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ABSTRACT. Our primary objective here is to extend the concept of Banach *-algebraic

bundle to the setting where the bundle product and involution are just measurable,

i.e. not necessarily continuous. Our secondary objective is to introduce the *-algebra

operations into such a bundle by means of operator fields and study the smoothness of

these operations in terms of the smoothness of the fields.
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0 INTRODUCTION

Let G be a locally compact group and A a Banach *-algebra. The question we are

interested in here is how to construct a Banach *-algebra from LI(G,A) which general-

izes the canonical one (with pointwise operations). Alternately, how generally can

we introduce multiplication and involution in LI(G,A) so as to make it a Banach *-al-

gebra? The most general existing responses to this question are quite different.

They are

(I) The cross-section algebras of Fell [1,2 and their underlving Banach

*-algebraic bundles.

(2) The generalized Ll-algebras of Leptin [3] or the equivalent twisted
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group algebras of Busby and Smith [4]. The underlying Banach bundles in these con-

structions are trivial (see [5]).

Neither of the previous approaches is more general than the other. However,

they were designed for the same purpose. Thus, it seems desirable that they be

unified as part of a more general theory which includes them both--as well as their

bundles. This is our overall goal in this manuscript.

Since multiplication and involution are Just measurable in the trivial bundles

associated with the Leptin and Busby-Smlth constructions, this should be true of the

bundles in the general theory. This is the main shortcoming of the Fell approach via

bundles. On the other hand, since Fell’s approach allows for non-lsomorphlc fibers

in the bundles (i.e. non-trivial bundles), this should also be true of the bundles in

the general theory. This is the main shortcoming of the Leptin and Busby-Smlth con-

structions. Consequently, our primary objective is to extend Fell’s Banach

*-algebraic bundle approach to the setting where the multiplication and involution

need only be measurable. This extension will then include the Leptln and Busby-Smith

constructions. However, the method by which we realize the measurable *-algebra

structure in a (Banach) bundIe will be quite different from that of Fell. In fact,

it will be more consistent with the other two approaches in that it ill be done by

means of operator fields. This is our secondary objective. There is good reason for

our choosing this approach which is explained very well by some recent remarks of

Rieffel [6]:

"Fell’s approach in terms of bundles has some great advantages over those used

in various other papers concerned with establishing a general framework,.., in that

Fell can work everywhere with continuous functions, thus avoiding many measure-

theoretic arguments, and he has no need to become entangled in lengthy cocycle com-

putations and the like. On the other hand, in many specific situations which one may

want to study, the bundle structure is often not entirely evident so that the trans-

lation between the immediately evident structure and Fell’s bundle structure may be

tedious. Thus while the theory developed by Fell in these notes is of very consider-

able philosophical comfort, more experience will be needed before it will be clear
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exactly how incisive a technical tool it is for dealing with specific examples."

To elaborate on Rieffel’s remarks, observe that in the Fell construction the

bundle structure is introduced axiomatically. On the other hand, in the Lepti and

Busby-Smlth constructions, the bundle structure is introduced operator-theoretlcally.

The latter approach is characteristic of how the "immediately evldent ’ bundle

structure arises in specific examples. Thus, in short, our aim is to develop a

general theory of group algebras via bundles which includes the existing theories

and utilizes their respective advantages.

Taking all the above facts and comments into consideration, we have chosen to

proceed as follows. Replace A by a field {Ax:XeG} of Banach spaces indexed by

G In Section i, we review the notion of continuity structure A in and the
x

equivalent notion of Banach bundle. In Section 2, we study certain continuity

structures which can be derived from A--the induced structures. The notion and

properties of bundle morphlsm are developed in Section 3. Then the notions of pro-

duct and involution are introduced in Sections 4 and 5 by means of operator fields

P and I having the appropriate algebraic properties. By requiring these fields

to be continuous (resp. measurable, ultra-measurable), we obtain a continuous (resp.

measurable, ultra-measurable) Banach *-algebraic bundle. ,A group-algebra bundle is

defined to be a measurable Banach *-algebraic bundle and is studied in Section 6.

