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ABSTRACT. In this paper a scalar-valued isotropic tensor function is considered,

the variables of which are constitutive tensors of orders two and four, for instance,

characterizing the anisotropic properties of a material. Therefore, the system of

of irreducible invariants of a fourth-order tensor is constructed. Furthermore,

the joint or simultaneous invariants of a second-order and a fourth-order temnsor

are found. In a similar way one can construct an integrity basis for a tensor of
order greater than four, as shown in the paper, for instance, for a tensor of order

six.
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1. INTRODUCTION.

In many branches of mathematics and physics, for instance, in continuum
mechanics, the central problem is: For a given set of tensors which are not neces-
sarily of the same order, and a given group of transformations, find an integrity
basis, the elements of which are algebraic invariants.

Many mathematicians have studied the theory of algebraic invariants in detail.

The results are published, for instance, by GRACE and YOUNG [1], GUREVICH [2],
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WEITZENBOCK [3], WEYL [4]. Very extensive accounts of algebraic invariant theory
from the point of view of its application to modern continuum mechanics are pre-
sented, for example, by SPENCER [5], TRUESDELL and NOLL [6].

It is convenient to employ these results of the theory of invariants in the
mechanics of isotropic and anisotropic materials [7]. In the theory of algebraic
invariants the central problem is: For a given set of tensors which are not nec-
essarily of the same order, and a given group of transformations, find an integrity

basis, the elements of which are algebraic invariants. An integrity basis is a set

of polynomials, each invariant under the group of transformations, such that any
polynomial function invariant under the group is expressible as a polynomial in
elements of the integrity basis.

In continuum mechanics, a constitutive expression may be a polynomial function
which is appropriate for the description of the response of an anisotropic material.
The representation of such an expression is based upon an integrity basis.

In this paper the system of irreducible (basic and principal) invariants of a
fourth-order tensor is found. Furthermore, the joint or simultaneous invariants of
a second-order and a fourth-order tensor are constructed.

The mentioned systems of invariants cannot be found in the cited literature.
Therefore, the results of this paper are important, for instance, for a reader who
is working in the field of theoretical continuum mechanics and who is familiar with
tensor calculus.

2. INTEGRITY BASIS UNDER A SUBGROUP.

Let F = F(g) be a scalar-valued function of a second-order tensor, for
instance, of the stress tensor g. This function is said to be isotropic if the

condition

F( ) = F(oij) (2.1)

a, a, a
ip 19 P9

is fulfilled under any orthogonal transformation (ai Gij)’ where the summa-

k 3k T
tion convention is utilized, and § represents KRONECKER's tensor.

For example, the function F in (2.1) may be the plastic potential. Then, from
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the theory of isotropic tensor functions [5, 7, 8], it is evident that in an iso-
tropic medium the plastic potential F can be expressed as a single-valued function

of the irreducible basic invariants

s, = tr ;v = 1,2,3 (2.2)

or, alternatively, of the irreducible principal invariants

J, = 0., , = -0 O.r.q » = 0,r.9 0,79 O 2.3a,b,
17 %0 92 % i) 551 0 93 F Oapa) Oypg0 kg (3P0
of the stress tensor 0, that is

F = F[Sv(g)] or F = F[Jv(g)] , v= 1,2,3 (2.4a,b)

respectively. In (2.3) the operation of alternation is used. This process is
indicated by placing square brackets around those indices to which it applies, that
is, the v bracketed indices i...k are permuted in all possible ways, while indices
which are excluded from the alternation are not bracketed. They keep their posi-
tions. Thus, we obtain V! terms. The terms corresponding to even permutations

are given a plus sign, those which correspond to odd permutations a minus sign,

and they are then added and divided by v!. Comparing (2.2) and (2.3), we find the
relations:

- 2 _ 3
s J, = (S, - S)/2, Jy= (285 - 35,8, +8])/6 (2.5a,b,c)

Jp =5 3 251

1 1
The irreducible (basic or principal) invariants are the elements of the integrity

basis for the orthogonal group: An integrity basis is a set of polynomials, each

invariant under the group of transformations, such that any polynomial function
invariant under the group is expressible as a polynomial in the elements of the
integrity basis [4, 5, 9]. The invariants (2.2) or, alternatively, (2.3a,b,c) form

the integrity basis for the stress tensor J under the proper orthogonal group,

i.e. Iaijl = +1, and this integrity basis also forms a functional basis.

