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ABSTRACT. In this paper the concept of a ,-semilattice is introduced as a

generalization to distributive *-lattice first introduced by Speed [i]. It is

shown that almost all the results of Speed can be extended to a more eneral class

of distributive -cmilattices. In pseudocomplemented semilattices and distri-

butive semilattices the set of annihilators of an element is an ideal in the

sense of Gr’tzer [2]. But it is not so in general and thus we are led to the

definition of a weakly distributive semilattice. In 2 we actually obtain the

interesting corollary that a modular ,-semilattice is weakly distributive if and

only if its dense filter is neutral. In 3 the concept of a sectionally pseudo-

complemented semilattice is introduced in a natural way. It is proved that iven

a sectionally pseudocomplemented semilattice there is a smallest quotient of it

which is a sectionally Boolean algebra. Further as a corollary to one of the

theorems it is obtained that a sectionally pseudocomplemented semilattice with a

dense element becomes a ,-semilatticeo Finally a necessary and sufficient con-

dition for a *-semilattice to be a pseudocomplemented semilattice is obtained.
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i. INTRODUCTION.

Speed [i] has introduced the concept of a distributive *-lattice. In this

paper we observe that the condition he has placed on a distributive lattice to be-

come a distributive ,-lattice can be placed on any meet semilattice with 0 an@

accordingly in this paper we call such semilatticesas ,-semiltices (see definition

I). It is shown that almost all the results of Speed can be extended to a more

general class of distributive ,-semilattices. The concept of a filter in join

semilattice and hence (dually) that of an ideal in a meet semilattice is due to

Gr’tzer [2]. In pseudocomplemented semilattices and distributive semilattices

the set of annihilators of an element is an ideal in the sense of Gtzer.

But it is not so in general and thus we are led to the definition of a weakly

distributive semilattice. In 2 we prove as a corollary to theorem 4 that a mod-

ular @-semilattice is weakly distributive if and only if its dense filter is

neutral. Further we show in Theorem 3 that the filter congruence induced by the

dense filter on a modular ,-.qemilattice L is equal to the well known congruence

R on L defined by R {(x.y) ( L x L (x)* (y)*}.

In 3 we study sectionally pseudocomplemented semilattices the concept of

which is introduced in [3] and [4]. Actually we prove in Theorem 8 that given a

sectionally pseudocomplemented semilattice there is a smallest quotient of it

which is a sectionally Boolean algebra. Further we show in Theorem i0 that given

a sectionally pseudocomplemented semilattice L there is a Boolean algebra S such

that if L has a dense element then L/R is a Boolean algebra isomorphic to S, and

obtain as a corollary that a sectionally pseudocomplemented semilattice with a

dense element becomes a ,-milattice. Finally we obtain a necessary and suffi-

cient condition for a ,-semilattice to be a pseudocomplemented semilattice.

2. RESULTS ON MODULAR,-SEMILATTICES.
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DEFINITION I. Let S be a meet semilattice with 0" then for any subset A of

*S, A stands for {x E S x ^a 0 for all a 6A}. If A {a} then we denote A by

*(a) An element s E S is called a dense element of S if and only if (a) {0}.

D denotes the set of all dense elements of S and it can be seen that D is a filter

of S (if D is nonempty).

The concept of a distributive ,-lattice is due to Speed [i]. However the

condition he has placed on a distributive lattice in his definition may as well

be placed on any meet semilattice with 0 as in the following"

DEFINITION 2. A meet semilattice with 0 is said to be a ,-semilattice if and

only if for any aE L there exists a’ L such that (a) (a’)

DEFINITION 3. (Gratzer [2] and Katrinak [5]). A nonempty subset I of a

meet semilattice S is called an ideal of S if and only if

(i) x I and a <x (a 6 S) implies a I

(ii) x,yE I implies the existence of z in I such that " <z and V < z.

DEFINITION 4. An ideal I of a meet semilattice S is said to be a prime

ideal if and only if a ^b I(a,b S) implies either a or b I.

DEFINITION 5. A meet semilattice (S, ^) is called a distributive semilattice

if and only if x,y,z 6S and x>_y^ z imply the existence of yl,Zl such that

Yl--> ’ Zl_>Z and x Yl ^Zl"
DEFINITION 6. A meet semilattice L with O is called a weakly distributive

semilattice if (a) is an ideal for every a6L. The notion of weak distibutivity

in semilattices is a natural generalization of the notion of 0-distributivity

introduced by Varlet [6]. Clearly every pseudocomplemented semilattice and every

distributive meet semilattice with 0 is weakly distributive. Also one can oh-

serve that in a weakly distributive semilattice S, a proper filter U is an ultra

filter of S if and only if S-U is a minimal prime ideal of S.

