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ABSTRACT. In this paper a scs!ar-valued isotropic tensor function is considered,

the variables of which are constitutive tensors of orders two and four, for instance,

characterizing the anisotropic properties of a material. Therefore, the system of

of irreducible invariants of a fourth-order tensor is constructed. Furthermore,

the joint or simultaneous invariants of a second-order and a fourth-order tensor

are found. In a similar way one can construct an integrity basis for a tensor of

order grea.ter than four, as shown in the paper, for instance, for a tensor of order

six.
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i. INTRODUCTION.

In many branches of mathematics and physics, for instance, in continuum

mechanics, the central problem is: For a given set of tensors which are not neces-

sarily of the same order, and a given group of transformations, find an integrity

basis, the elements of which are algebraic invariants.

Many mathematicians have studied the theory of algebraic invariants in detail.

The results are published, for instance, by GRACE and YOUNG [i], GUREVICH [2],
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WEITZENBCK [3 ], WEYL [4]. Very extensive accounts of algebraic invariant theory

from the point of view of its application to modern continuum mechanics are pre-

sented, for example, by SPENCER [5], TRUESDELL and NOLL [6].

It is convenient to employ these results of the theory of invariants in the

mechanics of isotropic and anisotropic materials [7]. In the theory of algebraic

invariants the central problem is: For a given set of tensors which are not nec-

essarily of the same order, and a given group of transformations, find an integrity

basis, the elements of which are algebraic invariants. An integrity basis is a set

of polynomials, each invariant under the group of transformations, such that any

polynomial function invariant under the group is expressible as a polynomial in

elements of the integrity basis.

In continuum mechanics, a constitutive expression may be a polynomial function

which is appropriate for the description of the response of an anisotropic material.

The representation of such an expression is based upon an integrity basis.

In this paper the system of irreducible (basic and principal) invariants of a

fourth-order tensor is found. Furthermore, the joint or simultaneous invariants of

a second-order and a fourth-order tensor are constructed.

The mentioned systems of invariants cannot be found in the cited literature.

Therefore, the results of this paper are important, for instance, for a reader who

is working in the field of theoretical continuum mechanics and who is familiar with

tensor calculus.

2. INTEGRITY BASIS UNDER A SUBGROUP.

Let F F(o) be a scalar-valued function of a second-order tensor, for

instance, of the stress tensor o. This function is said to be isotropic if the

condit ion

F(aip a. o F(o (2.1)
j q pq ij

is fulfilled under any orthogonal transformation (aik ajk oij), where the summa-

tion convention is utilized, and represents KRONECKER’s tensor.

For example, the function F in (2.1) may be the plastic potential. Then, from
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the theory of isotropic tensor functions [5, 7, 8], it is evident that in an iso-

tropic medium the plastic potential F can be expressed as a single-valued function

of the irreducible basic invariants

S tr 1,2,3 (2.2)

or, alternatively, of the irreducible principal inya.ria.nts

Jl- ii J2 -i[i] j[j] J3- i[i] oj[j] Ok[k] (2.3a,b,c)

of the stress tensor o, that is

F F[S()] or F F[J(o)] 1,2,3 (2.4a,b)

respectively. In (2.3) the operation of alternation is used. This process is

indicated by placing square brackets around those indices to which it applies, that

is, the bracketed indices i...k are permuted in all possible ways, while indices

which are excluded from the alternation are not bracketed. They keep their posi-

tions. Thus, we obtain ! terms. The terms corresponding to even permutations

are given a plus sign, those which correspond to odd permutations a minus sign,

and they are then added and divided by !. Comparing (2.2) and (2.3), we find the

relations:

Jl SI J2 ($2 SI)/2 J3-- (2S3- 3S2SI + S )/6 (2.5a,b,c)

The irreducible (basic or principal) invariants are the elements of the integrity

basis for the orthogonal group: An integrity basis is a set of polynomials, each

invariant under the group of transformations, such that any polynomial function

invariant under the group is expressible as a polynomial in the elements of the

integrity basis [4, 5, 9]. The invariants (2.2) or, alternatively, (2.3a,b,c) form

the integrity basis for the stress tensor o under the proper orthogonal group,

i.e. aij +i, and this integrity basis also forms a functional basis.