The representations (2.4a,b) imply isotropy.

In the anisotropic case the restriction (2.1) of F is less severe. Then, the
function F is merely required to be invariant under the group of transformations
(Siksjk = Gij) associated with the symmetry properties of the material [8], where

s is a subgroup of the orthogonal group a. In other words, the symmetry properties
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of the material impose restrictions upon the manner in which the function F depends
on the stress components [10].

For a particular crystal class [11] the potential F may be represented as a
polynomial in the stresses which is invariant under the subgroup s of transforma-
tions associated with the symmetry properties of the crystal class considered.

The function F is then expressible as a polynomial in these invariants, which form

a functional basis.

It is shown by PIPKIN and RIVLIN [12] and PIPKIN and WINEMANN [13] that an

integrity basis will also form a functional basis if the group of transformations

is finite; then all invariants can be expressed as functions of the invariants of
an integrity basis.

3. INTEGRITY BASIS FOR A FOURTH-ORDER TENSOR.

Instead of the representation by an integrity basis under a subgroup anisotro-
pic behaviour may be characterized by a function

F=F(csij » A, A ) (3.1)

13 13k1 > Ajkim

in which Ai' etc. are the components of constitutive tensors characterizing

i’ Aijkl

the anisotropic properties of the material. Then, by analogy to (2.1), we have
the invariance condition

F(a, a, 0 ;..., a

1p%§¢%pq ipajqakralsqurs"") = F(oij; cees Aijkl"”) (3.2)

and the central problem is: to construct an irreducible integrity basis for the

tensors Oij, Aij’ Aijkl’ ... Together with the invariants of the single argument

tensors oij’ A, ., Aijkl’ etc., like (2.2) or (2.3), we have to consider the system

1]

of simultaneous or joint invariants found in section 4.

Let us first construct the irreducible principal invariants of a fourth-order

tensor Aijkl’ which may be a linear operator, i.e.,
Y = =
13 Aijklxkl or Ya AaBXB R (3.3a,b)
where i,j,k,1 = 1,2,3 or o,8 = 1,2,...,9, respectively.
In (3.3b) the operator A defines a linear transformation on a 9-dimensional

vector space V9, which is a correspondence that assigns to every vector X in Vq a
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vector AX in V in such a way that

9’
é(algl + 3252) = a AX, + a, AX

identically in the vectors 51 and 52 and the scalars a; and a,.

Let Xa; a=1,2,...,9; be the components of an arbitary vector of unit magni-

tude which we call direction vector or simply a direction. We then ask: For what

directions X does the linear transformation A yield a vector Y according to (3.3)

which is in the same direction as X? That is,

(0) (0)
(Aijkl iJkl)Xkl ij or (AaB )X Oa (3.4a,b)
where A is a real scalar to be determined A(o) =6,,6 or A(O) =
» 243kl T %ik°j1 R aB

are the components of the unit tensor A(o), whereas O

~

13 or Oa are the components

of the zero tensor Q.

For a nontrivial solution of (3.4a,b) we must have

w9y =0

det(A;5yg = Myja

or det(Ay - ;\A(O)) =0 (3.5a,b)

in order to determine the principal or proper values An of the linear transforma-

tion A.
In order to construct the principal invariants of a fourth-order tensor A, we
note that t —determinant (3.5) is an invariant, and we therefore consider the

characteristic ;- ‘ynomial

_ (0) _ n-v
Y O = det(Ay g - M) \Zo 3, (@A (3.6)

in which, as we see from (3.5a,b), the first ind x pair (ij) = o characterizes the
rows and the second one (kl) = B the columns of a n X n matrix Q, in general n = 9.

