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ABSTRACT. Using some results on linear algebraic groups, we show that every con-
nected linear algebraic semigroup S contains a closed, connected diagonalizable
subsemigroup T with zero such that E(T) intersects each regular J-class of S. It
is also shown that the lattice (E(T),<) is isomorphic to the lattice of faces of a
rational polytope in some RO, Using these results, it is shown that if S is any
connected semigroup with lattice of regular J-classes U(S), then all maximal chains
in U(S) have the same length.
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0. INTRODUCTION.
+ .+ 4+
Throughout this paper, R, Z, Q, R , Z , Q will denote the sets of reals,
integers, rationals, positive reals, positive integers and positive rationals re-
spectively. 1If X is a set then |X| denotes the cardinality of X. If X is a
subset of a semigroup, then <X> denotes the subsemigroup generated by X. If (P,<)

is a partially ordered set and {al <a
)

g < eee <an} is a finite chain in P, then

we define the length of the chain to be n - 1. K will denote a fixed algebraically
closed field, K" =K x ... x K the affine n-space. Mn(K) will denote the set of
all nxn matrices and GL(n,K) the group of units of Mn(K). F(Xl"'“’xn) will de-

note the free commutative semigroup in the variables Xl,...,Xn and K[Xl,...,xn]
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the free commutative algebra over K in the variables Xl”"’xn' We use the
notation of [6,7] for algebraic semigroups. Let S be an algebraic monoid with
identity element 1 and group of units G. If g € G, then the maps x+xg, x> gx,
x+g_lxg are all automorphisms of the variety S. The last one is also a semigroup
automorphism. If we let G = {(a,b)‘a,be S, ab = 1}, then G becomes an algebraic
group. Actually, with more general notions of varieties [5], G itself can be
viewed as an algebraic group. By [6, Theorem 1.1], we can assume that S is a
closed submonoid of some Mn(K)‘. Then clearly G = GL(n,K) N S and S\G is closed.
If Sl is closed submonoid of S with group of units Gl’ then Gl =GN Sl' If H is
a closed subgroup of G, then H is the group of units of H. If S is connected,
then clearly so is G, G=95and dim S = dim G. If S is not connected, then [T7;

Lemma 1.9], 1 lies in a unique irreducible component S, of S and S:L is a closed

1
connected submonoid of S. We say that S is trigonalizable if S is *-isomorphic
to a closed semigroup of lower triangular matrices. If S is connected, then
since G = S, it follows from the Lie-Kolchin Theorem [5; Theorem 17.6] that S is
trigonalizable if and only if G is solvable. S is a d-semigroup if S is
*-isomorphic to a closed subsemigroup of (KP,-) for some p € Z+. If S is
connected, then since G = S, we see that S is a d-semigroup if and only if G is
a torus. By [7; Corollary 3.15], a connected d-semigroup with zero can be

characterized as a connected Clifford semigroup with zero. If X,YCS, then X is

conjugate to Y if g_]'Xg = Y for some g € G.

1. CONNECTED SEMIGROUPS

LEMMA 1.1. Let S be a connected monoid, e€E(S), e # 1. Then there exists a
closed connected submonoid S' of S such that 1, e € S' and e is the zero of S'.
PROOF. Let G denote the group of units of S and set V = S\G. Then V =

VlU . UVr where V_,... ’Vr are closed and irreducible. Let m, = dim Vi’

i=1,...,r. Then m, < n-1, where n = dim S. Let ¢:S + eS be given by ¢(x) = ex.

Let q = dim eS, ¢, = "'v W, = ¢(vi)ges. Let 1 € {1,...,r}. Suppose W, = eS.
i

Then $; is dominant. So by [5; Theorem 4.3], there exists a non-empty open set Oi

of eS such that O, c ¢(Vi) and so that dim ¢El(x) =m; -q<n-gq for all x€0,. So
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aim(v, N 07 1(x)) <n-q for all x € 0, (1)

Next suppose wi # eS. Then set 0, = eS\Wi. Then

v, N ¢_l(x) = § for all x € 0;- (2)

Let 0 = 010020 e N Or' Since eS is connected, O # §. Let x € 0. Then

x € ¢—l(x). Let D be an irreducible component of ¢-l(x) such that x € D. Then
[5; Theorem 4.1] dim D>n-gq. We claim that D € V. For suppose D C V. Then
DC Vi for some i. Since x € ¢_l(x) n Oi N Vi’ (2) is ruled out. So by (1)

dim D < n-gq, a contradiction. Hence DEZ V. So DNG # #. Let gEDNG. So

¢(g) = x. Thus eg = x, xg_l =e. Let Y = Dg-l. Then Y is closed and irreducible.

Let y € Y. Then yg € D. So eyg = x and ey = xg_l = e, Hence ey = e for all
. -1 . -1
YyE€Y. Since g€ D, 1 =gg €Y. Since x€D, e =xg ~ € Y. Let
5 = {a|a€5S, ea = e}. Then S, is a closed submonoid of S and YSSl. Let S, be

»
the (unique) irreducible component of 1 in S, Then Y C S, and S, is a closed

connected submonoid of S. Thus 1, e € 82 and ea = e for a € 82. By the dual of
the above argument, there exists a closed connected submonoid S3 of 82 such that

e€S3andae=eforalla,€S3. So ae = ea = e for all a€S3.

FACT 1.2. Let AC Mn(K) such that AB = BA for all A, B € A. Suppose also
that each A € A is lower triangular and diagonalizable. Then there exists a

lower triangular, invertible matrix P such that P-lAP is diagonal.

PROOF. We prove by induction on n. Let A = {Aala €EQ}, A = . C
a

is (n-1) x (n-1), a,€K. Clearly €,Co=C

8 Sca for all a,B. Since

minimum polynomial of Cal minimum polynomial of Aa.’

minimum polynomial of Ca has no multiple roots. So each ch is diagonalizable.

So there exists, by induction, an invertible, lower triangular (n-1) x (n-1)
matrix Ml such that M_:LCO‘Ml is diagonal for all a. Let M = 1 0 . Then

. 0 M
1
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D, =M AMS= » G, is (n-1) x (n-1) and diagonal.

Let Ea = Da - aaI, o € Q. Then each Ea is diagonalizable and EaEB = EBEa

(all «,B). Moreover,

[ o 0 B
(a) (a)
b2 c2 ()
E =] . .
a
(a) (:) (a)
_bn “n o
Since EaEB = EBEa’

c§°)b§3) S S (3)

i i i 2
Also, since Ea is diagonalizable,

cfa) = 0 implies b(a)

X i i =0, all i, (1)

Let i € {2,...,n}. If there exists a such that cﬁ“) # 0, let u.= -l o@)
1 1 1

By (3), u is independent of the choice of a. If there is no such a, let u, = O.
i

Y1

Let w = 1 and set u = ﬁ . By (L), Eau = 0 for all a. Let e be the column
n

with 1 in ith component and O elsewhere. Then u, e2,...,en is a linearly in-

dependent set of eigenvectors of Ea for all o« € Q. Let R = [u, e2,...,en]. Then

R is lower triangular and invertible. Clearly R-lEaR is diagonal for all a. So

R-lDaR is diagonal for all a . Let P = MR.

