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ABSTRACT. Uniform methods based on the use of the Galerkin method and different
Chebyshev expansion sets are developed for the numerical solution of linear integro-
differential equations of the first order. These methods take a total solution

time O(Nzln N) using N expansion functions, and also provide error extimates which
are cheap to compute. These methods solve both singular and regular integro-differ-
ential equations. The methods are also used in solving differential equations.
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1. INTRODUCTION.
We consider the Galerkin solution for those integro-differential equations of
the first order having the form
LE(x) = g(x) x € [-1,1] = I (1.1)

subject to the boundary condition f(a) = a, a € [-1,1].

1 K 1 &
L = Z {Pk(x)_k - J dy Kk(x’y)———k- } ’
k=0 dx -1 dy

I . .
where f and g are elements of a Hilbert space Hc I", andL: H > H is linear.
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We assume that Kk(x,y) and Pk(x) are either regular or have singularities
provided that the singularities are of known and standard form like, for example,
weak or logarithmic singularities. For a given Chebyshev expansion set
{hi(x)} c H, the solution f(x) defines approximations

N
(™)
£ =
LN(X) gé% a; hi(x) (1.2)

Using Galerkin technique given in Mikhlin [1], we modify the linear system of

equations
NORINCORIN G 1.9
where L(N) is the (N + 1 X N + 1) leading minor of the matrix L with elements
1
Ly = de T, (x) th(x)//l—xﬁ i, 3 = 0,1,...,N (1.4)
-1
and &(N) is the leading (N + l)-vector of the vector g with elements
1
g = J dx Ti(x) g(x)/ 1-x2 1 = 0,1,...,N (1.5)
-1

™

’I‘i is the ith Chebyshev polynomial, as usual. Now to determine the vector a .
we replace the first equation of the system, (1.3), by the boundary condition

equation

N
}: aj(N)fj = o, where fj = hj(a) (1.6)
j=0

Thus the linear system of equations (1.3) is replaced by

L*M Q(N) _ E*(N) (1.7)

where for 1 > 1 the i~thequation is the (i - 1)t equation in (1.3) and the vector
Q(N) can be determined by solving (1.7). According to [2], provided the set {hj}
is suitably complete, the exact solution has the expansion

[ee]

£(x) = ). b, h,(x) (1.8)

! id

i=0
and b satisfies the infinite matrix equation

L b =g (1.9
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Further, fN > f.

In this paper, we consider two different Chebyshev expansion sets:
h,x) = 1,00} (1.10)
and
fhyGx) =1, hy(x) = x, hj(x) = 1-x Tj_z(x), j =2} (1.11)
leading to three different methods (I), (II), (III).

Methods based on different techniques have been described before for solving
integro-differential equations of the first order; Linz [2], El-Gendi [3], Abd-elal
[4] - in all these papers integro-differential equations of the type (1.1) with
Kl(x,y) = 0 are reduced to integral equations and a quadrature rule is used to
establish numerical procedures. All of these methods are limited to integro-diff-
erential equations with no f' under the integral sign, also they do not treat
boundary conditions in a very uniform way. El-Gendi's method [3] used Chebyshev
expansion (1.2, 1.10) in approximating the solution of the equation and produce
the solution in time 0(N3). The methods we describe in this paper not only over-
come these limitations, but also (the last two methods) produce the solution at a
cost of total solution time O(Nzln N) and give reliable error estimates which are
cheap to compute. Method (I) is a straightforward method in which a Chebyshev
expansion set (1.10) is used to approximate the solution f(x), and then we solve
the linear system of equations (1.7) to get the coefficient vector g‘N); hence,
we consider it a standard method. Method (II) uses a modified Chebyshev expansion
set (1.11) to approximate f(x) and so we consider it a modified method. Method
(I1I) uses Chebyshev expansion set (1.10) to approximate not only f(x) by expansion

(1.2), but also

[ee)
v
£ = ) W T (1.12)
i=0
by
! _ (&)
fN(x) = ;z; di Ti(x). (1.13)
We solve the corresponding linear system
(0 FLCO I Ef(N) (1.14)
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N

for the vector d An iterative procedure [5] is used to solve the linear sys-
tems (1.7) and (1.14).