The principal invariants Jv in (3.6) can be determined, analogous to (2.3),
by the operation of alteration:

v = fa 10,1 fa, [0, G-7

where (—l)n JO = 1. The right hand side in (3.7) is equal to the sum of all

1
( n ) = — principal minors of order v < n, where v = 1 and V = n lead to
v vi(n = v)!

trA and det A, respectively.
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Assuming the usual symmetry conditions

Ajkl T Myikl T Ak T Ak (3.82)
or alternatively expressed by

A

af = A

8a’ a,B =1,2,...,6 (3.8b)
the zero power tensor of fourth-order in (3.6) is given by:

) _ ( 1) _ _ A(-D)
Arjit T Aigpafpakl T 20ud51 *941%51) T Aijpq Apara (3.9)

as we can see from (3.3) for Y = X.

Expanding (3.7) with n = 6, we find the irreducible principal invariants of a

fourth-order tensor by the alternation process already applied in (2.3):

)=~ Ay st A
Iy = E%(AijijAklkl = Aty
Iy = - '(Aljij Aak1i®mm ¥ 2150 1m?mii T **15k1% 1454 namn
Iy = j%(Aijij Aa1k1 Amnmn 2opop t
8 Alel Aklmn mnij Aopop 6 Aijkl Aklij Amnmn Aopop -
6 Aijkl Aklmn Amnop Aopij +3 Aijkl Aklij Amnop Aopmn)
3= - g%(Aijij Mor -+ Aqrgr * o0

1
6 = 61 Ai545 Mk v Bsese o)

det A .

We see that the principal invariants (3.10) of a fourth-order tensor can be
determined uniquely by polynomial relations from the irreducible basic invariants

5, = tr A=A, ., A e Ay (3.11)

T ipdpiydy iisisiy Livhiy’
that is, by analogy to (2.5),
J, = P (51, Sy5eees S)) . (3.12)
Both the set of the six quantities (3.10) or, alternatively, the six quantities

(3.11) form an irreducible integrity basis for the fourth-order symmetric tensor

(3.8) under the orthogonal group.
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In a similar way we can construct an integrity basis for a tensor of order
greater than four. For instance, we consider a tensor A of order six as a linear

operator, i.e.

Uik = Ajkim Tim ° (3.13)

Then we can also use the representation (3.3b) where 0,8 = 1,2,...,27, and find

by analogy of (3.4):

_ 1400 =
(Aijkl AAijkl )Tl = Oijk . (3.14)
0)
In (3.14) the zero power tensor Aijkl of order six is given by Gilsjmskn’ and

the principal invariants can be found by the operation (3.7) where n = 27,
In continuum mechanics a tensor A or order six is often used as a bilinear

operator, that is, instead of (3.13) we have bilinear transformations, like

Ui5 = A4 5k1m k1 Tm (3.1%)
which appear in constitutive expressions [14].
Now by analogy to (3.8a,b), the usual symmetry conditions are given by
A = = = = = = .
ijklmn AaBY ABYa A\(OLB AOfYB ABOfY AYBa (3.16)
where o, B, Y = 1,2,...,6. From (3.15), in connection with
Uij = lSiprj = Aéikdjnslmslemn (3.17)
1
and the symmetry U,, = U, i.e., S, T . =%5(8, T .+ T, S ST = TS find
Y %5 7 Y510 » S1pTps = 2G4 Pj ip Pj) OF RS T A%, we Im
instead of (3.4b) the homogeneous system
_ a0 =0 . q = . B =
(AaB AAuB )VB = Oa, a=1,2,...,6; B=1,2,...,21, (3.18)

where AaB is a 6 X 21 rectangular matrix, and VB with B = 1,2,...,21 is the image

of a fourth-order symmetric tensor product:
VB = Skl Tmn = Slk Tmn = Skl Tnm = Smn Tkl B (3.19)
(0)

Considering the symmetry relations (3.16), the unit matrix A in (3.18) can be

represented by

© _1

ijkim - 8C%11%50%kn ¥ %1n%51%m * %11%5n0km *
Gimﬁjlakn + Giksjméln + Gikéjnélm + (3.20)
§, 6,6, +6 ).

im jk 1n in6jk61m
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Because 6 < 21 a nontrivial solution of the homogeneous equation (3.18) exists.