LEMMA 1.3. Let S be a connected monoid with identity element 1, zero e.
Let G denote the group of units of S. Suppose G is solvable. Then for any

maximal torus T of G, e € T.

PROOF. We can assume that S is a closed submonoid of Mn(K). By the Lie-

Kolchin theorem [5; Theorem 17.6] there exists P € GL(n,K) such that Plep is

1

lower triangular. Since G = S, PSP is lower triangular. So we can assume
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that S is lower triangular. Let T be a maximal torus of G and set X = T U {e}.
Then X satisfies the hypothesis of Fact 1.2. So there exists a lower triangular

REGL(n,K) such that RIXR is diagonal. Clearly RISR remains lover triangular.

So we can assume that X is diagonal. If a € S, then let ¢(a) be the nxn diagonal
matrix, with the diagonal being that of a. Then ¢(X) = X. Clearly ¢ is a
*_homomorphism of S into Mn(K) and ¢(G) is a torus. By [5; Corollary 21.3C],
$(G)=¢(T)=T. So¢(G)CS. Since G =85, ¢(S) €S. Let W= ¢(S). Then

W={ala €8s, ¢(a) = a} is closed. Since ¢(S) = W, W is a closed connected
submonoid of S. Let H denote the group of units of W. Then TC HC G and H is a
torus. So T =H and W= T. Clearly e = ¢(e) E W = T.

THEOREM 1.4k. Let S be a connected monoid with group of units G. Let B be a

Borel subgroup of G. Then S = U xBx L.
’ x€G
PROOF. We can assume that S is a closed submonoid of W = Mn(K). Let

i {(&,a—l) |a € G} Then G, is a closed subset of WxW. If (a,b),(c,d) € Gy
»

then define (a,b)(c,d) = (ac,db). Then G, is an algebraic group *-isomorphic to

G. Let Bl = {(a,a-l)la € B}. Then Bl is a Borel subgroup of Gl' Now [5; Theorem

21.3], Gl/Bl is a projective variety. Let ¢:Gl->Gl/Bl be the natural projection

¢(a) = aB . Let V=WxG,

and hence a normal variety. The same is true for W. So Y = Wx Gl/Bl is normal

Y = WXGl/Bl. By [1; Theorem 6.8], Gl/Bl is smooth

[15 p. 77]. Let ¢:V+Y be given by w(a,b) = (a,$(b)). Then § is a surjective
morphism. Clearly each fibre of y is irreducible and has dimension equal to that

of Bl' So [1; Proposition 18.4], ¢ is an open map. Let X = {(a,g,g_l)|a € s,

g € G,g-lag € B}. Then X is closed in V. So y(aX) is open in Y. Hence “j(~X)
is closed in Y. Clearly (~X) C ¢(X). Suppose w € ¥(X), w € P(vX). Then

w = P(x) = p(y) for some x€EX, y € vX. So x = (a,g,g_l), y = (a.,h,h-l) for

some a € S, g, h € G. Now g_lag € B. Since p(x) = y(y), ¢(8,8_l) = ¢(h,h-l)-
- - -1, _.-1, -1 e
So gB = hB. Thus h = gb for some b € B, So h ah =b (g ag)b€b Bb = B, a

contradiction. So Ag(~X) = Y(X) and P(X) is closed. Let 6:Y = WxGl/Bl-r W

denote the projection of Y onto W. Then since Gl/Bl is projective, 6 is a closed
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map [5; Theorem 6.2]. Hence 6(y(X)) is closed in W. Clearly 6(y(X)) =

U gBg 1
g€C

C€s. By [5; Theorem 22.2], G € 6(¢(X)). Since G = 5,8(¥(X)) = S. This

proves the theorem.

COROLLARY 1.5. Let S be a connected monoid with zero e and T a maximal torus

in the group of units G of S. Then e € T.

PROOF. Now T C B for some Borel subgroup B of G. By Theorem 1.lL, eex_ﬁx—l

for some x € G. So e = x_lex € B. Hence e is the zero of B. By Lemma 1.3, e € T.

COROLLARY 1.6. Let S be a connected monoid with group of units G. Let

€ snnesy € E(S) such that e, > e, > ... >e.. Then there exists a maximal torus

T of G such that e;,...,e, € T .

PROOF . We prove by induction on k. If k = 1, we are done by Lemma 1.1 and
Corollary 1.5. So assume k > 1. By Lemma 1.1, there exist closed connected sub-

mox'101ds Sl""’sk of S such that ey is the zero of Si’ Then aek = eka = ek for

all a € Si’ i=1,...,k. Let V= {a]a €5, ae, = e.a = ek}. Then V is a closed

submonoid of S and S .»S, € V. Let W be the (unique) irreducible component of

1’ k

1 in V. Then Sl’”' ,Sk C W and W is a closed connected submonoid of S. So e is

the zero of S. Let Gl denote the group of units of W. By our induction hypothesis,

there exists a maximal torus Tl and Gl such that el,. .. ’ek-l € El' By Corollary

1.5, e € E‘-l. Let Tl C T where T is a maximal torus of G. Then O RRREE LN €T.
By [T; Lemma 1.3] we have,

LEMMA 1.7. Let S be a semigroup, J ..,JkEU(S),Jl>J >...>J . Then

2 k

EJi, i=1,...,k and el>e2>...>ek-

10-
there exists € seees®y € E(S) such that e
THEOREM 1.8. Let S be a connected monoid with group of units G. Then

(1) A1l maximal closed connected d-submonoids of S are conjugate.

(2) A1l maximal closed connected d-submonoids with zeroes, of S, are con-
Jugate.