It will be shown in this article that almost all the results of Speed [I]

for distributive *-lattices (see Theorems 1,2 and 6 of this paper) can be ex-

tended to weakly distributive *-semilattices and proofs are given only for those

results which can not be obtained from those of Speed.
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From now onwards in this article, L denotes a weakly distributive semilattice.

Let M be the set of all minimal prime ideals of L. For any subset A of L write

h(A) {M A - M} and M (A) {M6 MI 4 ,M}. Then {h (A) A_c L} of subsets

of hl is a topology on called the hull-kernel topology and {, {x} = x 6L} is
X

a base for the above topology. Also {h(a) la6.L} is a base for some topology on

called the dual hull-kernel topology.

LEMMA i. In L the following hold:

(i) A prime ideal M is minimal if and only if (x) M # for every x EM

(ii) M h((x)
X

(iii) h(x) h((x)

(iv) (z) (x) i (Y) h(z) h(x) i h(y)

** **(v) (x ^ y) (x) C (y)

(vi) (x) (y) h(x) h((y)

If we write nT" for the hull-kernel topology and ]d for the dual hull-kernel-

topology on I then we have the Theorem"

THEOREM i. In L, the following conditions are equivalent.

(I) L is a /-semilattice

(2) T h Td"
(3) hl is compact in the hull-kernel topology.

PROOF. (i)(2) and (2)(3) are straightforward. (3)(i)" Assume that

I is compact. Now h(x) =&i’ is a closed subset of ,%{and hence is a compact sub-
x

set of I. .o (h(x)h(t) so that by compactness of h(x) it follows

t 6 (x) that h(xlh(tl), ...I-h(tn for some t l,...,tn (x) and hence

there exists z 6. (x) such that t.< z for i< i< n. Now h((x) ) h(z) and hence

(x) (z) Thus (3),(i). Q.E.D.

THEOREM 2. In L the following are equivalent.

(I) L is a ,-semilattice.

(2) For any x L there exists x’6 L such that

x AX’ 0 and [x), [x’) -c D
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PROOF. (i)(2) is obvious. Assume (2). Clearly (x’)** c, (x)*. If t ^ x

0 and r ^ x’ 0 then x, xl E (t ^ r)* so that there exists z -> x, x’ and z ^ t ^
r 0 and hence zED. Thus t ^ r O.

If (S,^) is a meet semilattice and F is a filter of S then {(x,y)Ix ^ f

y ^ f for some f E F} is a congruence on S called the congruence induced by the

filter F. Q.E.D.

DEFINITION 7. (see Rhodes [7]). A meet semilattice (S,^) is called a

modular semilattice if and only if x,y,z S and x e y ^ z imply the existence of

YI’ Zl S such that x ^ Yl x ^ z I Yl ^ Zl"
THEOREM 3. In a modular *-semilattice S we have R where R {(x,y)

(x)* (y)*}.

PROOF. Clearly e
D ! R. Now let (x)* (y)*. Evidently (x ^ y)* (x)*. By

modularity of S, y ^ x’ 0 y ^ x y implies y ^ x y ^ x2
for some x

2
e x’.

By Theorem 2, x
2

e x’ and x
2

e y ^ x imply x2ED. Similarly x ^ x’ 0 y ^ x x

implies y ^ x Y2 ^ x for some Y2 e x’. As also Y2 ED’ we have (x,y) since

x ^ x2 ^ Y2 y ^ x2 ^ Y2 and thus eD R. Q.E.D.

It can be observed that if S is not modular then need not be equal to R

even if S is pseudocomplemented. In the following theorem a necessary and suffi-

cient condition for a modular *-semilattice to be weakly distributive is obtained.

THEOREM 4. If S is a *-semilattice which is directed above such that D R

then S is a weakly distributive semilattice if and only if for all x,y6 S

([x) n [y)) v D ([x) v D) n ([y) v D) ...(I)

PROOF. Assume that S is weakly distributive. Let t E S and let x ^ d t and

y ^ d t for some dD. Then there exists z S such that x z, y z and z ^ t’

0. Now we have (z)* (z ^ t)* so that there exists eD such that z ^ e -< t

and hence ([x) v D) N ([y) v D) ([x) n [y)) v D. Conversely suppose (I) holds

and x,y (a)* so that x ^ a y ^ a 0 which implies that (x)** and (y)**

_
(a)*

(a’)**. Thus we have (x ^ a’)* (x)* and (y ^ a)* (y)*. Therefore, x ^ a’

[x) v D and y ^ a’ E [y) v D. Hence using R a’ ([x) v D) n ([y) v D

By (I) there exists e ED such that z ^ e -< a’ for some z >- x, y.
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Since z ^ e ^ a <- a ^ a’ O, we have z ^ a 0 and so z (a)*. Q .E .D.

