Tj l(X)/ 2(j i)] (2 20)

j=0
+ 1

where means that the term Tj l(X)/ 2(j i) 0 for j 0,i. Now consider

the unknown vector _.c [c0, c
1 CN+1] where c

0 ao, cj + i dj, j 0

then the integral equation (i.i) is now reduced to

where L
(N)

L(N) c(N) g(N) (2.217

is the N + i x N + 2) matrix defined by (2.1); hence we need one

equation more, and this comes from the boundary condition f(a) , which we write

in the form
N+I

Z c’(N) e.
j=0 ] ]

(2.22)

where

e
0

I

Tj + l(a)/ 2(j + i)

ej + 1

Tj + l(a)/ 2(j + I) -Tj l(a)/ 2(j i)

j 0,I
(Z.

j 2,3

23)

leading to the (N + 2 X N + 2) linear system of equations

L,(N) (N) ,(N)
c g (2.24)

with elements, j 0,i N+I

L*.. A.
(0) + A (i)

B (0)
B

(i)
i 0 1 N

l] 1J 1J mJ 3

L* e.N+I, j j

g
i gi’ i 0,1,...,N + i

a

where the elements A.. (k) (k)
13 Bij i 0,I N; k 0,I defined by

i
(0) I dx P0(x) Ti(x)/i/- x2Ai0

-i

.(0) 2(j + i)
dx P0(x) Ti(x) Tj+l(X) / i x2 j 0,i

i, j+l i -i

dx P0(x)Ti(x) [Tj+l(x)/ 2(j + 17 Tj_l(x)/ 2(j i)]/

-I j= 2 N

(2.25a)

(2.25b)

(2.26)
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(i)
Aio 0

1
(1) I dx Pl(X) Ti(x) Tj(x)// x2
i,j+l

-i

(o)
Bio I

i i

dx Ti(x)//l x2 I K0(x’Y) dy

j 0,i ,N
(2.27)

B
(0)
i,j+l

i

2(j + i)
dx Ti(x)/- x dy K0(x,y Tj + l(y) j 0,i

I i

I dx Ti(x)//l-x2 I Ko(x,y)[Tj+l(Y)/2(j + i)- Tj_l (Y) /2 (j l)]dy

-I -I
j 2,3,...,N

(I)
BiO 0

1 1

B
(I) ; dx Ti(x)/l x2 I Kl(X y) Tj(y) dy
i,j+l

-i -i

j 0,i N

(2.28)

(2.29)

Substituting_ (2.4) in (2.26, 27) we get for i 0,i N

(o) (o)
Ai0 Pi

r (0) + P
(0)

8(j + i) (Pi+j+l ]i-j-1]
.(o)
Ai’j+l

1 (0) + P
(0)

’(j+l)’ (Pi+j+l i-j-ll

When Po(x) i, Aij(O) reduces to

Aij(O) 0 for all i,j except A00
(0)

A (0) /(4j) j 3 N+I Aj
(0)

jj -i ,j+l

and

(i) oAi0
A (I) _(i) (i)
i,j+l (pi+j + P li-j

When Pi(x) i, Aij
(i)

reduces to

(i)(i) 0 for all i,j except A0iAij

j 0,I

i pi0)
(j -I) i+j -I

o)
P i_j+l

j 2,3 N

(0) r14, (0) r187r, All A22
=-l(4(j i)), j 2 N

j 0,1,2 N

Aj(1) z12 j 1 2 ,N’ ,j+l

(2.30)
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Corollary (III.i.
(0) < A0(i- j) j i > j

-0 -i< AO(j i) j j > i

Corollary (111.2).

IAij(1) -< Al(i j) i > J-_< AI(j ^i) j > i

Both corollaries (111.1,2) follow directly using inequality (2.8) and equations

(2.30,31) respectively.

Now substituting (2.5) in equations (2.28,29) we get for i 0,i N

Bio
2(0)

__
(0)

4 K+/-0
2

K(0)
8(j + 1) i,j+l

j 0,i

O)
i,j+l 2. [ ]-- (j+l) m ,j+l (j-l) i,j-I j 2,3,...,N

and

(l) oBi0
2

B
(i)
i,j+l 4

K..(1) j 0,1,...,N

(2.32)

(2.33)

Corollary (III. 3).

c-Y0 -i(0) <_ B j i > jIBij 0

^-(So + 1)

-<B0 j j > i

Corollary (III.4).