(3) Let Y be a maximal closed connected d-submonoid with zero, of S. Then

v gE(Y)g-l = E(S). 1In particular E(Y) NJ # @ for all J €U (S). More-
g€G
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PROOF. Since the group of units of a maximal closed connected d-submonoid

of S is a maximal torus in G, (1) follows from [5; Corollary 21.3A]
(2) Let Sl’ 82 be two maximal closed connected d-submonoids with zeroes of
S. Let ei be the zero of Si’ i=1, 2. Let I-Ii be the group of units of Si’

i=1, 2. Then H,CT , T, a maximal torus of G, i =1, 2. Let V, = Ti, i=1, 2.
Let fi be the minimum idempotent of Vi' Then ei:fi. Let Wi = {a.|a.€ Vi,

af, = fi}, U, the (unique) irreducible component of 1 in W,. Since V,, V, are
conjugate by (1), so are W_, W,. Hence U , U, are conjugate. Since S, EWi,

SiSUi’ i=1, 2. By Lemma 1.1, fieUi’ i =1, 2. By the maximality of Si’

5, =U, i=1,2.
(3) Let e € E(S). By Corollary 1.6, e € Sl for some closed connected d-
submonoid S, of S. By [7; Theorem 3.16], there exists a closed connected d-

1

submonoid with zero, S, of Sl such that e € 32. By (2) xSQX- C Y for some

2
X € G. So xex > € Y. Hence E(Y) N Iq # #. Next let I >J,> ... > bea

maximal chain in U(S). By Lemma 1.7, there exist e € E(Ji) such that

el > e2 > ... > ek' Clearly

e. >e. > ...5>e (5)

is a maximal chain in E(S). For if e;>f>e; 15 T € E(S), then Jei> Jf>Jei+l, a

contradiction. By Corollary 1.6, e eKGM:L for some closed connected d-

1o0e e
submonoid M, of S. By [7T; Theorem 3.16], RTERTL € M, for some closed
connected d-submonoid with zero, M2 of Ml So el,. . ,ek € M3 for some maximal
connected d-submonoid with zero, M3 of S. Since (5) is maximal in E(S), it is
maximal in E(M3). By [7; Theorem 3.17], dim M3 =k-1. By (2) dim M3 = dim Y.
THEOREM 1.9. Let S be a connected semigroup. Then all maximal chains in

U(S) have the same length.

PROOF. U(S) has meximum element Jo. Let e € E(Jo). By [7; Lemma 1.3, 1.7].

U(eSe) = {JNeSe |J € U(S)} nU(S) . Now eSe is a connected monoid. We are done
by Theorem 1.8 (3).

THEOREM 1.10. Let S be & connected monoid such that for all a,b € S, alb



674 M. S. PUTCHA

i +
implies a2|b1 for some 1 € Z . Let Y be a maximal closed connected d-submonoid
with zero, of S. Then JNY is a subgroup of Y for all J €U(S). In particular

U(y) = {JnY|J € u(e)} ana (U(s), <) » (E(Y), <).

PROOF. The hypothesis implies by [8] that J is a subsemigroup of S for all
JEU(S). Let JE U(S). Then JNY # @ by Theorem 1.8. Let a, b € J N Y. Then
aHe, bHf in Y for some e, f € E(Y). So e, T € J. Sincee, f € Y, ef = fe.
Since J is completely simple, e = f. So aHb in Y and J N Y is a subgroup of Y.

Now applying the proof of Theorem 1.9 we have,
COROLLARY 1.11. Let S be a connected semigroup such that for all a, b € S,

a|b implies a2|b1 for some i € 2°. Then (U(S), <) n~ (E(Y), <) for some connected

d-monoid with zero, Y.

THEOREM 1.12. Let S be a connected monoid such that the group of units G of

S is nilpotent. Then E(S) is finite.

PROOF. By [5; Proposition 19.2], G has a unique maximal torus T. So T is
the unique maximal closed connected d-submonoid of S. By Theorem 1.8, E(S) S_T.

So E(S) is finite.

a b c
EXAMPLE 1.13. S = {% a %] a, b, c, d € Ky is an example of a connected
0 0 =a

monoid satisfying the hypothesis of Theorem 1.12.

CONJECTURE 1.1k. Let S be a connected monoid with zero such that E(S) is

finite. Then the group of units of S is solvable.

a b
EXAMPLE 1.15. Let S = [ d% a, b € S}. Then S is a connected monoid

0

with zero and |E(S)| = 2. The group of units of S is solvable but not nilpotent.

2. CONNECTED d-SEMIGROUPS WITH ZEROS

Let S be a connected d-semigroup with zero, dim S > 0. Then S is a monoid

[7; Theorem 2.7]. By a character of S, we mean a *_homomorphism x:S+K such that
x(1) =1, x(0) = 0. We let 6(S) denote the commutative semigroup of all characters

of S with pointwise multiplication. It is clear that if Sl’ 82 are connected d-
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semigroups with zeros, dim §;>0, then § *_jisomorphic to S, implies &(S );;0(82).

1 2 1

A commutative semigroup W is said to be totally cancellative if W is

+
cancellative and for all a, b€ W, n€ 2 , an =" implies a = b. We will need

the following result of Grillet [3; Theorem 2.2].

THEOREM A [Grillet]. Let W be a finitely generated commutative semigroup.
Then W can be embedded in a free commutative semigroup if and only if W is totally

cancellative and idempotent-free.

LEMMA 2.1. Let S be a connected d-semigroup with zero 0 and identity 1,
dim S> 0. Then
(1) #(s) # 0.
(2) If e € E(S), e # 0, then there exists X€ ¢(S) such that for all g€E(S),
g > e implies x(g) = 1, g#e implies x(g) = O.
(3) #(8) is idempotent-free and totally cancellative.
(4) ®(S) is linearly independent in the vector space of all functions from

S into K.

PROOF. Let G denote the group of units of S. We can assume that S is a
closed submonoid of Mn(K) for some n € 27, If a € S, let a(a) = det a. Then
a € ¢(S), a(f) =0 for fFEE(S), £ # 1. So #(S) # . Let e € E(8), e # 0.
Then by the above, there exists B € &(eS) such that B(f) = 0 for all £ € E(eS)
with £ # e. Define x:8 + K as x(a) = B(ea). This proves (2).

Let X € ¢(S) such that )(2 = x. Then x(8) = {1,0} contradicting the fact
that S is connected. So ¢(S) is idempotent-free. Let X1s Xp» X3 € ¢(S) such
that X1Xp = X X3+ If a € G, then xl(a) # 0 and so xg(a) = x3(a). 8o x, = X3

on G. Since G = S, Xy = X3 on S. So &(S) is cancellative. Now let xl,x2€ 3(s),

m € z¥ such that X = - Let Y= {Elg€K, £ = 1}. Then Y is finite. If

EE Y, let SE={a|a€ s, xl(a) = gxe(a)}. If a€G, then xi(a) #0 for i=1, 2.

Since S is

Soa €8S, for some EE€Y. Thus GC Y S Since G=8, S=U §

£ ey & ey

connected, S = SE for some £ € Y. In particular, 1
X; = X, and ®(S) is totally cancellative. This proves (3).

xl(l) = Exz(l) =g, So
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Now let Xpseeres Xp € ¢(S) be distinct characters of S which are linearly
dependent. Let ¢i denote the restriction of xi to G. Then wi’ i=1l...,m are
linearly dependent homomorphism of G. So [5; Lemma 16.1], wi = wj for some

i#j. Since G =8, X5

= xj, contradiction. This proves the lemma.
LEMMA 2.2. Let S be a connected d-semigroup with zero, dim S>0. Then
' +
(1) S is *-isomorphic to a closed submonoid S of (Kn, +) for some n€?Z
1
such that 0 = (0,...,0) € S .
(2) &(s) is finitely generated.