COROLLARY I. Let S be a modular *-semilattice. Then S is a weakly distri-

butive semilattice if and only if D is neutral in the lattice of filters of S.

THEOREM 5. Let L be a meet semilattice with 0 and D # , then the following

are equivalent.

(i) L/ is pseudocomplemented; (2) L is a *-semilattice satisfying the condition

x ^ z 0 implies the existence of dD such that x ^ d _< z’ where (z)** (z’)*.

PROOF. (I)(2): Let X L and let ((x))* OD(y). We now claim that

(x)* (y)**. Since x ^ y 0 we have (y)** - (x)*. Suppose r ^ x 0 and

t ^ y 0 so that there exists D such that r ^ y ^ d r ^ d and hence r ^ t ^
d 0. Therefore r ^ t 0 and thus r (y)** and hence (x)* (y)**. Thus L is a

*-semilattice. Now if x ^ z 0 then (x) _< (z)* (z’) where (z)**-- (z’)*.

Clearly (2)(i). Q.E.D.

COROLLARY 2. If L is a modular similattice with 0 and D # then L is a

*-semilattice if and only if L/ is pseudocomplemented.

PROOF. By Theorem 3 and the above Theorem 5. Q.E.D.

Theorem 2 of 5 in [i] can as well be generalized to modular *-semilattices

as in the following:

THEOREM 6. If L is a modular *-semilattice, then the following are equiva-

lent:

(i) L is a Boolean algebra

(2) L is a disjunctive semilattice, that is, a,b L and a < b implies the

existence of cL such that a ^ c 0 and b ^ c # 0.

(3) 1 is the on’ly dense element of L.

PROOF. Clearly (i)(2) and (2)(3). Now assume (3). By (3) id.

Therefore L/
D

L and by Corollary 2, L is pseudocomplemented. Since L is a

modular *-semilattice, D # 9. Q.E.D.

3. SECTIONALLY PSEUDOCOMPLEMENTED SEMILATTICES.

In this article a further study is made of the concept of a sectionally
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v
Pseudocomplemented semilattice introduced by Katrink [3] and [4].

DEFINITION 8 (see [3] and [4]). A meet semilattice L with 0 is called a

sectionally pseudocomplemented semilattice if and only if for every a 6 L the

interval [0,a] is a pseudocomplemented semilattice.

Every pseudocomplememnted semilattice is a sectionally pseudocomplemented

semilattice where for a L and X 6 [0,a] the pseudocomplement of x in this n-
,

terval [o,a] is given by x A a.

Throughout this article L stands for a sectionally pseudocomplemented semi-

lattice and for any x 6 [0,a] the pseudocomplement of x in [0,a] is denoted by

ax

LFMA 2. For any x,y,z 6 L we have, , ,y
(XA y AZ) yAz

y A (XA Z) Z
Z A (X A y)

* ,
PROOF. Since v A (XA Z) Z

< y A Z and y A (XA Z) z
^ X^ y A Z 0

* ,
we have y A (x AZ) z

< (XA y AZ)*yAZ NOW (XA y AZ) yAZ < y,z and

(x A y A Z)
*yAZ *yAm *^ X A Z 0 and hence (x y ^ z) <_ y h (x h z) Z

DEFINITION 9. A meet congruence on L is said to be a *-congruence if and, ,
only if ((x ha) a (y ha) a

6 for all a L whenever (x y) (

THEOREM 7. If @ is a ,-congruence on L, the L/@ is a sectionally pseudo-

*@ *
complemented semilattice where (@(x)) (a) ((x h a) a) ,

PROOF. Suppose @(x) < @(a). Clearly @(x) h @((x ha) a) (0). Suppose
,

(y) < (a) such that @(x) h (y)= @(0) then (Xhy ha,0). SO that ((xhy ha) yha

*a
yh a), @ and hence by the above lemma (y h(Xh a) y ha) 6 @. Therefore

,
@(y) @(yha) < @((x ha) a) O.E.D.