Section 7 studies to what extent the various notions and properties of bundle ap-

proximate identity extend from the continuous to the measurable case. Section 8

does the same for multipliers. In Section 9, we construct the Ll-algebra corre-

sponding to G, {Ax} A P I In Section I0, we investigate the extent to

which bundle homogeneity extends from the continuous to the measurable case.

Unitary factor systems and twisting pairs, as well as their bundles and correspond-

ing algebras, are reviewed and compared in Sections ii and 12, Next we construct

the bundle corresponding to a locally compact group extension I-NI Fell’s

original construction was direct, in that he specified the bundle ingredients and

then verified the equivalence of LI(H) with the resulting cross-sectlon algebra.

In Section 13, we show that these ingredients arise naturally as a consequence of
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our Ll-induction procedure for regular representations. The equivalence of LI(H)
with the cross-section algebra is then an automatic consequence of inductlon-in-

stages.

In what follows, it will be convenient to use the following general notation.

The symbols ., Z, IR, C will denote (as usual) the natural numbers, integers, real

numbers, complex numbers respectively. If S is any set, then E
S

will denote

the identity mapping on S and YS its characteristic function. If A and B

are Banach spaces, then Hom(A,B) will denote the Banach space of bounded linear

operators from A into B If X is a locally compact Hausdorff space and

is a positive Radon measure on X then C(X,A) (resp. C (X,A)) will denote the

linear space of continuous (resp. compactly supported) A-valued functions on X

and M(X,A,) the linear space of (equivalence classes of) such -measurable

functions. The phrase "for -almost all x in G" will be abbreviated by

"-a.a. x in G."

I. CONTINUITY STRUCTURES.

Let X be a locally compact Hausdorff space and {Ax:XeX a field of Banach

spaces over X Let A denote the disjoint union of the A xeX Define :,%/X
x

by -l(x) Ax,XeX Note that A is a linear space. An element of A will
x x

be called a vector field. Of fundamental significance here is the notion of con-

tinuity for a vector field. Since there is no canonical meaning for this notion in

general, it must be introduced axiomatically. This was first accomplished by

Godement in [7] (see also [8]) by means of a "continuity structure." Actually,

Godement’s original terminology was "fundamental family of continuous vector

fields." The term "continuity structure" is taken from Fell [9].

DEFINITION I.i. A continuity structure A in A is a subset satisfying:
x

(i) A is a subspace of KA
x

(ii) For each h in A the scalar function x-li h(x)II is continuous on X

(iii) For each x in X the subspace {h(x):heA} of AX
is dense.

Given a continuity structure, we define continuity for a vector field as

follows
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DEFINITION 1.2 Let x eDX and feDAx Then f is A-continuous at x
o o

if, given >o there exists a neighborhood N of x in X and h in A
o

such that llf(x) h(x)ll<e for x in NQD The field f (defined on D) is

A-continuous if it is so at each point of D Denote the space of such fields by

C(D,A) if D X we write C(A) for C(X,A) Clearly, A _c C(A) in general.

Hence, in this context, to say that f is a continuous vector field means that f

is an element of the linear space C(A) (See sections 1 and 5 of [8].) Let

C (A) {fec(A): f has compact support}
c

DEFINITIONI.3. A subset F of A is total if {h(x):heF} is dense in A
x

for each x in X Thus, A itself is total.

ifLEMMA 1.4. Let F be total in A In 1 2, f is A-continuous at x

and only if the element h in A can be chosen from F

Some time after Godement, Fell introduced the notion of continuity into our

context in a very different way--by axiomatically topologizing A[I] For this

purpose, it will be convenient to speak of the elements of I[A as cross-sections
x

and denote the space of them by S(X,A)

DEFINITION 1.5. (A,) is a Banach bundle over X if .A is a Hausdorff space,

is a continuous, open surjection and:

(i) The function a a is continuous on A

(ii) The operation + is continuous from

{(a,b)eAxA (a).= (b)}

into A

(iii) For each 8 in the mapping on A given by a 8a is continuous.