(3) Ifa, bES, s # b, then there exists x € ¢(S) such that x(a) # x(b).
PROOF. First we prove (1). We can assume that S is closed subsemigroup of

(Kn, +) for some n € Z+, n minimal. Let e denote the zero of S and set S1 =
{a-e|a € S}. Then a <—> a-e represents a ¥-isomorphism between S and Sl’
So without loss of generality we can assume

,...,an) denote the identity of S. So a? =a,,

0= (0,...,0) is the zero of Sl.

that e = (0,...,0). Let f = (al
i=1,...,n. Suppose some ui =0, say i=1. Thenn > 1 and S E.{O} x Kn_l. So
S is *-isomorphic to a closed subsemigroup of (Kn_l, *), contradicting the
minimality of n. So oy #0,1i=1,...,n. So @, =1,1i=1,...,nand S is a
closed submonoid of (K", *). This proves (1).

Let S be a closed submonoid of (K, +) with identity 1 = (1,...,1), zero
0=(0,...,0). Let ﬁ.denote the ith projection of S into K. Then clearly
XyseeesX, € ®(S). Let x € #(S). Since x(0) = 0, x does not have a constant term.

So there exist Wyseee sy € F(Xl,...,Xn), @5..+58 €K such that

t
x(a) = ] a.u.(a) for all a € S.
=1t

t
So x = ill aiwi(xl""’ xn)- By Lemma 2.1(k4), x = wi(xl,...,xn) for some i. So

o(s) = <Xys+++sX, > This proves (2). Let a, b € S such that x(a) = x(b) for
all x € ¢(S). Then a = (xl(a)""’xn(a)) = (xl(b),...,xn(b)) = b. This proves
(3).

LEMMA 2.3. Let S be a closed connected submonoid of (K®, +) with zero

0= (0,...,0). Then there exist Wseenslys Viseen,V, € F(xi,...,xn) such that for
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a € K, a €5 if and only if w(a) = v,(a), 1=1,...,t.

.th . .
PROOF. Let X4 denote the i”" projection of S into K. Then Xyseee ’Xne (s).
Let I = {f|f € K[X;5...,X ], £(S) = 0}. Let D= {f|f €I, f=u-v for some u,
v € F(X ,...,Xn)}. We claim that I = (D). Suppose not. Then there exists f€ I,
£ € (D). Since £(0) = 0, there exist Wysenew € F(Xl,...,Xn), al,...,arGK\{O}
r r
such that f = X a;u, . Of all such f choose one with r minimal. So X a.w.(a)=
=1 =1t
f(a) = 0 for all a € S. So
)
Q. W, (%, 5eeesX ) =0
j=p 11 1 Xa

By Lemma 2.1(L4), wp(xl,...,xn) = mq(xl,...,xn) for some p, q € {1,...,r}, p # q.

Assume p = 1, g = 2. So wl(a) = we(a) for all a € S. Thus w) -0, € D. Now

E
+ a.w,
2 i=3 ivi

(ul + a2)w =f - al(wl - wz) €1

By minimality of r, f—al(wl - mz) € (D). So f €(D), a contradiction. Thus

I = (D). By the Hilbert Basis Theorem there exist f_,...,f. € I such that

t

o f € (Dl) for some finite subset D, of D.

I=(f ,...,f ). Since I = (D), f )

t 1’

So (Dl)= I. This proves the lemma.

Let S S, be connected d-semigroups with zeros, dim Si> 0, i=1, 2. Let

1° "2

$:8, > 8, be a *_homomorphism such that ¢(1) = 1, ¢(0) = 0. Then define ¢*:¢(82)—>

2
O(Sl) by ¢*(x) = x o ¢. Next assume that : <I>(Se) > 0(81) is a homomorphism.

Then we claim:

for all a € Sl’ there exists unique b € 82 such that

(6)
x(b) = ((x))(a) for all x € o(s,)

Assume (6). Then we can define E:Sl > 32 as ¢(a) = b. Then
x(¥(a)) = (v(x))(a) for all a € 515 X € ‘15(32) (1)

Next we claim,

¥ is a *—homomorphism, (1) = 1, ¥(0) = 0 (8)

We now prove (6), (8). Note that the uniqueness of b in (6) follows from Lemma

2.2(3). By Lemma 2.2(1) we can assume that S_ is a closed submonoid of (K°, *)

2
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with zero 0 = (0,...,0). Let X3 denote the ith projection of S2 into K. Then by

Lemma 2.2, Xj,.--5X, € 0(82) and Q(S2) = < Xys--esX, >+ By Lemma 2.3, there

exist W ,..es s VseensV, € F(X,..0,X)) such that for b € K, b € 5, if and

only if ui(b) = vi(b), i=1,...,t. So ui(xl,...,x ) = vi(xl,...,xn), i=1,...,t.

n

Hence ui(w(xl),..., w(xn)) = vi(w(xl),...,w(xn)), i=1,...,t. Thus
ui((\b(xl))(a),---,(w(xn))(a)) = vi((w(xl))(a),...,(w(xn))(a)) for all a € 8.,

i=1,...,t. So ((!P(Xl))(a),---,('P(Xn))(&)) €5,
_tj;:sl—r S, as ¥(a) = ((tp(xl))(a.),...,((w(xn))(a)). So ¥ is a *-homomorphism, y(1)=1,

¥(0) = 0. Clearly xi(E(a)) = ((¥(x;))(a) for a1l a€S, i=1,...,t. Since

for all a € Sl. Define

45(82) =< XpseeeaXy % (7) and hence () is true. It is clear from (7) that

vo=19 (9)

Now let ¢:S, >S5, be a *-homomorphism, ¢(1) =1, ¢(0) = 0. Then for all x€ O(Sz),

a€s., by (7),

l,

x((8)(a)) = (6(0)(a) = x(6(a))
By Lemma 2.2(3),

>

¢ =9 (10)

THEOREM 2.4. Let S S, be connected d-semigroups with zeros, dim Si> 0,

1> 520 53
i=1, 2, 3. Then

(1) 1f $:8,+8, is a *_homomorphism with ¢(0) = 0, ¢(1) = 1, then

2

* *
¢ : 0(82)+¢(Sl) is a homomorphism and ¢ = ¢.

*
(2) 1If i:Sl + S_ is the identity map then i :O(Sl)—b@(sl) is the identity

1

map.

(3) 1If w:Q(Se)-r@(Sl) is a homomorphism, then J:sl->s is a *-homomorphism

2
- —_ —*
with ¢(0) = 0, (1) = 1. Moreover y =y .