The three methods effectively handle singularities in any or all of Kk(x,y),
k =0, 1, g(x), the solution f(x), and its derivative f'(x), provided that the
singularities are of known form and have a known Chebyshev expansion (see [6]).
These requirements limit the applicability of the method to those cases where the
singularities which appear are of '"standard" form - for example, weak singularities
or logarithmic singularities. The methods can also treat some other types of
singularities modifying the integro-differential equation; for example,a simple
pole can be changed to a logarithmic singularity using integration by parts. We
give in section 2 the analysis which leads to the structure of the matrix L(N) for
the three methods, while a comparison between the convergence rate attained by the
methods is given in section 3. Section 4 shows, by example, that in the three cases
rapid convergence is obtained.

2. THE MATRIX L(N).

(N)

We wish to investigate the construction of the matrix L for the three

different methods considered in this paper. Using the expansion (1.2), the matrix

™)

L reduces to
AL LA (2.1)
with
A= A(O) + A(l) and B = B(O) + B(l)
where A(k) and B(k) are (N+ 1 x N + 1) matrices with elements Aij(k)’ Bij(k)’ i,
j=0,1,...,N; k = 0,1 defined by
1 k
Ai.(k) = dx P, (x) T.(x) 4 _ {h,(x)} / /1-x2 (2.2)
j k i d k i
X
-1
1 1 K
B, ) = J ax T, () VIxE J ay K Gy S ) @)
ij i dy 3
-1 -1

The integrals appearing in Equatiomns (2.2), (2.3) and (l1.5) must be approximated

numerically. We do this by relating Aij(k)’ Bij(k)’ and 8> i, § = 0,1,...,N to
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Chebyshev coefficients in the expansions of Pr(x), Kr(x,y)/i:;z, and g(x) respect-
ively. These later coefficients are evaluated numerically using the fast algorithm
given by Delves, Abd-Elal, and Hendry [6] in which Fourier transform technique is
used. This algorithm leads to small quadrature errors whether Kr(x,y), Pr(x), and
g(x) are singular or regular functions; also, it takes O(Nzln N) operations for
evaluating the coefficients of the expansion for Kr(x,y)/i:;f and O(N 1n N) for
evaluating the coefficients of the expansions for Pr(x) and g(x). Indeed, to eval-
uate Aij(r)' Bij(r) and gy of Equations (2.2), (2.3), and (1.5) numerically, let

us assume that the functions Pr(x) and Kr(x,y)/l-y2 have Chebyshev expansions

- ' (n)
P (x) = P T, (x) r=0,1 (2.4)
r ryoe i 3
j=0
' (D)
K nAyZ= Dk P 1@ e r=o.1 2.5)
T R P & | i 3j
i,j=0
0
gx) = ), g, T.(x) (2.6)
iz J 3
j=
where the expansion coefficients
1
pj(r) -2 f dx T,(x) P_(x)/VI%Z 1t =0,1 @.7
j r
-1
satisfy the inequality
-&
(r) 2 °r
|pj l<c ] r=0,1 (2.8)
and the expansion coefficients
1 1
4
Kij(r) == f dx Ti(x)/»’l—x2 J dy Kr(x,y) Tj(y) r =0,1 (2.9)
T -1
satisfy the inequality
-r. -B
r ~ T r PR
|Kij( )l < Dr i 3 i,j 20
which we can replace by the weaker bounds
(r) . Ve
[Kij | <o, i>]
( -B (2.10)
r A
lKij )l < Dr h| ' j>1i
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Also, 8; of Equation (1.5) has the bound

~=6
< i >
lgil <61 iz20
. 1 when j =0
j =
j when j 21

'
and Cr’ Dr’ G are constants. :E: denotes a sum with first term halved.