IBij (i)] _< BI i i > j

.-I_< B
1 j j > i

Bo’th corollaries (111.3,4) follow directly from inequality (2.10) and equations

(r) (r)(2.32,33). To evaluate Pi Kij r 0,i numerically, we refer to the fast

algorit.hm [6].



786 L. F. ABD-ELAL

3. ASYMPTOTICALLY DIAGONAL MATRICES.

Definition: Given an infiniet matrix L, let the matrix F have elements

ILijl
Fij (ILiil ILjj I) 1/2 (3.1)

The matrix L is said to be "Asymptotically lower diagonal (A.L.D.) of type B(p,r;c)"

if constants p,r e 0, c > 0 exist such that

Fo. _< c -P (i j)-r i > j (3.2)

and is said to by "Asymptotically upper diagonal" (A.U.D.) of the same type if

F.. -< c -P (j - i)
-r

j > i (3.3)

In an obvious notation we shall then refer to systems of type B as:

Type B(PL, PU’ rL’ ru; CL’ Cu) (3.4)

For systems (A.D.) of type B, Freeman and Delves [8] provide estimates of the

convergence rate. In order to compare the convergence rate attained by the three

methods of this paper we need to study the matrices given by each methe@.

We construct the elements of the matrix L*(N) An B* where

A* An(0) + A*(1)

An(k
B* B*(0) + B*(I)

Bn(k) are (N+I N+I)matrices with elements

* (i)
fj

* (0) * (0) * (i) 0A0j A0j B0j B0j

* (k) ,* (k)
Aij i-l,j i 1,2 N (3.5)

n (k) * (k)
Bi-’j mi-l,j i 1,2 N

j 0,i ,N.. k 0,i

where f0 i, fl a, fj (i a2) Tj_2(a), 2 _< j < N(Ifjl < i, j 0,i N)

(N) + {A*. (r)- B*. (r)}L*.
lJ J j

n(N) , (N)g(N) ’ gi gi-i i i, N
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Method (I): As is clear from equation (2.12) the matrix A(I)
is not (A.D.); indeed,

for j > the elements Aij(1) increase with j. So L*(N) is not (A.U.D.) and hence

the analysis of Freeman and Delves [8] is not applicable to method I, so as we will

see later we do not suggest a value for the truncation error. Also we can not use

the iterative method given by Delves [5] to solve the linear system (1.7) and hence

any standard method for solving linear equations (Gauss elimination method) can be

used.

Method (II)

Lemma i. The matrix L*(N) of equation (1.7) is (A.D.) of type

B(0’O’min(0’ i’ Y0’ YI)’ min(0’ i-I’ BO’ 81-1); LL’ LU)

Proof: From corollaries (II.i, 2, 3, 4) we get- -o -oILj] -< Al(i-j) + A0(i-j) + B0(i-j)
-YI+ Bl(i-j) i > j

Hence

,
ILij -< L

1
j(i j)

-min(0’ i’ Y0’ Yl
i > j (3.6)

Also

-E -o -oILij* -< AIJ^(J i) + A0(j-l) + B0(j-l)
-81+I+ Bl(J-i j > i

Hence

e*..l -< L2 (J 2 i)
-min(l’ 0 + I, 80 + I, 81

j > i 3.7)

Also

ILil > L
3 "

where LI, L2, and L
3

are constants.

From (3.6, 3.8, for i j,

LI ^-2 ^ -min(o’ $i’ Y0’ #i
---i 2j (I j)
L
3

-mini0’ i’ Y0’ YI_< LL(i j) (3.9)

Also from (3.7, 3.8), for i > j,

L2 -1/2 ^-1/2 -min(I, 0+I, B0+I, 81-< j j (j-l)L
3

-min($1-1, 0’ B0’ 81-1
_< Lu(J-I) j > i (3.10)
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-i
since j(j i) < 2i for j > i.

From (3.9) and (3.10), the lemma follows.

Method (III):

Lemma 2. The matrix L*(N) of equations (2.24) is (A.D.)of type

B(0,0,min(0,Ei,Y0, yl), min(E 0
+ i, EI,80 + 1,81); LL, LU)

Proof: From corollary (III.i,2,3,4) we get:

, -El -0 ^-i
(i- j) + B0(i j)ILijl < Al(i J) + A0(i J) 3 + BI

i > j

-< L
4
(i j)

-min(E0’ El’ Y0’ YI j > i
(3.11)

-E I -E 0-i -81-< Al(j i) + AO(j i) + Bl(j i) + BO(j i)
-(80 + i)

j > i

-min(
0
+ I, El, 80

+ i, BI) j > i
<- L5( j i) (3.12)

Also

* >L
6IL+/-+/- (3.13)

where L4, L5 and L6 are constants.