(4) 1f i:d?(Sl)—rQ(Sl) is the identity map, then ?L-:Sl'* S, is the identity
map.

. . *_ 1 i = =
(5) 1If $,:8,>5,, ¢2.sg+33 are *-homomorphism with ¢i(o) 0, ¢i(1) 1,
. o ( )* ok *
i=1, 2, then ¢20¢l -¢lo¢2.
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(6) 1If wl:Q(Se)-*¢(Sl), w2:0(s3)-+®(82) are homomorphisms, then

(7) S, is *-isomorphic to S

1

o if and only if ¢(Sl) is isomorphic to 0(82).

PROOF. (1), (3) follow from the equations (6)-(10). (2), (4) are trivial.
(7) follows from (2), (4), (5), (6). So we need only prove (5), (6). First we

prove (5). Let x € @(83). Then for all a € 8.5

((8, 0 67 (x))(2) = x(9,(4;(a)))

(65(x)) (8, (2))

= (43 (85(x))) (=)

(6] 0 43)(0))(a)
* #* *
So (¢, 0 ;) =) 09,

Next we prove (6). Let a € S, x € 0(83). Then by equation (7),

x(¥] o ¥y(a) = (¥ 0 ¥,)(x))(a)

(¥, (,(x))) (=)

(,(x)) (¥, (2))

X (¥, (9, (2)))

x(¥, o ¥ (2))

By Lemma 2.2(3), wl ) w2 = ¢2 0 EI, proving the theorem.

THEOREM 2.5. Let wy,...0) € F(X ,...,X ). Let V= {(w (a),...,0 (a))]a€ K"}

- K'. Set S =V. Then S is a closed connected d-submonoid with zero, of (Kn,° ).

Moreover &(S) & < w >.

IRRREELN
PROOF. Define 0:(K",:)~ (K*,+) as 8(a) = (ml(a),...,wn(a)). Then 6 is a
*_homomorphism with image V. So S = V is connected. Clearly 1 = 6(1), 0=6(0)€S.

Let Xy denote the ith projection of S into K. Then by Lemma 2.2, &(8) =
SXprereaXy > - mtmveFW,””%L %mweﬂﬁvum)=vhruqu

1 n n
Then u(b) = v(b) for all b € S. So
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u(w (a),...,0 () = v(w (a),...,0 (a)) for all a € - (11)
n n

Since K is infinite, u(ml,...,wn) = v(wl,... ,wn) in F(Xl,.. .,Xm). Conversely

suppose u(w .,wn) = v(wl,...,mn) in F(Xl,...,Xm). Then (11) is true. So

Lo
u(b) = v(b) for all bEV. Since V =S, u(b) = v(b) for all bES. So ulxyseeeaxy) =
v(xl,...,xn). It follows that ¢(S) i SETRRIS SR T RS

By Theorem A, Lemmas 2.1, 2.2, Theorems 2.4, 2.5, we have.

THEOREM 2.6. Let N1 be the category of connected d-semigroups with zeros of
dimension > 0 with morphism being *-homomorphisms ¢ with ¢(0) = 0, ¢(1) = 1. Let
N2 be the category of finitely generated, commutative, idempotent free, totally
cancellative semigroups with morphisms being semigroup homomorphisms. Then (¢,*)

is a contravariant equivalence between Nl and N2.

THEOREM 2.T7. Let S be a closed connected submonoid of (Kn,') with zero
0=(0,...,0). Then for some m€Z+, Wyseeesw € (X

1oeeeaXy), 8 = V where V =
m
((ml(a),...,mn(a.))la €K }.

PROOF. Let Xy denote the ith projection of S into K. Then by Lemma 2.2,

+
#(s) = <Xps+++sXy>. By Theorem A, 6(8) » < W) ,...,0 > for some m € Z°,

wl,...,wne F(Xl,...,Xm) with Xg > - Let V = {(ml(a),...,wn(a))laelen} and set
5 = V. Thenl = (1,...,1),0 = (0,...,0) € S,- Let u, vE€F(Y),...,Y ). Suppose
u(e) = v(c) for all ¢ € S. Then u(xl,...,xn) = v(xl,...,xn). So u(wl,...,wn) =

v(“’l”"""n)' Thus u(b) = v(b) for all bEV. Since V = 5,5 u(b) = v(b) for all

bES, . Conversely suppose u(b) = v(b) for all b € 5, - Then

u(wl(a),...,mn(a)) = v(wl(a),...,wn(a)) for all a € K

= V(Xls""x ).

Since K is infinite, u(wl,...,wn) = v(wl,...,wn). So u(xl,...,xn) n

Thus u(c) = v(c) for all c € S. By Lemma 2.3, S =5,.
COROLLARY 2.8. Let S be a closed connected submonoid of (K‘n,-) with zero
. + -
0= (0,...,0), dim S=1. Then there exist il,...,lnGZ such that S
il in i ; ez’ defined as above is a
{é 5o sl )IaEK}. Conversely, for any ll,...,ln Z , S define

closed connected submonoid of (K%,+) with zero 0 = (0,...,0) and dim 8 = 1.
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V= {(wl(a),...,wn(a))lae K"} and S=V. Let v, = {(wl(a,...,a),...,wn(a,...,a.)|

a€K}, CS, dim 5, =1. So S=5. So there exist i,,...,1 € z*
il i il i
= {(a ",...5a n)IaGK}. Define 6:K+S as 68(a) = (a ~,...,a

=Vl. Then S

Sl 1

such that V. %y, Then

1
it is easy to see that 6 is a finite morphism in the usual sense of [5; Section

4.2]. By [5; Proposition L4.2], 8(K) = 8.

THEOREM 2.9. Let S be a connected monoid with zero, dim S = 1. Then S is

#_jsomorphic to a semigroup of the type given in Corollary 2.8.

PROOF. By Corollary 1.5, S is a d-semigroup. We are now done by Lemma 2.2

and Corollary 2.8.

THEOREM 2.10. Let S be a connected semigroup, e, fEE(S), e>f. Then there

exists a closed connected subsemigroup Sl of S such that e is the identity of Sl’

f is the zero of S:L and dim Sl =1,

PROOF. We can assume that e is the identity element of S (otherwise we work
with eSe). By Lemma 1.1 we are reduced to the case when f is the zero of S. By

Corollary 1.5, we are reduced to the case when S is also a d-semigroup.

A(S) = {All prime ideals of S} U {g}.
X(s)

{s\1]|1 € A(S)}.

Q(s)

Maximal semilattice image of S.

It is easy to see that (A(S), ©) » (A(Q(S)), C) is a complete lattice. If S is

finitely generated, then Q(S) is finite and so (A(S), C) is a finite lattice.