Knowing the numerical values for the coefficients Pj(k), Kij(k) using the fast
(k)

algorithm [6], we can easily calculate the elements Aij(k) and Bij , i,

(k) k) for methods I, II, and III as follows:

j=0,1,...,N of the matrices A and B
Method (I). 1In this method we choose the expansion set (1.10) and by substituting

(2.4) in (2.2) we get for i = 0,1,...,N

0 _m (0) (0)
Ajs T =g iy TR 3205
when Po(x) = 1, then Aij(O) reduces to (2.11)
) _ . 0) _ ) _1m .
Aij = 0 for all i,j except A.00 =T, Aii =5 for i 21
1) _
Also Aio =0
[.j____l
RS e %)
1) _m. ! . . . .
Ay 23 4y [Pitorea( 1'2*—1— - J—‘z”—l D FPimze-2¢ 13 14 ,2, Ll
j=1,2,...,N
(1) ¢h)

When Pl(x) =1, then Aij reduces to Aij = 0 for all i,j except for j > 1, 1

and j of different parity where by different parity, we mean one even and one odd.

@ _ .

i3
]

[s] is the integer part of s, and :E: means halving the term with

e+ 232 - (114 -0

Substituting (2.5) in (2.3), we get for i = 0,1,...,N
2

0 7, (© o
Bi3 =7 Ny j=0,1,...,N (2.13)
(L _
Big =0 i
(L ‘n'z[ .2‘_'J
uo T2 rz=:0 “1,2m02( J;—l - [% D, j=1,2,...,N (2.14)
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0) (v

Notice that we take O(Nzln N) operations to get the matrices A , but from

(2.12) and (2.14) it is clear that we take 0(N3) operations to obtain the matrices

1 ¢9)

A( and B , and in general, tHis makes method I take 0(N3) operationsto set up

the matrix L*(N) S

s, (D
ij

unless explicit forms for Aij (for example, case Pl(x) = 1) and

are achieved; then, it takes O(Nzln N) operations to get the matrix L*(N).

Method II. In this method we choose the expansion set (1.1l). For i = 0,1,...,N

s (0) (0) =
4 ( Pi+ i |1 - J‘ 3 0,1
(0) _
Aij =
m (0) @ 1 (0) (0)
— ) - = - = +
8 [(Pipjo ¥ Plioj42] (Piyj * Plig)) (p1+§J -4 pli |J -4
iz 2
When P.(x) =1, A © reduces to (2.15)
" O ’ 1J .
0) _ . ) _ ) _m
Aij = 0 for all i,j except, A00 =, A11 =3
0 _m (0) _ -m (0) _ =3m (0) i
Rog T T oo Ay T T s A g8 A, i+ g foriz2,
(0) _ -1 . (0) _ =T
Aii =3 for i = 3, Ai i+4 3 for i 20
Also
1 _ ]
AiO =0
L _7m_ (D
Ajp T TP
(2.16)
1) _ _7m ., (1) (1)
App =g oy ¥ LIPS
(1 _ (G- 4)1T n 1) (@D (@9 .
Ay = (3% 5 =3+ Pija]) T F Capgy * Plaipk Pl 323
When P_(x) = 1, A..(l) reduces to
1 ij
(1) _ . W _ W __ L __x
Aij = 0 for all i,j except A01 m, A12 T, A03 7
(9] (1)
Al 143" (1 -1) for i >1, A1 Y2, i+ 3 (i +3) fori=z=20
Corollary (II.1).
~ -
0) ] .
‘ 13 | < A0 (i 3j) i>j
~ —&0

IA

L .
Ay G -1 j>1
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lar I1.2).

A

1 . .

o, Plsa a-p >3
-

y ! 5> 1

IN

A 3G
Both Corollaries (II.1,2) follow directly using inequality (2.8) and Equations

(2.15,16) respectively. A and Al are constants.