(iv) If xEX and {ai} is a net in such that flail 0 and w(ai) x in X

then a. 0 (the zero of A in A
1 x x

Let CS(X,A) denote the subset of S(X,A) consisting of continuous cross-sections.

Observe that the relative topology of A on each fiber A is precisely the
x

norm topology [i, p.10]. More importantly, we have the following:

LEMMA 1.6. The space CSX,- is a continuity structure in with
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equality holding in part (iii) of i.I.

PROOF. Part (i) of i.i follows from [i, p. ii]. Part (ii) is clear. Part

(iii) is a very recent development and follows from the fact that (A,) has enough

continuous cross-sections [i, Thin. ii].

Letting A--CS(X,A) we obtain that C(A) A [8, p. 13]. Therefore, start-

with a Banach bundle, we obtain a continuity structure in A which is the

largest such structure in its equivalence class [8, Prop. 1.23]. (Recall that

AI A2 if C(AI) C(A2) .) Conversely, it has been known for some time that this

process is reversible (up to equivalence).

LEMMA 1.7. Let A be a continuity structure in A Then there exists a
x

_unique topology on A making (A,) a Banach bundle. Furthermore,

A .c CS(X,A); in fact, C(A) CS(X,A)

LEMMA 1.8. Let xoeD c. X and feAx so that f:D- Then the cross-

section f is A-continuous at x if and only if the vector field f is A-con-o

tinuous at x Hence, C(D,A) CS(D,A)o

Thus, starting with a continuity structure A we obtain a Banah bundle

(A,v) for which A~CS(X,A) This shows that the two methods for obtaining con-

tinuous vector fields in A are equivalent, i.e. C(A) CS(X,A) For the re-x

mainder of this paper, we will let A be a continuity structure in KA and (A,)x

the unique Banach bundle guaranteed by 1.7. In particular, if X is discrete then

HA itself is the essentially unique continuity structure [8,1.22] in A

Next we turn to the notion of measurability. Let be a positive Radon

measure on X First we consider the vector field context.

DEFINITION 1.9. Let D be a locally compact subspace of X and f an

element of DAx Then f is (A,)-measurable if, given compact K c_ X and

e > o there exists compact KE c_ K such that (K-Ke)< and f is A-continuous

on Ke Denote such f by M(D,A,) If D X delete it.

Analogously, we wish to introduce measurability in S(X,A) (as in [i0]).
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DEFINITION 1.10. Let D and f be as in 1.9 Then f is (A,B)-

measurable if, given compact K _c D and >o there exists compact Kc K such

that (K-K)< and f:K is continuous for the A-topology of A Denote such

f by MS(D,A)

aEMARK I.Ii. On p. 22 of [1], Fell defines the notion of measurable cross-

section in a different way. However, as can be verified by the results on p. 23 of

[i], the two definitions are equivalent.

LEMMA 1.12. If D is a locally compact subset of X then

MS(D,A,) M(D,A,)

In partlcular,

MS(X,A,) M(A,)

PROOF. This follows from 1.8.

REMARK 1.13. Since continuity and -measurability depend only on the equlva-

lence class of A [8,1,3], we may replace A by C(A) CS(X,A) without loss

of generality. (Of course, this is false if we find it necessary to consider equl-

continuous families of vector fields [8 2]). Thus we may (and wILl1) assume

A C() CS(X,) Actually, this is advantageous because of the last equality,

as well as the fact that {h(x) hC()} is equal to Ax for x in X In

what follows, C(A) or A will be used according to which is appropriate when

they are no__. assumed to be equal.

The remainder of this section is devoted to separability considerations.