From (3.11,313)

,

lJ (ILii Ljj I)
-min(E0, El, 0’ I i > j

1/2
_< LL(i j) (3.14)

From (3.12,13)
-min(E

0
+ i, E l, B0 + i, 81 j > i

-< LU(j i) (3.15)

From (3.14,15), the lemma follows.

From Lemma 1,2 the matrix L*(N) is U.A.D. and hence the analysis of Freeman and

Delves [8] is applicable to methods II, III and a value of the truncation error is

suggested as given later. Also the iterative Method (III) may be used to solve

(1.7) and (2.24) in 0(N2) operations.

Now by virtue of Theorems 6 and 7 of Freeman and Delves [8] with normaliza-

tion we have the following theorem.
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THEOREM i. If L is L.A.D. or U.A.D. of type B(PL, PU’ rL’ ru; CL’ Cu) with

2
then if, for some constant c gil < i-rL, r

U
> i, PL’ PU >- 0 and Liil >- ^i,

with e i, there exist some positive constants M1, M
2

such that

-(Pu + t) -r
U
+

-i(N) < M N (N+ i) A
iIb i a

i
i _< N

-I

t min(6, PL + ru)"
Theorem leads us to our two main theorems"

THEOREM 2. In Method (II)

(N) -t
-min(E -2 B B -2)

l’b i a
i

< M N (N + i) O- 0- ^-1/2
i iNN

Ibil _< M2 i
-(t + 1/2)

i > N

where t min(, min(Eo, El, YO’ YI ))" This follows directly from Lemma and

Theorem 1.

THEOREM 3. In Method (III)

-min(E0, E i, 80, B i)
lwi di(N) _< M N

-t
(N + 1- i) i -< N

-tlwil <M
2

i i>N

t min(, min(E0, $i’ Y0’ i))" This follows directly from Lemma 2 and Theorem i.

4. ERROR ESTIMATES.

The error in any of the three methods contains three distinct components:

(a) The truncation error due to cutting off the expansion (1.2) at the

th
N term.

(b) The discretization error stemming from the quadrature errors A B in

the matrix A-B, and g in the vector g.

(c) There are also in principle errors arising from the numerical solution

of the linear equations.

Now according to Delves [9] we measure the error eN(x) fN(x) f(x), with
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]eN(x) IS I + S
2
+ $31 where the first two summands represent the truncation

error (a), and are defined by

N

0
(N)

bSl
i

Ii

S
2 Ibil

i--N+l

Method (I) and (II)

while
N

S E li (N)

i=O

S
2 lwil

i=N+l

Method (III)

S
3

is the quadrature error (b), defined by

N
S
3 . ai

(N) hi(N)
i=0

for Method (I) and (II)

In the above,

N. di
(N) i(N)

i=O
for Method (III).

(N) i(N) are the computed coefficients

(a) Truncation error estimates: (S + S2)
From Theorems2 and 3 and for Methods (II) and (III), S

2
dominates S and so

S + S
2

S2

Hence for Method (II)

S
2

M
2
N
-t + 1/2 /(t i) N ]aNl (4.1)

while for Method (III)

$2 M2 N-t + /(t- i)- N IdNl (4.2)

For Method (I), since we are unable to apply Theorem I, we do not suggest a value

for S + S2.

(b) quadrature error estimates: S
3

As given in Delves [9]

S
3 lle-lll (lel] W + II gll)/(I -lle-lll llell) (4.3)
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Here W lall for Method (I) and (II),

lldll for Method (III) and a rough estimate for IIL---III is taken to be

lie-ill II gll / W

We require only an estimate for II LII, since we refer to Delves et al [6] to

estimate II gll
Evaluation of LII"
Method (I)" from Equations (2.11,12), we get

iI A(0)II -< ’T N p(O)II /2, II A(1)II -< N3 II p(1)II /3

Hence

IIAIL -< Tr(N lldp (0) [1 /2 + N
3 II p(,1)II /3)

Also, from Equations (2.13,14)we get

I1 B(0)]L -< T2 (K(0) [] /4 6B(1)II -< T2 N2 It 6K(I-) Ii /4

Hence

Then II LII (4.5) + (4.6).