0
s (O 1 (0
10 4 %o
) _ 2 (0)
By =7 Ky (2.17)
2
0y _ 1 1 (O (0) s
i T8 Faly-2) 72 Ky TR el 922
) _
By =0
s (DT
i1 4 "40
) (2.18)
g D __m o, @
12 4 Ndl
2
v _ 1,3 1) RS .
Byy 7 W=Dy _3-3K5.1]) i=3
Corollary (II.3).
=Y
(0) 20 .
IBij | < B, 1 i>j
-8
< B, ;0 3>1
Corollary (II.4).
=Y
1 !
IBij()|SB1 i 1>
6, - D
< B1 3j ji>1i

Corollary (II.3,4) follows directly from inequalities (2.10) and Equations
(2.17,18) respectively. BO and Bl are constants.
Method (III). In this method we use expansion set (1.10), and hence approximate

f(x) by (1.2) and £'(x) by (1.13). Using the relation connecting a, and di [7]:

i

a, = (d / 21, i=1,2,...,N (2.19)

i i-1" dq

i+ 1)
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hence
N "
£y(0) = ag + };5 dy [Ty, ®/2G+ D =T, 0/ 2G - D]
"
where E: means that the term Tj B 1(x)/ 2(j = 1) =0 for j = 0,1.
) _ -
the unknown vector ¢ = [co, Cpocees CN+1] where ¢y = ao, cj +1

then the integral equation (1.1) is now reduced to

(¢\)) (N)

8

N

L

(N)

where L is the ( N + 1

equition more, and this comes from the boundary condition f(a)

in the form

=dy J

783

(2.20)

Now consider

= 0,...,N;

(2.21)

X N + 2) matrix defined by (2.1); hence we need one

a, which we write

N+1
Y o™ e - (2.22)
i 3 j
where
&g = 1
|y e@rzaey j=0,1 .25
i+ 1
Tj + l(a)/ 2(3 + 1) - Fj _ 1(a)/ 2( - 1) jo=2,3,...,N
leading to the (N + 2 X N + 2) linear system of equations
L*(N) g(N) E.*(N) (2.24)
with elements, j = 0,1,...,N+1
*  _ ) 1 _ 0) _ (1) -
Lij = Aij + Aij Bij Bij i 0,1,...,N
. (2.25a)
N1, 5=
g*i=gi, i=0,1,...,N, g§+1= a (2.25b)
where the elements Aij(k)’ Bij(k)’ i=20,1,...,N; k = 0,1 defined by
1
(0) _ A — 2
AiO = J dx Po(x) Ti(x)/ 1 -x
-1
1 y 2 =
(0) 2G F D J dx Po(x) T;00) Ty () /YL - x 3204
= - 2.26
Aj 541 1 1 (2.26)
J dx P ()T, (x) [Tj+l(X)/ 2+ 1) - Tj—l(x)/ 23 - DIV - x
-1 j= 2,...,N