DEFINITION 1.14. [1, p.15]. The Banach bundle (A,) is strongly separable

if X is second countable and A is countably dense, i.e. A contains a count-

able, total subset [8, 1.1].

LEMMA 1.15. The bundle (A,) is strongly separable if and only if it is

second countable.

PROOF. This is Prop. 1.8 of [I]. Recall that (A,) automatically has

enough cross-sections.
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Suppose for the moment that A Is arbitrary again, i.e. A c C(A) in general.

Recall [8, p.10] also that is separable If C(A) is countably dense and A is

locally separable if, for each compact K X, the restricted continuity structure

AIK [8, p.9] is separable. In this context, we have: A strongly separable

implies A separable. The converse is false in general. However, if we again

assume -- C(A) then: A is separable if and only if A is countably dense.

Therefore, under this assumption, we have the following separability summary:

LEMMA I. 16. The following are equivalent

(i) A is second countable, i.e. strongly separable.

(ii) is countable dense and X is second countable.

(lii) is separable and X is second countable.

EXAMPLE i. 17. Let

be an exact sequence of locally compact groups. If H is second countable, then so

is G and the group algebra LI(N) is separable. In Section 9, we will construct

a Banach bundle over G with fibers isometrically isomorphic to LI(N) In this

case, the continuity structure will be countably dense, so that the Baach bundle

will be second countable.

2. INDUCED CONTINUITY STRUCTURES.

The objectives of subsequent sections suggest that we study certain continuity

structures "induced" from given ones. This section is devoted to defining these

structures and establishing their basic properties for use later on.

Suppose {By:yeY} is a field of Banach spaces over the locally compact

Hausdorff space Y with A a continuity structure in B Let (B,T) denote the
Y

corresponding bundle. Suppose also that :X/Y is a continuous mapping from X

into Y The induced bundle [ii] (B,T) over X is then given by:

B {(x,b) xeX, beB, Y(b) (x)}

(x,b) x (x,b) e B
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We then have the following commutative diagram:

/B

X -Y

where the top mapping is the projection (x,b) b (Also see [2, p.101] in this

regard.) The set B is (roughly) the disjoint union of the field {B(x)
If is one-to-one, then B can be identified with r-l((X))

xX}

The cross-sections S(X,B) are in one-to-one correspondence with

HB(x) {f:X- f(x)eB(x),XeX}

via the mapping f +- (Ex, f) For such f the diagram

B / B

(Ex, f)
/

X

is commutative.

Suppose B is equipped with the relativized topology of X B

LEMMA 2.1. Let A {ExXk keA} Then A is a continuity structure in

B(x)

LEMMA 2.2. Let feHDB(x) for D c X and XoeD Then the following are

equivalent

(1) The vector field (Ex, f is A-contlnuous at Xo
(li) The cross-sectlon (Ex, f) in S(D,B) is continuous at Xo

From 2:2, it follows that

and

cs(x,m) c(a)

{(Ex, f):fgC(X,),f(x)E(x) xgX}

MS(X,,U) M(a,U)

EXAMPLE 2.3. If X c_ y and @ is the injection mapping, then h is simply

the restriction AIX of A to X [8, p.9]. In this case, B@ is homeomorphic to

to T-l(x) c_ and T IB
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EXAMPLE 2.4. If :X/Y is a homemorphlsm, then B B and r

essentially. Of course, C(A) -+ C(A) i.e. (Ex,h)+-h heC(A)

EXAMPLE 2.5. If :YX+Y is the left projection % then A% is the lifted

continuity structure obtained from A [8 4] The corresponding bundle (
can be identified with (Xx, ExXT (See p.27 of [i].)

3. BUNDLE MORPHISMS

In later sections, it will be necessary to identify bundles (up to isomorphism)

as well as consider products of bundles in studying multiplication. Accordingly, we

need to develop suitable notions about mappings from direct products of bundles to

bundles. Nevertheless, in going through this section, it would be worthwhile for

the reader to give special attention to the case where the domain is a single bundle-

-and not a product.