(I] 6K(0) II + N2 II 6K(1)II )/4 (4.6)

Method (II)" from Equations (2.1,16)

II 6A(0) II -< N 6p(0)11 /2 ]1 6A(1) It -< .2 (])11/4

II AI L -< (N }6p (’*) IL/2 +.2 11 6p(1) I/4 (4.7)

From Equations (2.17,18),

[I 6B(0)[ _< 72 ]1 K(0)]I /4 B (1) -< N T
2 6K(1) II /4

Hence

II dBI1 -< T2 II 6K(0) + N II (K(1)II) /4 (4.8)

II LII (4.7) + (4.8)

Method (III)" from Equations (2.30,31),

(A(0) ]1 < 2rr(2 + in N) II (p(0)II II 6A(I)IL -< N I16p(1)II /2

Hence

II {SAil -< T(2(2 + in N)) II Sp()ll + N II 6P (1) II /2 (4.9)
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from Equations (2.32,33),

/4; IIdB (i) I} -< 2 II @K(1)II /4

II 6B II < ’v2(ll6K(0) II + @K(1) II /4 (4.10)

(4.9) + (4.10)

We refer to Delves et al [6] for the numerical estimations of @P(r)II and

II +K(r) l!

(c) Error stemming from solving the linear system of equations.

To solve the linear system of equations (1.7) or (2.24), for Method II or II<

we use an iterative scheme given in [5] with 0(N2) operations. The error due to

this iterative solution is small and so we neglect it, but for Method I and accord-

ing to Delves [5], we cannot use this iterative method and hence the error could

be relatively large due to error cancellation. We will now see that this error

cancellation has no serious effect in a numerical example.

5. NUMERICAL EXAMPLE.

We give in this section the numerical results for a singular integro-differ-

ential equation of the first order.

i I

f’ (x) + f(x) g(x) + I K0(x’Y) f(Y) dy + ] Kl(x,y) f’(y) dy

-I -i

K0(x,y) 2 in(x- y) (x- 2y + 2xy
2

2y3)

Ki(x,y) (x2 y2)

x
g(x) e- 2e(x + 1) ln(x + 1) + 2xe

with boundary condition f(a) , a E [-i,i].
2

x
It has the exact solution f(x) e

The computed errors o
N

are defined to be

ON j Nj0 eN2 (xj)/N
i

e
N

(x) dx

where x.] cos (jw/N), j 0,1,...,N and e
N fN- fexact



INTEGRO-DIFFERENTIAL AND DIFFERENTIAL EQUATIONS 793

Computed results for the numerical example.

f(-l)=e

-i
3 3.8x i0

-2
5 4.9x I0

-37 4.6x i0

-4
9 2.9x i0

-5
ii 1.4 x i0

-713 6.0 x I0

-8
15 3.3 x i0

-8
17 2.8 x i0

-8
19 2.8 x I0

Method (I) Method (II)

f(-l)=e

-1
3.7 x i0

-2
7.1 x i0

-3
6.5x i0

-4
4.1 x I0

-5
2.1 x i0

-78.6 x i0

3.2 x 10
-8

-9
3.3x i0

-9
2.1 x i0

oN Method (II)

f(0) I

-I3.6 x I0

8.5 x 10
-2

5.0 x 10-3

-4
2.2 x i0

8.6 x 10
-6

-72.9 x i0

-9
8.6x i0

-i0
3.8x i0

-I0
1.3x i0

oN Method (III)

f(-l)=e

-I
1.2 x I0

1.3 x 10
-2

9.1 x 10
-4

-5
4.9x i0

-6
2.0 x 10

-8
6.8 x i0

-9
2.1 x i0

-I0
2.0x I0

-10
i.i x 10

6. COMMENTS ON THE METHODS.

(i) As is clear from the analysis, although Method (I) is a standard method,

in fact Methods (II) and (III) are preferable because they provide easy error

estimates.

(2) All the three methods work very well when applied to the numerical example,

and this suggests that Method (I) is probably a stable method.

(3) The three methods can be applied to ordinary differential equations of the

first order which have the form (i.I) but with

d
k

/- h Pk (x) k
k=0 dx

Hence the same analysis holds with the matrix B 0.

(4) The three methods represent a uniform way of treating boundary conditions,

so we recommend methods (II) and (III) be extended to include integro-differential

equations of the second order. We are now working on this.

(5) A standard Galerkin calculation has an operations count of 0(N3) for both

setting up and solving the linear equations defining the coefficient vector"

however, Methods (II) and (III) of this paper need"



794 L. F. ABD-ELAL

Setting up equations: O(N21n N) operations

Iterative solution" O(N2) operations.
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