The representations (2.4a,b) imply isotropy.

In the anisotropic case the restriction (2.1) of F is less severe. Then, the

function F is merely required to be invariant under the group of transformations

(SikSjk ij) associated with the symmetry properties of the material [8], where

s is a subgroup of the orthogonal group a. In other words, the symmetry properties
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of the material impose restrictions upon the manner in which the function F depends

on the stress components [i0].

For a particular crystal class [ii] the potential F may be represented as a

polynomial in the stresses which is invariant under the subgroup s of transform-

tions associated with the symmetry properties of the crystal class considered.

The function F is then expressible as a polynomial in these invariants, which form

a functional basis.

It is shown by PIPKIN and RIVLIN [12] and PIPKIN and WINEMANN [13] that an

integrity basis will also form a functional basis if the group of transformations

is finite; then all invariants can be expressed as functions of the invariants of

an integrity basis.

3. INTEGRITY BASIS FOR A FOURTH-ORDER TENSOR.

Instead of the representation by an integrity basis under a subgroup anisotro-

pic behaviour may be characterized by a function

F F(oij Aij Aijkl Aijklmn (3.1)

in which Aij, Aijkl etc. are the components of constitutive tensors characterizing

the anisotropic properties of the material. Then, by analogy to (2.1), we have

the invariance condition

o ;... a qakralsAp ...) F(ij; AijF(aipaj q pq ipaj qrs’ kl
(3.2)

and the central problem is: to construct an irreducible integrity basis for the

tensors o
ij Aij Aijkl Together with the invariants of the single argument

tensors oij Aij Aijkl etc., like (2.2) or (2.3), we have to consider the system

of simultaneous or joint invariants found in section 4.

Let us first construct the irreducible principal invariants of a fourth-order

tensor Aijkl, which may be a linear operator, i.e.,

Yij Aijkl_Im or Y mA^oXo (3.3a,b)

where i,j,k,l 1,2,3 or a,B 1,2 9, respectively.

In (3.3b) the operator A defines a linear transformation on a 9-dimensional

vector space V
9, which is a correspondence that assigns to every vector X in V9 a
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vector AX in Vg, in such a way that

A(alXI + a2X2) alI + a22

identically in the vectors XI and X2 and the scalars aI and a2.

Let X; 1,2,...,9; be the components of an arbitary vector of unit magni-

tude which we call direction vector or simply a direction. We then ask: For what

directions does the linear transformation A yield a vector Y according to (3.3)

which is in the same direction as X? That is,

(0)
or (A8 %A(0)(Aijkl %ijkl)l Oij a8 )X8 O (3.4a,b)

(o) A(O)where is a real scalar to be determined, aijkl ikjl or

are the components of the unit tensor A(0)
whereas O

ij
or Oa are the components

of the zero tensor O.

For a nontrivial solution of (3.4a,b) we must have

,(o)
det (Aijkl Xijkl 0 or det (Aa XA(0)a =o (3.5a,b)

in order to determine the principal or proper values % of the linear transforma-
n

t ion A.

In order to construct the principal invariants of a fourth-order tensor A, we

note that t-terminant (3.5) is an invariant, and we therefore consider the

characteristi- ’.ynomial

(0) = %n-Pn(%) det(Ai3kl- %ijkl J(A) (3.6)

in which, as we see from (3.5a,b), the first ind, x pair (ij) a characterizes the

rows and the second one (kl) B the columns of a n x n matrix A, in general n 9.