784 L. F. ABD-ELAL

1 _
Aio =0
1
(2.27)
1 /- .
(,;+l = J dx Pl(X) Ti(X) Tj(X)/ 1 - x2 j =0,1,...,N
-1
1 1
g, (O . J dx T, (x)//1 - %2 J K_(x,y) dy
i0 i 0
-1 -1
1
R S N - <2 .o
G 7D deTi(x)/l b3 deK(x,y) T. .1 3=0,1
[ -1 -1
i,i+1 1 1 (2.28)
J dx Ti(rc)/"l-x2 [ Ky (x,5) [Tj+1(y)/2(j +1) - Tj_l(y)/Z(j - Lldy
-1 -1 j o= 2,3,...,N
1) _
BiO =0
1 1 (2.29)
1
Bi,;_'_l = J dx Ti(x)/Jl - x? J K, (x,y) Tj (y) dy, j = 0,1,...,N
-1 -1
Substituting (2.4) in (2.26, 27) we get for i = 0,1,...,N
) _m _ (0)
Mg T3Py
n 0) (0) o
8(3 + 1) (pi-.3+1 *Plog-1] ) 3=0.1
A:SLO)._H = (2.30)
»J T _O) ) SO I
8 J+1) p1+J+1 pll—J-ll (J—l) 1+J—1 |i—3+1|
j=2,3,...,N
When Po(x) =1, Aij(O) reduces to
) _ . ) _ 0) _ ) _
Aij = 0 for all i,j except A00 =, A11 = T/4, Ay =7/8
) _ .o 0 _ _ s .
AJj = TT/(4j), J = 3” N+1 AJ l,_]+1 = TT/(4(J l))a J 2)'°°’N
and
L _
Aio 0
1y _m (1) (L P
Ai,j+1 = 4 (pi‘+J Il—JI) 3] 0,1,2,...,N
When P (x) = 1, A € reduces to
1 > i)
1) _ .. (1) _ (1) _ Lo
Aij = 0 for all i,j except AOl =, 3,j+l m/2, j 1,2,...,N
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Corollary (ITI.1).

~ -t
0 . .y 0 ~-1 . .
IAij( )l < A0(1 -3 3 i>j
~ =&
saG-n 05t i
0
Corollary (III.2).
-£
lAij(l)l a2y T i3
_gl
< Al(j < 1) j>1i

785

Both corollaries (III.1,2) follow directly using inequality (2.8) and equations

(2.30,31) respectively.

Now substituting (2.5) in equations (2.28,29) we get for i = 0,1,...,N

 _r* (0)
Bio " 7% KiO
(0) L
8G + 1) . D X5 =01
NON
i,j+1
I S () I | (0) =
[GD “n " G0 Maa 3= B3n
and
L _
B, 0
s L @ = 0,1,...,N
Biiv1 T Ky 3T et

Corollary (III.3).

Y -
IBi.(O)l < B0 i 0 j 1 i>]
(3 + 1)
< B0 J j>i
Corollary (III.4).
Y
]Bij(l)[ <B i 1 i> ]
-8
<B ] 1 j >4

(2.32)

(2.33)

Both corollaries (III.3,4) follow directly from inequality (2.10) and equations

() ¢ (r)

(2.32,33). To evaluate 1] ij

algorithm [6].

, ¥ = 0,1 numerically, we refer to the fast
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3. ASYMPTOTICALLY DIAGONAL MATRICES.

Definition: Given an infiniet matrix L, let the matrix F have elements

os —— (3.1
ij Y
gl h
The matrix L is said to be "Asymptotically lower diagonal (A.L.D.) of type B(p,r;c)"

if constants p,r 2 0, ¢ > 0 exist such that

F..<c 1P @E-pTr 1> (3.2)
1]
and is said to by "Asymptotically upper diagonal" (A.U.D.) of the same type if
Fiy<e PG i i>i (3.3)
In an obvious notation we shall then refer to systems of type B as:

Type B(P;, Py» Tps Tys Cp» cU) (3.4)

For systems (A.D.) of type B, Freeman and Delves [8] provide estimates of the
convergence rate. In order to compare the convergence rate attained by the three

methods of this paper we need to study the matrices given by each methcd.

We construct the elements of the matrix L*(N) = A* - B* where
ax = axl® 4o
B* = B*(O) + B*(l) ;
A*(k), B*(k) are (N+1 X N+1) matrices with elements
A;j(l) - £y, A;j(o) - B;j(o) ; B;j(l) “ o
PO L O R U SO (3.5)

ij i-1,3

gF () _ g% ()

ij i-1,j3
where £, =1, f; = a, fJ =1-a)T (), 22]¢ N(Ifj| <1, j=0,1,...,N)
L*.(N) - {A* (r) B* (r)} ;
ij £ ij ij
(N) (N) (N)
* * = * =
gi—l i 1,...,N
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Method (I): As is clear from equation (2.12) the matrix A(l)