DEFINITION I0. If LI and L
2

are sectionally pseudocomplemented semilattices,

then a meet homomorphism f: LI-> L
2

is said to be a ,-homomorphism if and only if

* *f(a)f(x (f(x)) for all x, a 6 L, and x <_ a. Note that if f: LI+ L
2

is a

*-homomorphism then kernel f is a ,-congruence and every filter congruence on L

is a ,-congruence.

DEFINITION II. If in L every section [O,a] is a Boolean algebra for all

then we call L as a sectionally Boolean algebra, also called as a (dual)
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semi-Boolean algebra in the sense of Abbott [8].

In the following theorem we now show that given a sectionally pseudocomplemen-

ted semilattice there is a smallest quotient of it which is a sectionally Boolean

alzebra.

THEOREM 8. If we define @ on L by (x,y) 0 if and only if (x

for all a 6 L, then @ is a ,-congruence on L such that L/ is a sectionally

Boolean algebra and if for any ,-congruence on L, L/ is a sectionally Boolean

algebra then

PROOF. First observe that @ R(see theorem 3, 2). Also observe for any

,-congruence @ on L

* *a)((x ^a) (a) ((x ^a) Q.E.D.

If a6 L then S denotes the Boolean algebra of closed elements of [0,a].
a

THEOREM 9. If we write S {x ( S x(a) x(b)^ a whenever a <_ b},
a6L a

then S is a Boolean algebra and there is a ,-homomorphism f" L /S (whose kernel

is @) such that for each a 6 L we have S and [0,f(a)] are isomorphic.
a

PROOF. It can be seen that S is in fact a subalgebra of r S Now define

**a
a(L a

f" L /S by f(x)(a) (x Aa) Let x 6 L and a 6 L with x _< a. If b L then

*a * **bf(x )(b) f((x ^a) a )(b) (since x _< a) ((xAa)*aA b) ((XAaAb=a Ab)=
*b **b b **b *((xAB) AaAB) (xAb) A (a^b) (f(x)(b)) b A f(a)(b) ((f(x))’ A

f(a)
f(a))(b) (f(x)) (b). Thus f is a ,-homomorphism and ker f @. It can

be seen that the map xf(x) is a homomorphism of S into [0,f(a)]. Clearly
a

kernel of the above map is 0 so that the map is a monomorphism. Now we shall

prove that it is onto. Let y 6 S such that y _< f(a). Te claim that f(y(a)) y.,,,
If b 6 L, then observe that y(a)^ b y(b^ a) y(b)^ a. Clearlv (y(b)^ a) b

** **b
_< y(b). Now y(b) _< y(b) Af(a)(b) y(b) A (a Ab) b (y(b) Aa ^b)

**b(y(b) ^a) Thus the map is an isomorphism. O.E.D.

REMARK. If L is also directed above then it can be seen that S is the in-

verse limit of {S L} where ab a aba ab’ Sb /S (a < b) defined by (x) x ^a.

THEOREM i0. If L has a dense element then L/ is a Boolean alebra iso-

morphic to S.
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PROOF. Let d E L be dense so that L/@ Sd under the map @[x] (x Ad) **d

and by theorem 9 we have S
d

_-- [O,f(d)]. Since f(d)(b) b for all b we have

[0,f(d)] S so that L/@ _-- S. Q.E.D.

COROLLARY 3. If L has a dense element then L is a ,-semilattice.

PROOF. Follows from Theorem i in [9].

Finally it is natural to ask when does a ,-semilattice become a sectionally

pseudocomplemented semilattice. Since every section of a ,-semilattice is also

a *-semilattice we will prove the following:

TEOREM II. A necessary and sufficient condition for a ,-semilattice S to

be pseudocomplemented is that (i) for each x E S there exists a greatest x’ S

,
such that (x) (x) and (2) x -< y implies x’’ _< y’’.

PROOF. If S is a pseudecomplemented semilattice, then takin the pseudo-

complement of x as x’ it can be seen that (i) and (2) are satisfied. Conversely

suppose that S is a ,-semilattice satisfying (i) and (2). First observe that

for any x,y 6 S we have (x) (y) if and only if x’ v’. Since (x’) (x)
,

we have x N x’’ and since (x) (x’’) we have x’ x’’’. Suppose x ^y o.

,
Then (x ^ y’ (x) and hence (x Ay’ x’ Now we claim that (x ^ y’

X AV’. * *
Since ((xAy’)’’) (xAy’) (xVV Ay’) we have X’’Ay’ _< (xAy’)".

Now (x Ay’)" _< X"A y’ (by(2)). Hence x" Ay’ x" SO that x <_ x" <_ y’ and hence

S is pseudocomplemented. 0 .E .D.
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