The principal invariants J in (3.6) can be determined, analogous to (2.3),

by the operation of alteration:

=A A (3 7)(-i)
n-9

J9 al[al Aa2[a2] av[av]

where (-i)
n

J0 i. The right hand side in (3.7) is equal to the sum of all

(n) n!
!(n )! principal minors of order < n, where i and n lead to

trA and det A, respectively.
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Assuming the usual symmetry conditions

Aijkl Ajikl Aijlk lij (3.8a)

or alternatively exgressed by

1,2 6 (3.8b)

the zero power tensor of fourth-order in (3.6) is given by:

A(0) A. A(-I) 1/2(6 + k A! I) A
ijkl :jpq pqkl ik6j I il6j :3Pq pqkl’ (3.9)

as we can see from (3.3) for Y X.

Expanding (3.7) with n 6, we find the irreducible principal invariants of a

fourth-order tensor by the alternation process already applied in (2.3):

Jl Aijij tr A

1
J2 -2-(AijijIkl Aijkllij)

J3 -- .v(Aijij AklklAmnmn + 2AijklAklmnAmnij 3AijkllijAmnmn

J4
__l
4!(Aijij lkl Amnmn Aopop +

8 Aijkl Akln Amnij Aopop 6 Aijkl Aklij A A
mnmn opop

6 Aijkl Aklmn Amnop Aopij + 3 Aijkl lij Amnop Aopmn)
i

J5 5!(Aijij ikl Aqrqr +

J6 -.v(Aijij Aklkl Astst + "’’) det A

We see that the principal invariants (3.10) of a fourth-order tensor can be

determined uniquely by polynomial relations from the irreducible basic invariants

S tr A A A A.. (3.11)
ilJ li2J 2 i2J 2i3J 3 l3ilJ I

that is, by analogy to (2.5),

J P (S
1

S
2 Sv) (3.12)

) )

Both the set of the six quantities (3.10) or, alternatively, the six quantities

(3.11) form an irreducible integrity basis for the fourth-order symmetric tensor

(3.8) under the orthogonal group.
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In a similar way we can construct an integrity basis for a tensor of order

greater than four. For instance, we consider a tensor A of order six as a linear

operator, i.e.

Uij k Aijklmn Tlmn (3.13)

Then we can also use the representation (3.3b) where ,8 1,2,...,27, and find

by analogy of (3.4):

(0) (3 14)(Aijklmn- ijklmn)Tlmn Oij k
,(o)

In (3.14) the zero power tensor ijklmn of order six is given by iljmkn and

the principal invariants can be found by the operation (3.7) where n 27.

In continuum mechanics a tensor A or order six is often used as a bilinear

operator, that is, instead of (3.13) we have bilinear transformations, like

Uij Aij klmnSklTmn (3.5)

which appear in constitutive expressions [14].

Now by analogy to (3.8a,b), the usual symmetry conditions are given by

(3.16)

where , 8, Y 1,2 6. From (3.15), in connection with

Uzj %SipT 6ik6j
6 (3.17)

pj n ImSklTmn
and the symmetry Uij Uji i.e., SipTpj (SipTpj + TipSpj) or ST TS, we find

instead of (3.4b) the homogeneous system

(AB- %A(O))VB 0" 1 2 6; B 1 2 21B (3.z8)

where AB is a 6 x 21 rectangular matrix, and VB with B 1,2 ,21 is the image

of a fourth-order symmetric tensor product

V
B Skl T T T S

mn Slk mn Skl nm mn Tkl
Considering the symmetry relations (3.16), the unit matrix A

(0)

(3.19)

in (3.18) can be

represented by

1 mijklmn (6i16j kn

imjlkn
im j k in

+ 6injl6km + iljnkm +

+ 6
ik j m In + ik j n im

+

+
in

6
j k im

(3.20)
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Because 6 < 21 a nontrivial solution of the homogeneous equation (3.18) exists.