(1
ij

the analysis of Freeman and Delves [8] is not applicable to method I, so as we will

is not (A.D.); indeed,
for j > i, the elements A increase with j. So L*(N) is not (A.U.D.) and hence
see later we do not suggest a value for the truncation error. Also we can not use
the iterative method given by Delves [5] to solve the linear system (1.7) and hence
any standard method for solving linear equations (Gauss elimination method) can be
used.
Method (II):

Lemma 1. The matrix L*(N) of equation (1.7) is (A.D.) of type

B(Oyoamin(goa 519 Yoa Yl)’ min(goy gl-la 809 Bl_l); LL’ LU)

Proof: From corollaries (II.1, 2, 3, 4) we get

P ~ o0 -~ Yo A N1

IL;.'_j < A -3 T+ A3 +By(i-3) © + B (1-)) T....i> ]
Hence .

il sty Jas j)-mln(go’ b1 Tor Y cd>i . (3.6)
Also

Lt <a a2 1)-El + Ao(jfl)_ 0, Bo(jﬁl)_ 04 Bl(jii)-B?ﬁ.j > i
Hence )

|l <Ly 3G - i)-mm(gl’ fo Tl Fo T 1 ) i i @3
Also

x| =1, i (3.8)
where Ll’ L2, and L3 are constants,

From (3.6, 3.8), for 1 > j,

L%, Loy~ -min(Eg, E15 Yge Yp)
. |43 13_L_l_i-lzj%(i_j) 0 1> Yoo 1
* *
i llg D s
‘min(g > g s Yas Y )
< LS9 07T 0T s 5 3.9
Also from (3.7, 3.8), for i > j, - . -
L, ~ A ~ —min( , +1, +1,
AT 0
< 2177 57500 Lo 1
3
-min(g,-1, &, B,, B,-1)
< Ly(3FD) ! 07707 L Uy sy (3.10)
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since j(j z 1)—l < 2i for j > i.
From (3.9) and (3.10), the lemma follows.
Method (III):

(N)

Lemma 2. The matrix L* of equations (2.24) is (A.D.) of type
B(0,0,min(€ .8 ,,7ys vq)s min(Ey + 1, £,,8) + 1,81); Lis Ly

Proof: From corollary (III.1,2,3,4) we get:

-£ -£ =Y -y
* LN 1 LN 0 »-1 LN 1 .o~ 0 :-1 . .
lLijl < Al(l -3 + AO(1 - 3) i =+ Bl(l - 3) + Bo(l -1 h| 1>]
N -min(E s E4s Yas Y ) j > 1
<L, 25 0771 0t 1 (3.11)
. -El ~ -50-1 . -81 ) —(60 + 1)
< A L .o Lo . .
< Al(J i) + AO(] i) + Bl(J i) + BO(J i) j> i
N _min(g + l’ E E) B + 1) B ) j > i
SLG D) 0 o 1 (3.12)
Also
*
lLiiI > L, (3.13)
where L4, L5 and L6 are constants.
From (3.11,313)
fL*, | o -min@E ., £.5 Yas Yq) i>]
Fi' = ——————31;———g < LL(i -3 0* "1 '0° 1 (3.14)
oo b
ii ij
From (3.12,13)
~ 'min(g + 19 E 9 B + 19 6 ) j > i
<Ly 0 D) 0 o 1 (3.15)

From (3.14,15), the lemma follows.
From Lemma 1,2 the matrix L*(N) is U.A.D. and hence the analysis of Freeman and
Delves [8] is applicable to methodsII, III and a value of the truncation error is
suggested as given later. Also the iterative Method (III) may be used to solve
(1.7) and (2.24) in O(Nz) operations.