Let Xl,...,Xn,Y be locally compact Hausdorff spaces, {Ax1:XlX1}
{A :x X {By:yY} fields of Banach spaces over these base spaces, AI,...,%,xn n n

the bundle spaces and l:Al/Xl,...,n:An/Xn T:Y the projections. Let

denote the product bundle over X XI... Xn given by A i....wAn and- 1... (Recall [11].) n his context, an (abstract) bundle morphismn

(,’) from the product (A,) ino (,T) will be a pair of mappings

satisfying T- Thus, such is fiber preserving in the sense that

(Ax c BCx xeX where x- (xI ,xn) and A A x...xA Note that we
X X1 X

n
are not requiring that or be continuous. In fact, our objective here is to

develop the notions of continuity and measurability for (,)

Clearly, a bundle morphism (,) may be viewed as a pair (,) conslating

of a mapping :X-Y together with a family of mappings # { :xEX} satisfying
X

x(Ax) _c B(x) xeX The connection between and is then given by

(a) T(a)(a), aeA

i.e. .IAx xeX
X
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DEFINITION 3.1. A Banach bundle morphism from (A,w) into (B,T) is a bundle

morphism ($,) satisfying

o." (A, xx S,(x)
(See the Appendix for the definition and required properties of such spaces of bound-

ed n-linear mappings.) Thus, may be viewed as a vector field in the product

rxm(x’ B,(x))
Now let Di _c X

i fieDiAxi l<i<_n with D-DI...Dn and f’(fl’"’’fn
Then defines a mapping #f:D given by

(x) x((x))- x.,...,xn(.(x.)’’’" ,n (xn))

(fl(Xl)’’’’’fn(Xn) xED

Clearly, Cf .f Moreover, since fi(xi)eAxl l<_i_<n we have

f(x)zAx so that f(x)eB(x) xED Thus, #fEEDB(x) i.e.

:EiEDIAxi + EDB(x)

However, iDiAxl may be viewed as DAx i.e.

:DAx / DB(x)
Next suppose that AI,...,An A are continuity structures in the spaces

AXl ,Ax ,B If is aontlnuous, then it induces a continuity structure
n Y

A in B(x) as in section 2. On the other side, we have the product

A AIX" xA of the continuity structures AI,.. ,A in [L% ...xIL% ExAxn n xI xn

DEFINITION 3.2. Let (,) be as in 3.1 with aeA Then (,) is con-.
tlnuous at a (relative to A,A) if is continuous at a and is continuous

at (a).

DEFINITION 3.3. The operator field is continous at x in X (relative

to A,A) if, for each h in A the mapping Oh=.h is continuous at x The

field $ is locally bounded at x in X if, for each compact subset K of X

containing x the set
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{ll (I)
T

TeK}

of operator norms is bounded in

LEMMA 3.4. (i) If is continuous at x then is continuous at x

(2) If is continuous on X then is continuous at x in X if and only

is A@-continuous at xif, for each h in A the vector field h in HB(t)
PROOF (I) If x. x in X the zero element @ __(@i of A satisfies:

3

8 @ (2) This follows from 2.2.
X. X
3

For f. e ILE let
1 X.

1

1

sup {llfi(xi)II:xigXi} l<i_<n

PROPOSITION 3.5. For (,) as in 32, we have:

IlCxl sup{I[x(f(x))ll f=(fI fn)eHiCc(Ai) IIfiIIx <l,i=l n}, xeX

PROOF. The proof of 9.2 of [8] can be adapted to this proposition.

COROLLARY 3.6. If is continuous at x in X then it is locally bounded

at x--assuming A
i

C(Ai) l_<i_<n

PROOF. By hypothesis, f:X/B is continuous at x for each feiC (Ai)C

Hence, the scalar functions Cf (’)If are also continuous. This corollary then

follows from 3.5, together with the fact that the supremum of continuous functions

is lower semi-continuous and hence, locally bounded.

