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ABSTRACT. Suitable singularites such as a dynamical Kelvin quadropole are defined

to study the dynamical displacements set up in an infinite homogeneous and iso-

tropic elastic medium. Approximate solutions are presented up to terms which are

of higher order than those known so far.
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i. INTRODUCTION.

In the recent studies in the displacement type boundary value problems the

solutions have been obtained by matched asymptotic expansions [i], integral equa-

tion techniques [2] and singularity methods [3-5]. The singularity methods are

based on distributing the fundamental solutions and multipoles, and centres of

rotation on suitable lines, curves and surfaces [6,7]. By these methods it is

possible to allow various dimensionless parameters inherent in the problem to

vary independently. Furthermore, these methods enable us to obtain the solutions

ot asymmetrical boundary value problems as well [8]. However, all the dynamical

solutions presented so far are derived up to the first order of approximation.
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Our aim in this paper is to introduce the steady-state dynamic singularities and

apply them to obtain the solutions for the rectilinear oscillations of inclusions

embedded in an infinite homogeneous isotropic medium up to a higher order accuracy.

2. DYNAMIC SINGULAR POINTS.

The dynamical equations of elasticity are

S2u
grad div u + V2u- p -- + f 0, (2.1)

where is the displacement vector, and are Lam$’s constants of the elastic

medium, 0 is the density of the medium and f is the body force per unit volume.

it itLet us assume that f f0 e u u
0

e Substituting these values in (2.1)

and dropping the zero subscript, we have

(I + ) grad (div u) + V2u + 02u + f 0, (2.2)

or

i 2v
grad div u + n2u m

2

2 2
where m p /D, and m is the Poisson ratio.

+ f 0, (2.3)

The fundamental solution U
dk

corresponding to the force

fdk(x) 4 (x) , (2.4)

where x (Xl,X2,X3) is the field point, (x) is the Dirac delta function, is a

constant vector and the superscripts d and k signify the words dynamic and Kelvin

respectively, located at the origin of the coordinate system is

~U
dk

(x;)
e
R ~ + V(-V) e

R
e

R
m

2
where R Ix and (i 2m)/2(i m). This solution will be called the

dynamical Kelvin solution.

The net dynamical force F experienced by a control surface S enclosing the

singular point is given by

F n T ds V T dV fdk dV + m D

s V V V

4D + m2 I [ dk

V

(x,)dV,

(x;)dV

(2.6)
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where n is the unit outward normal to S, T is the stress tensor and V is the con-

trol volume enclosed by S. The net moment M is clearly zero.

In free space a derivative of (2.5) of any order in arbitrary direction is

also a solution of (2.3). The corresponding forcing function is the derivative of

fdk of the same order in the same direction. These derivatives can be obtained

dk
easily by expanding (x_;), where is a given vector, in Taylor series

about x. This expansion is

udk udk iudk(x-;) (x,) (.V) (x;) + (.V)
2 udk (x;) + (2.7)

The interpretation of various terms on the right hand side of (2.7) is as

follows. The first term is the dynamical Kelvin solution discussed above, the

second term represents the dynamical Kelvin doublet characterized by the vectors

and , the third term gives the corresponding quadrople and so on. The dynamical

Kelvin doublet can be written as

udkd(x;,) (.V) U
dk

(x;)

-imR [ -imR -imR](.v)
e

v(g.v)(.v)
e e

R R
(2.8/

m

while the corresponding forcing function is

dkd 4(.V) 6(x) 4[’V(x)] (2.9)

where the superscript dkd stands for the dynamical Kelvin doublet.

From relation (2.8) it follows that a dynamical Kelvin doublet is not symmetric

with respect b the changing of and . Its symmetric and antisymmetric parts

yiled another important fundamental solution. The antisymmetric part is

i U
dkd

(x;,8)- Udkd (x;,)
i e
-f .-v. R ~_~.V_ R

-imR
Vx

2 R

drWe shall call it the dynamical center of rotation and denote it as If we set

] ()/2, the above relation becomes

U
dr

(x,%) R
(2.10)

where the superscript dr stands for the dynamical center of rotation. The
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corresponding forcing function is

fdr 1 Ifdkd fdkd ](x;2,) (x,,) 4p V x [a(x)]. (2.11)