Now by virtue of Theorems 6 and 7 of Freeman and Delves [8] with normaliza-

tion we have the following theorem.
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THEOREM 1. If L is L.A.D. or U.A.D. of type B(pL, Pys Tp» Ty Cpo
r

L Ty > 1, pL, pU > 0 and ILiil > Ai, then if, for some constant c , Ig ] < i

with § > 1, there exist some positive constants Ml’ M2 such that
-(p,, + t) -r.+1 _
b, -a. ™ <y, v U w+1-1) U a7t i<N
i i 1 i
Ib.] <m, 1°F At i>N
i 2 i
t = min(§, pL + rU).
Theorem 1 leads us to our two main theorems:
THEOREM 2. In Method (II)
_ _min(g ’19 g -2; 8 _1’ B "2) el
|b.—a,(N)|sM NI+ 1 - 1) 0 ! 0 ! 12 i <N
i i 1
- L
b | <m, 16+ i>N
i 2

where t = min(§, min(&o, El’ Yo» yl)). This follows directly from Lemma 1 and
Theorem 1.

THEOREM 3. 1In Method (III)

-min( o, £, - 1, By, By - 1)

SMIN—t(N+1—i) i

A
=4

.~t i> N

=
IA
=
-

i 2
t = min(§, min(&o, El’ Yo Yl)). This follows directly from Lemma 2 and Theorem 1.

4. ERROR ESTIMATES.

The error in any of the three methods contains three distinct components:
(a) The truncation error due to cutting off the expansion (1.2) at the
N th term.
(b) The discretization error stemming from the quadrature errors SA - §B in
the matrix A-B, and 8g in the vector g.
(c) There are also in principle errors arising from the numerical solution

of the linear equations.

Now according to Delves [9] we measure the error eN(x) = fN(x) - f(x), with
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]eN(x)| ~ lSl + s, + S3| where the first two summands represent the truncation

2

error (a), and are defined by

N
_ = (N)
517 B 1R Tl

Method (I) and (II)

while

Method (III)

(2]
N
0
™
2
il

1=N+1

S3 is the quadrature error (b), defined by

N
S;= L |ai(N) - Ei(N)I for Method (I) and (II)
i=0
YO N6
= 7 |di -4 | for Method (III).
i=0
In the above, Ei(N), ai(N) are the computed coefficients.

(a) Truncation error estimates: (S1 + SZ)

From Theorems2 and 3 and for Methods (II) and (III), S2 dominates S1 and so

Sl + S2 ~ 32.

Hence for Method (II)

S, ~ M, Nt t /(t - 1) ~N ]aNI , (4.1)

while for Method (III)

s, ~My N /e -1 ~nfal . (4.2)

2 2

For Method (I), since we are unable to apply Theorem 1, we do not suggest a value

for S1 + SZ'

(b) Quadrature error estimates: S

3
As given in Delves [9]

s, ~ U kel w+ [lsel/za - L] se] D (4.3)



INTEGRO-DIFFERENTIAL AND DIFFERENTIAL EQUATIONS 791

Here W |la]| for Method (I) and (IT),

lld]| for Method (III) and a rough estimate for ||L71|| is taken to be
LT~ el w

We require only an estimate for || 8L||, since we refer to Delves et al [6] to

estimate || 6gl .

Evaluation of | SL:

Method (I): from Equations (2.11,12), we get
16a@f <an o) 72, ea® ) <nn® [P 3
oo (o] oo e}

Hence

leall, = mav Ik @1 72+ 6 (1P| /3 .