REMARK 3.7. If we were not assuming A
i

C(Ai),l<_iin then the two versions

of continuity for in 3.3 would be equivalent for locally bounded # [7, p.84].

This is reasonable in view of 3.6.

THEOREM 3 8. Let xeX Then (0,) is continuous at each a in A if and
X

only if is continuous at x (as in [i, p.32]).

COROLLARY 39 Let x.eD.cX l<i<n Suppose (,) is continuous at
1 1--i

each a in A i.e. is continuous at x _(Xl,...,xn)_ If f. in H
D
A

X 1 X.
1 1

is A.-continuous at x. then for f (fl ,fn the mapping
1 1



GENERALIZED GROUP ALGEBRAS AND THEIR BUNDLES 221

...XD +B#f:DlX n

is continuous at x for the A-topology of B

Next we develop measurability for ($,) and # Let Hi be a positive

is a positive Radon measure onRadon measure on X
i lii<n Then H HI Q’’’Hn

x [10].

DEFINITION 3.10. The Banach bundle morphism (,) (resp. operator field $)

is measurable (relative to A, A, H) if, for each h in A the mappin h

(resp. h) of X into is measurable. Thus, (,) is measurable if and only

if $ is measurable (recall 3.8).

LEMMA 3.11. (i) If is measurable, then is measurable (recall 3.4).

(2) If is continuous, then $ is measurable if and only if, for each h in

A the vector field Sh in B(x) is (A,)-measurable (recall 2.2).

There is a stronger notion of measurability for $ and (,) (as in [8,10])

which is useful for our needs.

DEFINITION 3.12. The Banach bundle morphism (,) (resp. operator field

is ultra-measurable if, for each compact subset K of X and >0 there exists a

compact subset Ke of K such that H(K-Ke)<e and (,’) (resp. $) is continu-

ous on K Thus, (,) is ultra-measurable if and only if is.

THEOREM 3.13. If is ultra-measurable, then it is measurable. The converse

is true if, in addition, is locally bounded and each A
i

is countably dense,

lin

PROOF. This is proved as in Prop. 20 of [7].

THEOREM 3.14. Suppose $ is measurable. If f=(f!,...,fn) is an element of

HiM(Ai,i) then fgM(X,,)

REMARK 3.15. Once again, if we were not assuming A
i C(AI) l<i<n then

there would be two versions of measurability for $ given in 3.10. However, in view

of 3.14, these would be equivalent.

REMARK 3.16. As we indicated at the beginning of this seciton, the case n=l
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is of special interest. Specifically, for this case, this section contains the de-

finitions and properties of continuous, measurable, and ultra-measurable Banach

bundle morphisms.

4. PRODUCT FIELDS.

Having established the foundations for our analytical needs, we turn to our

algebraic needs--namely multiplication (i.e. convolution) and involution. In this

section we develop multiplication in A by means of a product field of operators.

Suppose G is a locally compact group and (A :xG} is a field of Banach
X

G with A as before. Then Hom2(AxXAy,Axy) is the Banachspaces over space

(A3) of bounded bilinear operators from A xA into A (x,y)eGG Consequent-
x y xy

ly,

{Hm2AxXAy,Axy) (x, y)GG

is a field of Banach spaces over GxG and

IISom2 (AxXAy,Axy)
is a linear space of operator fields. If P is such a field, then for (x,y)gGxG

the mapping

P AxA /A
x,y x y

is a bounded bilinear operator with range contained in A Let the field of

identity operators on the {A :xEG} be denoted by {E :xgG} (This is in
X X

HGHOm(Ax).