THEOREM 3.1. Let S be a connected d-semigroup with zero. Define a:I(S) +
r(e(s)) as a(I) = {x|x € #(S), x(a) = 0 for all a € I}. Define B:I(#(S)) + 1(s)
as B(W) = {a|la € S, x(a) = 0 for all x € W}. Then a,B are inclusion reversing

bijections and B = a1, Moreover a(A(S)) = A(9(8)).

PROOF. C(Clearly «,B are inclusion reversing. Let I€A(S). Then I=eS for
some e€E(S). So a(I) = {x|x € #(5), x(e) = 0}. It follows that a(I)€EA(®(S)).
Clearly ICB(a(I)). We claim that I=8(a(I)). Suppose not. Then there exists
a € B(a(I)) such that a @ I. Let a Hf, £ € E(S). Then £f€1I, f€8(a(I)). So

e # f. By Lemma 2.1(2), there exists x € ¢(S) such that x(f)=1, x(e)=0. So
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x € a(I) and f € B(a(I)), a contradiction. So
for all I € A(S), a(I) € A(#(S)) and B(a(I)) =1 (12)

Let P € A(9(S)). We claim that B(P) € A(S) and a(B(P))=P. By Lemma 2.1, this
is true for P = &(S). So assume P # &(S). Then F = #(S)\P is a subsemigroup of
®(S). By Lemma 2.2 we can assume that S is a closed submonoid of some (%, ),
0=(0,...,0) € S and that #(8) = < Xqse--oXy > vhere X; is the it® projection of
S into K, i=1,...,n. Let A = {xilxiEF}. Then<A>= F. Let e= (el,...,en)
where ei=l if xiEA, ei=0 if X3 ¢ A. We claim that e € S. Suppose not. Then
by Lemma 2.3, there exist u, v € F(Xl,...,Xn) such that u(a)=v(a) for all a€Sand
u(e) # v(e). Since u(e)2 = u(e) and v(e)2 = v(e) we can assume that u(e) =1,

v(e) = 0. Clearly u(xl,...,xn) = V(Xl,---,xn)- Since u(e) =1, u(xl’“"xn)

By Lemma 2.2 and Theorem 2.7, we can assume that S is as in Theorem 2.7, with

e=(1,...,1), £ =(0,...,0). Let v, o= {(wl(a,...,a),...,wn(a,...,a))laGK},

=7 € i = C s. i .
Sl Vl' Then e, f Sl’ dim Sl 1, Sl- S Define 6:K -+ Sl as
8(a) = (wl(a,...,a),...,wn(a,....,a)). Then 6 is a *-homomorphism. So Sl is

connected. This proves the theorem.

3. POLYTOPES

If X_‘-:]Rn, then we let C(X) denote the convex hull of X (see [4]). The con-
vex hull of & finite set in R" is called a polytope [4]. If the vertices of P
are rational, then P is said to be a rational polytope. If XCP, then X is said
to be a face of P [4; p. 35] if for all a, b€ P, a € (0,1), aa + (1-a)b € X if
and only if a, b € X. Let X(P) denote the set of all faces of P. Then [4; p. 21],
(X(P),C) is a finite lattice. Dimension of P is defined to be the dimension of
the affine hull of P [4; p. 3]. Then dimension of P = (length of any maximal chain

in X(P)) -1. Two polytopes P., P, have the same combinatorial type if X(Pl) A

1° "2
X(Pg) (see [4; p. 38]1). By [L4; p. 24L4], every polytope of dimension <3 has the

same combinatorial type as some rational polytope. However this is not true in

general [4: p. 94]. If u = (al,...,a. ), v = (Bl,...,Bn) €ETR" then let u + v =

n
n

2 aiBi denote the inner product of u and v.
i=1
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Let S be a semigroup. An ideal I of S is said to be semiprime if for all

a€Sg, a2€I implies a€I. I is prime if for all a, b€S, ab€ I implies a€1I or

bEI. Let
I1(s) = {All ideals of S}
A(s) = {A11 principal ideals of S}
r(s) = {All semiprime ideals of S} U {¢@}

involves only those Xl’s with X4 €F. So u(xl,... ,xn)eF. Since v(e) =0,
v(Xl,...,Xn) involves at least one Xi with X3 € F, So v(xl,...,xn) €P. This con-
tradiction shows that e € S. Clearly x(e)=1 for x € F, x(e) = 0 for x € P. Hence

P = {x|x € o(s), x(e)=0} = a(eS). By (12), B(P) = B(a(eS)) = eS € A(S),

a(B(P)) = a(eS) = P. So

for all P € A(%(S)), B(P) € A(S) and a(B(P)) = P (13)
Clearly

a(Il U 12) = a(Il) n u(12) for all I, I, € 1(s) (14)

Let Wl, W2 € I(%(S)). Then clearly B(Wi)S_B(WlﬂWZ), i=1,2. So

V] n s -
B(Wi) B(Wz) g;s(wl w2). Let a € s(wl n w2). Suppose a & B(wi), i=1, 2.
Then there exist ei € Wi, i=1, 2 such that ei(a) #0,1i=1, 2. So

= N i i
8 6,6, € W, Ny, 6(a)#0. So a € e(wl n w2), a contradiction. Thus

W, € T(e(s)) (15)

B(WI N W2) = B(Wl) v B(WZ) for all Wl, >

Clearly A(S) is finite. Let I € I(S). Then I = Il v I, U... U Ik for some

Ise-sT, €A(8). By (12), B(a(I)) =1, r=1,....k. By (14), (15),
a(I) = a(Il)ﬁ... N a(Ik)
B(a(1)) = B(a(T))V... U 8(a(1,))
= LV..VuI
= I
So
B(a(I)) = I for all I € I(S) (16)

Since ¢(S) is finitely generated, A(#(S)) is finite. Let W€ r(#(s)). By [2;

p. 125, Exercise 9], W=W, N ...NW_ for some W

1 k Laeeeoly € A(®(S)). Then by (13)
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a(B(W_))=W_ for r=1,...,k. Then by (14), (15),

B(W) =8(W)) U ...Ug(W)
a(8(W)) = a(B(W)) N...Na(B(W,))
=W 0. 0W
= W
So
a(B(W)) = W for all W€ r(#(s)) (17)

By (16) and (17), u-l=B. By (12), (13), a(A(8))=A(®(S)). This proves the theorem.

REMARK. The classical Hilbert's Nullstellensatz yields a 1 -1 correspondence
between the closed subsets of Kn and the radical ideals of K[X.,... ’Xn]' Moreover
this restricts to a 1 -1 correspondence between the closed irreducible subsets of

Kn and the prime ideals of K[X ,Xn]. Analagously, Theorem 3.1 yields a 1-1

SERRE
correspondence between the ideals of a connected d-semigroup with zero S and the
semiprime ideals of its character semigroup ¢(S). Moreover this correspondence

restricts to a correspondence between the principal ideals of S and the prime

ideals of &(S).