Also, from Equations (2.13,14) we get

e8P < n® Nex @Y 75 e <o W [[ex|| s

Hence

Foml] = n? 1@+ faxP ) s .6)
Then [| 8L ~ (4.5) + (4.6).
Method (II): from Equations (Z2.15,16)
a0 < mn 6PN 725 e < ma? oo™ 14
lleall, = mav o1 /2 + w2 |1 s /4 @.7)

From Equations (2.17,18),

16O < n® 1o @p /a5 s <na® oD /a

Hence

Il 6B[L < 72 C |l sk (0 Hoo + N sxD Hw) /4 (4.8)
| 8Ll ~ 4.7) + (4.8)

Method (III): from Equations (2.30,31),

lea® ) < 2n2 + 1m0 (18P0 5 Noa®I < mw [Fop™ ) /2

Hence
loall < m2@+ 1w (6@ +n [l 12 4.9)
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from Equations (2.32,33),

1es P < w® 1 ax ) s oD < n® 1D e

Ioml] = n®clex® 1]+ x|y /4 (4.10)

| o] ~ (4.9) + (4.10)

(Y)]L

We refer to Delves et al [6] for the numerical estimations of | &p and

st ]

(¢) Errcr stemming from solving the linear system of equations.

To solve the linear system of equations (1.7) or (2.24), for Method II or III
we use an iterative scheme given in [5] with 0(N2) operations. The error due to
this iterative solution is small and so we neglect it, but for Method I and accord-
ing to Delves |5], we cannot use this iterative method and hence the error could
be relatively large due to error cancellation. We will now see that this error
cancellation has no serious effect in a numerical example.

5. NUMERICAL EXAMPLE.

We give in this section the numerical results for a singular integro-differ-

ential equation of the first order.
1 1

f'(x) + f(x) = g(x) + J Ko(x,y) f(y) dy + j Kl(x,y) £'(y) dy
-1 -1
2 3
Ko(x,y) =21In(x-vy) (x -2y +2xy" - 2y")
K Goy) = G = yD)

2
g(x) = e - 2e(x+ 1) In(x + 1) + 2xeX
with boundary condition f(a) = o, a€ [-1,1].
2
It has the exact solution f(x) = X .

The computed errors ON are defined to be

] =4
o g
m
zZ N
~
B
e
~—
~
=4
———
Ne
1
At

where xj = cos (jm/N), j = 0,1,...,N and ey = f_ - f
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Computed results for the numerical example.

9% Method (1) Oy Method (II) Oy Method (I1) on Method (II1)
N £(-1)=e f(-1)=e £(0) = 1 £(-1)=e
3 3.8 x 107} 3.7 x 107! 3.6 x 107! 1.2 x 107}
5 4.9 x 1072 7.1 x 1072 8.5 x 1072 1.3 x 1072
7 4.6 x 1072 6.5 x 1073 5.0 x 1073 9.1 x 107
9 2.9 x 1074 4.1 x 1074 2.2 x 107% 4.9 x 107°
11 1.4 x 107° 2.1 x 107° 8.6 x 107° 2.0 x 107°
13 6.0 x 1077 8.6 x 107/ 2.9 x 107/ 6.8 x 1070
15 3.3 x 1078 3.2 x 1078 8.6 x 1077 2.1 x 1077
17 2.8 x 1078 3.3 x 1070 3.8 x 10710 2.0 x 10710
19 2.8 x 1078 2.1 x 1070 1.3 x 10710 1.1 x 10710

6. COMMENTS ON THE METHODS.

(1) As is clear from the analysis, although Method (I) is a standard method,
in fact Methods (II) and (III) are preferable because they provide easy error
estimates.

(2) All the three methods work very well when applied to the numerical example,
and this suggests that Method (I) is probably a stable method.

(3) The three methods can be applied to ordinary differential equations of the
first order which have the form (1.1) but with

1 dk
L = k%b Pk(x) ;;E
Hence the same analysis holds with the matrix B = 0.

(4) The three methods represent a uniform way of treating boundary conditions,
so we recommend methods (II) and (III) be extended to include integro-differential
equations of the second order. We are now working on this.

(5) A standard Galerkin calculation has an operations count of 0(N3) for both
setting up and solving the linear equations defining the coefficient vector:

however, Methods (II) and (III) of this paper need:
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Setting up equations: O(Nzln N) operations

Iterative solution: 0(N2) operations.
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