U
dr

e
-imR

Since has only a vector potential % /R and no scalar potential, the

net force F vanishes while the torque M experienced by the control volume V con-

taining the singular point and bounded by S is

M I x x(n- T)ds I (V- T)x x dV

S V

m2 I Udrx _x dV + p (x;,) x _x dV

V V

8V% + m2v I Udr (x;Z,) x dV

V

(2.12)

The symmetric part of the dynamical Kelvin doublet gives us another fundamen-

tal solution which will be called the dynamical stresslet. The corresponding dis-

placement field and the forcing function respectively are

i [udkd UdkdU
dks

(x;,) E (x;a j) +

-imR < -imR -imTR )1 [(J-V) + g(a-Vl]
e I__ V(g.V) (.V)

e e
2 R 2 R R

m
(2.13)

and

fdks 2=p {j- V $()}a + {a V(x)}j (2.14)

This fundamental solution represents a self equilibrating system and accordingly

contributes neither a net force nor a moment to the medium.

Another useful fundamental solution in the present investigation is the poten-

tial doublet which is characterized by a scalar function and is also useful in

discussing vibrations in Stokes flow [7]. The displacement field due to this

potential is

-imR -imR2 e
Udd (x;) V(V

e
) + m a.

R R
(z.i5)
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In the next section we demonstrate that these fundamental solutions are very

effective in solving boundary value problems in elastodynamics. To fix the ideas

we consider the case of a spheroid.

3. TRANSLATION OF A PROLATE SPHEROID.

Let the rigid spheroid S,

2 2
x + r 2 2 2 2 2 2 2 2- - I, r y + z c (a b )= a e
a b

(3.1)

where e(O _< e _< i) is the eccentricity and 2c is the focal length, be embedded in

an isotropic and homogeneous elastic medium. It is excited by a periodic force

with period 2/m acting in the direction of its axis of symmetry so that the dis-

placement of the points on S is

U=U (32)X’

where is the unit vector along x-axis and U is a constant.

Our aim is to find the displacement field in the elastic medium so that equa-

tion (2.3) and the boundary condition (3.2) as well as the far-field radiation

condition are satisfied. For this purpose we apply the technique of distributing

the appropriate singularities in reference [3]. In the present situation we have

the following line distributions between the focii x -c and x c,

C C

u(x) I FI(E)U
dk

(x-, ex)dX + I F2(E)(c2- E2) udd(x- , L)dE, x S,

--C --C

(3.3)

where E $ The first integral in (3.3) represents the line distribution of

dynamical Kelvin solutions (2.5) of variable strength FI(E) while the second inte-

gral is the line distribution of potential doublets (2.15) with the strength

2 E2(c F
2 (E). Clearly, (3.3) satisfies the differential equation and vanishes

as 151 /

To find FI(E) and F2(E) we apply the boundary condition (3.2) on the surface

S of the spheroid and get

C C

U $ FI(E) U
dk

(x- x dE + F2(E) (c E2) (x- ex) dE x S

(3.4)
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It is obvious that we cannot easily find a closed form solution of quation (3.4).

Accordingly, we use a perturbation technique for small values of the parameter m.

For this purpose, we expand all the functions in (3.4) in powers of m,

2
FI() fll() + mfl2() + m f13() + 0(m3), (3.5a)

2
F2() f21 () + mf22 () + m f23 () + 0(m3)’

i uk(x , iUdk(x i, ex) 4(i-) ex)
2+T

3

(3.5b)

L- (3 + T4) lx-l x +
(i T4)(x )(x_- )

+
8 8 (x )

2
(m

3
m + 0 ), (3.5c)

udd(x_ , x) d (x- , x + [x- 1 +
(x-) (x-S)

m2 + 0(m3),

(3.5d)

where
3 ( x)x(3 4) ( x)x dd

-(x, +Uk (x,) R
+

R
3 U0

R
3 R

5

are the Kelvin solution and potential doublets respectively for the elastostatic

field 3 ].