4. CONSTRUCTION OF SIMULTANEOUS INVARIANTS.

In the case of several tensor variables, the term simultaneous or joint

invariant is used [6]. This term is used not only for scalar-valued isotroplc

functions of several second-order tensor variables, but also for scalar-valued

functions of any set of tensors of any order, e. g. of the argument tensors gij’

Aij’ Aijkl’ Aijklmn in (3.1).

Such invariants are, for instance,

OijAji’ OijAjki’ gikOkjAji OikOkjAjlAli (4.1)

gijAijklgkl gijAijpq AvwklOkl,

OipOpj Aij klOkl Aij klOikOj i
(4.2)

Aij klmnOijklmn’ Aij pqrsitupqAmnrstuOijklOnm’

Aij kironilgj mOkn
(4.3)

and they have great importance in the theory of anisotropic materials.

To construct a set of sumultaneous invariants of the stress tensor o.. and the

fourth-order constitutive tensor Aijkl we start from the following theorem:

A scalar-valued function f(.,T) of one n-dimensional vector v
and one symmetric second-order tensor T is an orthogonal invar-
iant, i.e, invariant under the orthogonal group if and only if
it can be expressed as a function of the 2n special invariants

2 Tn-lvJI(T) Jn(T), v z’Tzv v- (4.4)

This theorem is valid for arbitrary dimension n [6]. Assuming the symmetry condi-

tions (3.8) and using the HAMILTON-CAYLEY theorem, it means that T
n

and all higher

powers Tn+h
n

we find in general-can be expressed in terms of T T
2

T~
-I

izing of (4.4) the set of 15 simultaneous invariants

(D)
o" ii[] _() (2)Hj ijAijkl kl’ 3 ijAijklkl

H] (2),() 0.(2) i 2 5g
ij ijkl kl

(4.5)

where in a square bracket denotes a label to indicate several invariants,
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while 9 in a round bracket is an exponent.

Some of these simultaneous invariants can be constructed in the following way.

Consider the second-order tensor D o..Ao. then, for instance, the basic
Pq 1313 Pq

A(2) Oinvariant D D can be expressed by the simultaneous invariant i’"i-’k133 kl’Pq qP

which is contained in the system (4.5). Furthermore, the cubic basic invariant

D D D can be expressed by the simultaneous invariant Ai-’klmni-’klmn’33 which
pq qr rp

is contained in the set (4.3). As another example we can consider the second-order

tensor E o(2)A and flnd, for instance, the invarlant E E 0 (2)-(2)_
pq ij ijpq pq qp ij Aijklkl

which is contained in (4.5), too. Finally, we can also form the simultaneous

invariants

D O A o D 0
(2)

0
(2)

pq pq ij ijpq pq’ pq pq oijAijpq pq

E o o (2) E 0
(2)

0
(2)

0
(2)

pq pq ij AijpqOpq’ pq pq ij Aijpq pq

and obtain simultaneous invariants of the system (4.5).

The examples mentioned above and the complete system (4.5) can be expressed

by the simultaneous invariants

(GpqHqp)
hI %2- < 2

lal+la -< 5

ij "’ijkl Ukl (4.6)

where

o(1) () A(:,)()
ij Aijpq’ (Hqp) pqkl kl (4.7a,b)(Gpq)% ,i 2 ,2

are second-order tensors.

The isotropic special case, for instance, can be expressed by the isotropic

constitutive tensor

A() a6 + b(6ik6j + 6 16 (4 8)
ijkl ij6kl 1 i jk

Iv] from (45) are equalof power 1,2, Then the simultaneous invariants H
2

i 1
to the principal invariant J2(o)~ for a ---2 b and equal to the basic

invariant $2(o) for a 0 b
1

Similarly, the invariants
] from (4.5) are

1 13(o)/6- for a b and equal to the cubicequal to J3() Jl 2
basic
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())
invariant $3() if a 0, b Furthermore, the invariants H ] i]Ai]klkl
are equal to Jl() SI() if 3a + 2b-- i.
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