THEOREM 3.2. Let S be & connected d-semigroup with zero. Then

(us), <) ~ (E(s), <)  (X(#(s)), ©).

PROOF. Clearly (A(S), C)n (U(S), <) » (E(S), <). By Theorem 3.1, (A(S), €)
is anti-isomorphic to (A(#(S)), C). Clearly (A(#(S)), C) is anti-isomorphic to

(X(#(s)), €). This proves the theorem.

Let men denote the set of all mXn matrices over Q. The following result is

well known. However, we include a proof here for the convenience of the reader.

mxn
FACT 3.3. Let A€Q ", u = (aj,...,a ) €R" such that uA = 0. Then there
exists v = (Bl,...,Bm) € Qm such that vA = 0 and for i=l,...,m,ai> 0 implies

Bi>0, ai <0 implies Bi< 0.

PROOF. Let N = {X|X G]Rm, XA = O}denote the left null space of A. Since

mxn

A€EqQ , there exist ul,...,ut € Qm such that ul,...,ut is a basis of N. So
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t
+ 1 1
u= le e:Juj for some €qseeesby ER. Let e € R, el,...,eteQ. Then

t
v = 2 e u, €ENN Q For Z|e;-ejl small enough, |u-v| <e. For € small enough,

s 99
the conclusion of the lemma clearly holds.

d
COROLLARY 3.4. Let Wl s vl,...,vnEQ » G seenslps Bl,...,BnG R

' ' ' ' +
such that Z a,u, = Z B . Then there exist Bseees® Bl""’Bn € Z such
i=]1

that Z au= z B
i=1 MR

' t ' +
PROOF. By Fact 3.3 we can choose S ELEREL Bl,...,Bn € Q such that

" " +
Z B'j 3 Then for some s€Z+, a, = sa,, BJ = sBJ €z ,1i=1,...,m,

e
'—l

”
J=1,...,n. Clearly 2 au, = Z B
i=1
THEOREM 3.5. The classes {X(S) |S is a finitely generated, commutative,
idempotent-free, totally cancellative smeigroup} and {X(P) | P is a rational

polytope in " for some n€ Z+} are identical to within lattice isomorphisms.

PROOF. Let S be a finitely generated, commutative, idempotent-free, totally

cancellative semigroup. By Theorem A we can assume that S =< U .,un>5 (z7,+),

0¢S. Let C = C(ul""’un)‘ By Fact 3.3, 0¢C. So CN-C = @. By [b; p.11],

. d
there exists u € R~ such that u-a>0 for all a€C. So u-wu, >0, i=1,...,n Ir
5 R

d
vER", then |u°u1-v-u | = [(u=-v) - ul<||u v|| “ui” So for |[u-v]||
small enough, v ui> 0 for i=1,...,n. So, without loss of generality, we can

a d
—— € Q. Let 8)5...,8 €S,

assume that u € Qd, If a€S, then let 6(a) =
u-a

+
al,...,ake Z and set a = alal + ...+ ak%. Then

8(a) = B;0(a;) €C sene
1£1 ! (6a))5..050(a)),

(18)

Z §.=1where Bi = >0, i=1,...,k.
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So P = C(8(s)) = C(e(ul),..., e(un)) is a rational polytope. If X € X(S), then
let ¢(X) = C(8(X)) C P. If F € X(P), then let ¢(F) = {aa€s, 6(a) EF} C 5.
Let X € X(S). Let x, yEP, a € (0,1) such that ax + (1-a)y=2 € ¢(X). There

exist al,...,ap, bl,...,bqes, cl,...,crEX, al,...,ap, Bl,...,Bq,

Yyseees¥, € (0,1) such that x = Zaie(ai), y = zeje(bj), z = Eyke(ck),

] | 1 1 ] 1 +
Za, = IB, = Zyk = 1. So there exist a ,...,up, Bl""’Bq’ Yl”"’Yr € R suchthat

i J

1 1 1
+ =
).'.aiai LB jb 3 Zykck
" " n " " "

X +
By Corollary 3.4 there exist Apseenslos Bl,...,Bq, Yl,...,yrEZ such that

" n ”n
= €
Zaiai + zs,jbj Eykck X

Since X € X(8), al,...,ap, bl

vy € C(B(bl),...,e(bq)), x, ¥ € ¢(X). Hence ¢(X) € X(P). Clearly X C y(¢(X)).

,...,quX. Since x € C(e(al),...,e(a.p)) and

1,...,ap € X, a,

Zaiai. By Corollary 3.4, there exist a',

Let a € Y(¢(X)). Then 68(a) € C(6(X)). So there exist a

+
al,...,ap €R such that aa

t ,e + 1
al,...,ap Z such that a a 5

Za;a.EX. So a € X. Hence
for all XEX(S), ¢(X) € X(P) and ¢($(X)) = X (19)

Let Fe XP). By (18) ¢(F) is § or a subsemigroup of S. Let a, bES such
that a + bEY(F). By (18), 6(a+b) = e8(a)+(1-¢€)8(b) € F for some €€ (0,1).
So o(a), 8(b)EF. Hence a, bEY(F) and y(F) € X(S). Clearly ¢(y(F))CF. Let

k

EF. = =
x Then x€P = ¢(S). So x izl eie(ai) for some a,,...,a €S, €1areesg € (a1)
such that Eei = 1. Then e(ai) €F,i=1,...,k. So al,...,akew(F) and
x € ¢(y(F)). So ¢(¥(F)) = F. Hence
for all FEX(P), u(F) € X(8) and ¢(y(F)) = F (20)

Since ¢,y are clearly inclusion preserving, it follows from (19), (20) that
(X(8), ©) » (X(P)y<).

Conversely let P gmm be a rational polytope. Then P = C(al,. .. ,an) for some
81500058 €eq®. Iface€ Z+, then clearly (X(P), €) ~ (X(aP), €). So we can assume

t - = i= = =
hat a,, e €7 . Let uy (ai,l), i=l,...,n, d =m+1. Then Pl—C(ul,...,un)=
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P x {1} € R? is a retional polytope and (X(P), C) n (X(P )s ©). Let S =

da . s
< Upseeesly >C Z°. Then O€S and S is a finitely generated, commutative,totally

cancellative, idempotent-free semigroup. Let u = (O,I)EZd. Then u+*u, = 1,
i

u.
i=1,...,n. So 8(w) = —_— =y, i=1

T 5 seeesn. By the proof of the first

half of this theorem, (X(8), C)

e I—‘F

(X(Pl), C). This proves the theorem.
If S is a connected d-semigroup with zero, then by [7; Theorem 3.17],

dim S = length of any maximal chain in E(S). By Theorems 2.6, 3.2 and 3.5 we have,

THEOREM 3.6. The classes {(E(S), <) | S is a connected d-semigroup with zero,
dim S> 0} and {(X(P), €) | P is a rational polytope in R" for some n€ Z+} are
identical to within lattice isomorphisms. Moreover, for any corresponding S and

EXAMPLE 3.7. If S=(Kh,-), then the corresponding polytope P is a tetrahedron

More generally if S = (Kn,°), then the corrsponding polytope P is the (n-1)-sim-

plex.