DEFINITION 4.1. Let PEHHom2(AxAy,Axy) Then P is a product (or multi-

plication or convolution) field if IIPx,yll<l and

P (Px,yXEz) p (ExXpy,z)xy,z x,yz x,y,zG

For convenience, let P HHom2(AxXAy,Axy) Note that an element of P is no.__

necessarily a product field. Moreover, let p denote the mapping of AxAA

defined by

p(a,b) Pv(a),w(b)(a’b) a,bEA

Since the mapping :GGG given by group multiplication satisfies
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(x) p it follows that (p,) is a Banach bundle morphism of (A,’w) into

(A,) Furthermore, since is continuous, if A is a continuity structur in

LA then we obtain the induced continuity structure A inx

d-’nA nAnA,y (x,y) xy

as in Section 2. We will denote A by A’ A by A’ and by ’
We will also require that product fields be measurable relative to A and

(rit) Haar measure B on G as in Section 3. It will be instructive to

summarize he results of Section 3 for (p,P,)

THEOREM 4.2. Let P be an element of P with p as above. Then the

following are equivalent for (Xo,Yo)GxG:
(i) P is continuous at (Xo,Yo)

(li) For each h,k in A the mapping P(h,k):GxG (as in 3) is

continuous at (Xo’Yo)
(ill) For each h,k in A the vector field P(h,k) in hA is A’-continuous

at (Xo,Yo)
(iv) For each h,k in A the cross-section P(h,k) in S(GxG,A’) is

continuous at (Xo,Yo)
(v) The bundle morphism (p,) is continuous at each point (a,b) in A xA

x Yoo
(vi) The mapping p is continuous at each point (a,b) in A A

Xo Yo
PROOF. Combine 1.8, 3.2, 3.3, 3.4, and 3.8.

PROPOSITION 4.3. Let DI,D2 _c G XoED1 YoD2 Suppose P is continuous

at (Xo,Yo) If fEDIAx gED2Ay are A-continuous at Xo,Y respectively,

then the mapping P(f,g):DIXD2-A is continuous at (Xo,Yo) (resp. A’-continuous

at (Xo,Yo)).

PROOF. Recall 2.2, 3.9.

THEOREM 4.4. Let PEP Then the following are equivalent:

(i) P is measurable.

(ii) For each h,k in A the mapping P(h,k):GG/A is measurable.
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For each h,k in A the vector field (EGG,P(h,k)) in IiAxy is

(A’, @)-measurable.

(iv) For each h,k in A the cross-section (EGG,P(h,k)) is measurable

A’relative to and Q

PROOF. Combine 3.10, 3.11, and 1.12.

THEOREM 4.5. Let PeP Then the following are equivalent:

(i) P is ultra-measurable.

(ii) For each compact subset K of GG and >0 there exists a compact

subset Ke of K such that Q(K-Ke)<e and P is continuous on Kg
If P is a product field and A is countably dense, then the previous are

equivalent to:

(iii) P is measurable.

PROOF. Combine 3.12, 3.13, and 4.1.

PROPOSITION 4.6. Suppose P in P is measurable and f,geM(A,) Then

e (f, g)EM(GXG,A,)

PROOF. Recall 3.14

5. INVOLUTION FIELDS.

The other algebraic operation we need is involution, which will also be intro-

duced by means of a field of operators. Of course, such fields will have to be

suitably compatible with product fields in order that the resulting operations yield

a *-algebra structure in A

For each x in G let A denote the Banach space conjugate to A
X X

i.e. A and A are identical except for scalar multiplication which is given in
X X

A by:
X

a’a aa eK aeA
X

Consider the fields {A :xeG} {Ax_l:XeG} of Banach spaces over G The spaces
X

{Hom(A,Ax_l)} form a field of Banach spaces over G and Hom(Ax,Ax_I) is a

linear space of operator fields. Note that the linear mappings from Ax into Ax_I
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are precisely the conjugate linear mappings from A into Ax_I Thus if I is
X

an element of NHom(Ax,Ax_I) then, for each x in G the mapping

I A-+A (resp. I A -hA)
X X X X

is bounded and linear (resp. conjugate linear) with range contained in Ax_I
For convenience, let

S :A A A A
x,y x y y x

denote the switching mapping (a,b) (b,a) aEAx, bEAy x ygG

DEFINITION 5.1. Let I be an element of HHom(Ax,Ax_l) Then I is an

involution field if lllxll i Ix_I Ix-I and

IxyPx,y Py-l,x-l(lyIx)Sx,y x,ygG

for each product field P in P For convenience, let

I HHom(Ax,Ax_I)

Note that the elements of are not necessarily involution fields.