When we substitute the expansions (3.5) in (3.4) and equate the equal powers

of m we get the following system of equations
c C

4(1- ) fll (x- , x)d + (c
2 $2)f21 U0 (x- ex) ~x

(3.6)
C C

4(_,)? f uk (- g, gla+ (c f o (- ’
"r
3

i(2 + f d
~x 3 Ii

--C

(3.7)

4 (I )

C C

f13 Uk~ ( ’ x)d + (c2 2)f23 U0
--C --C

C

[ 4 (I 4)(X 1( ) ]I Ix- l - S lx-fll 8 I d

--C
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i I 2 2 ex (x-) (x-i) i(2 + T(c )f21 IX-- I +
Ix I 3 d +

3 xe fl2d"
-C

(3.8)

The solutions of equations (3.6) and (3.7) are available in reference [3] so that

I 2e
2

2 I 21-12 f21 Ue 2e + (i + 3e
2

4Ye )L (3.9)4(1 v) fll
I e

2
i 2e

4(i D) f12 2 f22
i e

2i(2 + %3)
flla e -2e + (i + 3e

2
-I

3

(3.10)

where L in [(i + e)/(l e)].

Next we substitute (3.9) and (3.10) in (3.8) and obtain

C C

i
f U

k
(x i, d + (c

2 2)f23 U0 (x i ex)d4(1 ) 13 ex)
--C --C

(@0 + iX2) + @2xr r’ (B.11)

where

40 4

2
a f

Ii 2
a
2

[e(l + %4) + (i e )L] f21 (-2e + L) +

i
fll %4 2 2-- [e(l + (i e )L] f2114e (2 e )L],

2iae (2 + %3)
3 f12’

(3.12a)

(3.12b)

I 4I T
f e + f (-2e + L)42 4 ii 21

(3.12c)

and e (y + z )/r is the unit radial vector in the yz plane. To solve
r y z

(3.11) we set

fl3(X) A
0
+ A2x2 (x) C

O
+ C2x2 xl < cf23 (3.13ab)

The substitution of relations (3.13) in (3.11) and simplification yields

2

4(1 ) (A0 + c + 2 (C0 + c C2) Nx2 2 2
~r

l-e a ex

+ [0A0 + IA2 2CoL + @2C2 "X

2
-x (A2%I + 2%2 x (A2@I + 2@2 xr

~r (0 + ’Ix2) @x + @2xr r’
(3.14)
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where

I
+L 4)i =a e-)0 2(1 )e

(i e 2)(3 21)) ]
4 (i ))

L | (3.15ab)

2
2 2a

2
[6e- (3- 2e )L], I

1
(14- 12) e- (7 -6- 3e

2 + 2ve2)L
4(i )

(3.15cd)

2 2e+L
2 -36e + 2(9 3e )L, @i 2(1 ) @2 16e + 8e

2 12L

(3.15efg)

Equation (3.14) is satisfied if we choose

2
i

"--O(A- + c2A2) 2e 2
4(1 ))

i e
2 (CO + c C2) (3.16)

q0A0 + qiA2 2LC0 + 2C2 0 (3.17)

@IA2 + @2C2 2 (3.18)

IIA2 + 12C2 I (3.19)

This is a linear system of equations which has the following solution

A
2

12@2 @2U21
1182 1281

(3.20)

C
2 1181 1281

(3.21)

C0 2
+ 2L 2

8a2 (l-v)e3
2

C
i- e i- e

0 + (ql- c2q0)A2 ]
(3.22)

A0
8e

2
(i -2 2

c2A2(CO
+ c C2) (3.23)

i e

The net force F experienced by the spheroid can be computed by superposition

of (2.6)

c

F 4Zl/x I [fll() + mfl2() + m2f13() + 0(m3) ] d + l/m2 j" u-dv
V

-c

where the volume integral is taken over the spheroid. When we substitute the values
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of fll’ f
12’ f13 and u in the above formula, we have

P0i(T
3 + 2) JF P0 i +

12a U
am + 8ae I 3A0 2 2

3P0 a + A2e + f21 [2 4(1 )e

(e
-I + 4e 5re)L] I (am)2_] ex + 0(am)3,

(3.24)

where

2 -I
P0 32a (i )Ue3[-2e + (i + 3e 4ve2)L] (3.25)

Relation (3.24) agrees with Kanwal’s formula [1,2] up to order a m. The term of

2
order 0(am) appears to be new.
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