EXAMPLE 3.8. Let S = {(a;,b a3,b3)|a »b,EK, a;b,=a,b,, i, 3=1,2,3}.

1’8‘2’b2’ J J
6
Then by [7; Example 4.7] S is a closed connected d-submonoid with zero, of (K ,°).

Moreover dim S=4 and |E(S)| = 22. The corresponding polytope P can be shown to

be the triangular prism:

2
EXAMPLE 3.9. Let S = {(a 178p583:8) 585 ,a6)|a.l, ..,a6€K a.3a.1 = aga,,
2 _ 2 2 _ 2 . 6.6
a2a5 = alah, a.zah = a5a3}. Define ¢:K +K as

2.2 2.2 2 2 22
¢(xl,x2,x3,xh,x5,x6) = (x3xhxg, XpXaXss X)XoX3s XX X) s X1X)Xgs x¢)

. 6
Then ¢(K6) = S and so S is & closed connected d-submonoid with zero, of (K ,*).

Clearly dim S=4 and |E(S)| = 24. The corresponding polytope P can be shown to

=

be the pentagonal pyramid:



688 M. S. PUTCHA

COROLLARY 3.10. Let S be a connected semigroup such that U(s) is the

S
~..

PROOF. By the proof of Theorem 1.9, we can assume that S is a monoid. Let

following lattice:

Then n < 2.

Sl be a maximal connected d-submonoid with zero, of S. Then by Theorem 1.8(3)

E(Sl) NJ# ¢ for all J € U(S) and dim 5, = 2. By Theorem 3.6, the polytope P

corresponding to Sl has dimension 1. So P is the line

—

So |E(Sl)l =4, Thus |U(S)| < [E(Sl)| = k4. Hence n < 2.

EXAMPLE 3.11. M2(K) and (K2,°) show that n can be 1 or 2 in Corollary 3.10.

4. SEMILATTICES
As usual, by a semilattice, we mean a commutative, idempotent semigroup.
LEMMA L.1. Let Q be a finite semilattice. Then |X()| = |a| + 1.

PROOF. We prove by induction on |Q]|. If |2] = 1 this is clear. So assume
|a] > 1. Let a be a maximal element of @. Then {a} € X(Q). Define ¢:X(Q)+X(R))

as ¢(F) =F N Q. Let F € X(Ql) and set P

= Q\F.. €
1 ﬂl Fl Let pE€EP We claim that

1 1

ap€P Otherwise f = ap € F Then f = pf€ Pl’ a contradiction. So aP, C P

1° 1° 1 1°
€ =
If Fl X(g), then ¢(Fl) Fl.

€ i v € . .
f, € F, such that of) € F,. Now we claim that F, {a} € X(Q). Otherwise aFlg F

€ . = € = €
So af2 Pl for some f26 Fl So aflf2 (c:.i’l)f'2 Fl and aflf2 (afz)fl Pl’ a

contradiction. So Fy U {a} € X(RQ), ¢(F1u{a}) =F

Suppose not. Then uF1$P1° So there exists

1° Thus ¢ is surjective. Let

F, € X(nl), F # 06, F, G € X(Q), o¢(F) = F, = ¢(G), F # G. We can assume that

o€F,a¢G. SoG=F,,F=F ¥ {a}. Since a €F, oF CF. SooF, CF

1 1’
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Since o € G, oG € Q\G. So aF, S-Ql\Fl’ a contradiction. Thus |¢_1(Fl)| = 1.
Clearly ¢7M(8) = {g, {a}}. So |X(@)| = [X(2))] +1 = || +1+1= |a] +1.

If Q is a semilattice, then let Y(Q) denote the semilattice of all hamomorphisms

of @ into @, = {0,1}. Then clearly ¥(2) x (X(a),N). Let V*(n) = Y(a)\{1,0}.
Then V*(n) may or may not be a subsemilattice of V().

*
LEMMA L4.2. Let Q be a finite semilattice. Then Y (¥Y(Q)) is a semilattice

and 2 n ¥ (Y(R)).

PROOF. Define 6:Q + Y(Y(Q)) as 8(a) (f) = f(a). Then 6 is a homomorphism.
Clearly 6(a)(1) =1, 6(a)(0) = 0. So 6(a) € V*(V(Q)). We claim that 6 is in-

Jective. We can assume that @ € Q e X QO. Let fi denote the ith projection

0o X -
of @ into Q). Then f, € Y(Q). Let «,B € Q such that 6(a) = 6(B). Then

e(a)(fi) = e(B)(fi) for all i. So fi(a) = fi(B) for all i. So a=8. By Lemma

5.1, |V'(Y(@)] = |a|. Hence 2 ¥Y(¥(2)).

COROLLARY L4.3. Let Q Q, be finite semilattice such that

l’
(X(a;), ©) » (X(2,), S). Then @ » Q.
* *

COROLLARY L4.L. Let Q be a finite semilattice such that Y (Q) is a semi-

lattice. Then V(V*(Q) N Q.

*
Y (Q). Then by Lemma 4.2,

PROOF. Let ﬂl

2, = v (a).

e

v (via))
So V(V(ﬂl)) ~ Y(Q). Again by Lemma 4.2,
* *
via) = v (a0 = v v(R) x

If S is a finitely generated semigroup and if Q is the maximal semilattice

image of S, then clearly Q is finite and (X(S), C)

le

(X(Q), ). By Theorem 3.5,
Lemma 4.2, Corollaries 4.3, 4.4, we have.

THEOREM 4.5. (1) Let (L,V ,A) be a finite lattice. Then L % X(P) for

*
some rational polytope P if and only if @ = ¥ (L,A) is a semilattice and @ is
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isomorphic to the maximal semilattice image of some finitely generated, commutative,
idempotent free, totally cancellative semigroup.

(2) Let Q be a finite semilattice. Then Q is the maximal semilattice image
of some finitely generated, commutaitve, idempotent free, totally cancellative
semigroup if and only if (X(Q), €) is isomorphic to (X(P), C) for some rational
polytope P.

If P is a polytope, call X(P), the face lattice of P. By a theorem of
Tarski (see [b; p. 91]), the enumeration problem for face lattices of polytopes
is solvable. However, for rational polytopes the problem is not yet solved [L;

p. 92]. By Theorem 4.5, we have,

THEOREM 4.6. The enumeration problem for face lattices of rational polytopes
is solvable if and only if the enumeration problem for maximal semilattice
images of finitely generated, commutative, idempotent-free totally cancellative

semigroups, is solvable.
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