4. CONSTRUCTION OF SIMULTANEOUS INVARIANTS.

In the case of several tensor variables, the term simultaneous or joint

invariant is used [6]. This term is used not only for scalar-valued isotropic
functions of several second-order tensor variables, but also for scalar-valued

functions of any set of tensors of any order, e. g. of the argument tensors O

13’
Aij’ Aijkl’ Aijklmn in (3.1).
Such invariants are, for instance,
9558917 %3585c%k e Ci%kih51 Cufkitiatiee 4.1
93581511%1° > %158145pq * 7 Avwki%k1
4.2)
%p%pi213k1%1 " A1y’
A13k1m%13%1%m" A13pqrs®kltupg?mrstu®1i°k1%m®
(4.3)

Ai5k1m%11% 0 %n" "7
and they have great importance in the theory of anisotropic materials.

To construct a set of sumultaneous invariants of the stress tensor ¢ and the

ij
fourth-order constitutive tensor Aijkl we start from the following theorem:
A scalar-valued function f(y,T) of one n-dimensional vector y
and one symmetric second-order tensor T is an orthogonal invar-
iant, i.e. invariant under the orthogonal group if and only if
it can be expressed as a function of the 2n special invariants

2 -
I @I DV TN, v lx

A~ ~

(4.4)

This theorem is valid for arbitrary dimension n [6]. Assuming the symmetry condi-

tions (3.8) and using the HAMILTON-CAYLEY theorem, it means that zn and all higher

1n+h can be expressed in terms of §, T, 22, ey Tnil, we find in general-

~

powers

izing of (4.4) the set of 15 simultaneous invariants

) s o A o L il =6 a) @

15%13k1%10 '3 15°15k1%1
(4.5)
M- @, (2
H4 = Gij Aijklokl s, V 1,2,...,5,

where vV in a square bracket denotes a label to indicate Vv several invariants,
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while v in a round bracket is an exponent.
Some of these simultaneous invariants can be constructed in the following way.

Consider the second-order tensor D = 0,.A then, for instance, the basic
Pq ij ijpq’
A€2)

invariant D_ D can be expressed by the simultaneous invariant cij 1jk1 kl’
which is contained in the system (4.5). Furthermore, the cubic basic invariant

can be expressed by the simultaneous invariant A , which

PpqParlrp 13k 1mn°13%%1%m
is contained in the set (4.3). As another example we can consider the second-order

(2) . - (2),(2) _(2)
iJ Aiqu and find, for instance, the invariant quEqp oij Aijklokl .

which is contained in (4.5), too. Finally, we can also form the simultaneous

tensor E
Pq

invariants
«@ . ed
D 6 =0,,A.. O D o, .A
Pq Pq i3*13pq"pa’  “pq’pq ij inq pq ’
(2) (2) _ (2) (2)
E o =0,"A g E © g
Pq Pq ij "ijpq Pa’ Pq P9 iqu Pq °’

and obtain simultaneous invariants of the system (4.5).
The examples mentioned above and the complete system (4.5) can be expressed

by the simultaneous invariants

() (U1+U2) (A2)

G _H = s 4.6

Cpq qp)‘A A <2 055 Aijk1 - %kl (4.6)
1°"2
u1+u2 <5
where
(Al) (u1) (Uz) (12)

G_) A (H ) = (4.7a,b)

Pq Al,ux %15 figpe” Yap Az,uz Apqk1%1

are second-order tensors.
The isotropic special case, for instance, can be expressed by the isotropic

constitutive tensor

A0

15kl + b (s

= 38581 11 ¥ %1185 (4.8)

of power v = 1,2,... . Then the simultaneous invariants Hgv] from (4.5) are equal

to the principal invariant Jz(g) for a, = - % s bv = % and equal to the basic

Similarly, the invariants H[v] from (4.5) are

) . n -1
invariant Sz(g) for a, = 0, bv 2 - 3

equal to Ja(g) - Ji(g)/G for a, = - % , b = %-and equal to the cubic basic
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V] 2 5 AW

1
invariant S3(g) if a, = 0, b, =5 . Furthermore, the invariants Hl 1 ijklokl

are equal to Jl(g) Sl(g) if 3av + va =1.

10.

11.

12.

13.

14.
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