For the purposes of this section, let @:G+G be the inversion homeomorphism

(x) x-I xeG If f is a mapping defined on G it is customary to write

fv for f@ Consequently, the induced continuity struc6ure A@ in A(x) flax_1

will be denoted by Av i.e.

Av {hV:heA}

Also, denote by A- the continuity structure A viewed as being in KA HA
X X

Hence, for oSK and h-sA- we have

(oh)(x) oh(x) xEG

Now let i denote the mapping of A into itself given by

i(a) l(a)(a) aeA

Then (i,@) is a bundle morphism of (A-,n-) into (Av,v) where:

(i) A-= A DA- (disjoint) with conjugate scalar multiplication in the
X

fibers.

(ii) Av A UA-i (disjoint) with A-I the fiber over x in G
X X
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(iii) (a) (a) x for aeA A xeG
X x

-I(iv) v (a) (a) -I x for aeA,v.(x A
-i

xEG
x

As in the previous section, an involution field will be required to be

measurable relative to A and Here also, it will be instructive to summarize

Section 3 for (i,l,)

THEOREM 5.2. Let leI with i as above. Then the following are equivalent

for x in G
O

(i) I is continuous at x
o

(ii) For each h in A the mapping l(h-) :G- is continuous at x
o

(iii) For each h in A the vector field l(h-) in A-i is
x

vA -continuous at x
o

(iv) For each h in A the cross-section l(h-) in S(G,Av) is continuous

at x
o

(v) The bundle morphism (i,) is continuous at each point a in A-
x
o

(vi) The pping i is continuous at eac point a ine A
o

PROOF. Combine 1.8 3.2, 3.3 3.4,nd 3.8.

PROPOSITION 5.3. Let DG xeD Suppose I in [ is continuous at x

If fEHA is A-continuous at x then the mapping l(f-) :D+A is continuous at
Y

x (resp. AV-continuous at x

PROOF. Recall 2.2 and 3.9.

THEOREM 5.4. Let le[ Then the following are euqivalent

(i) I is measurable.

(ii) For each h in A the mapping l(h-) G-A is measurable.

(iii) For each h in A the vector field l(h-) in A -i
is (Av,)-measurable.

X

(iv) For each h in A the cross-section Ih-:C--Av is measurable realtive to

(v,)

PROOF. Recall 1.12, 3.10, and 3.11.

THEOREM 5.5. Let lel Then the following are equivalent:
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(i) I is ultra-measurable.

(ii) For each compact subset K of G and g>0 there exists a compact subset

Kg of K such that (K-Ke)<g and I is continuous on KE (resp. i is

-i -i
continuous on (7-) (K) (K)).

If I is an involution field and A is countably dense, then the previous are

equivalent to

(iii) I is measurable.

PROOF. Combine 3.12, 3.13, and 5.1.

PROPOSITION 5.6. Suppose I is measurable and fgM(A,) Then

I (f-)EM(G,A,)

PROOF. Recall 3.14.

6. GROUP ALGEBRA BUNDLES.

We are now ready to construct a measurable analogue of Fell’s Banach

*-algebraic bundle [i]. Let {A :xgG} once again be a field of Banach spaces overx

the locally compact group G with A,A,, as above. Suppose also that P is a

product field in P with p the corresponding product bundle mapping. To intro-

duce multiplication into A define

a-b p(a,b) P(a),(b)(a’b)’ a,bgA

PROPOSITION 6.1. We have:

(i) a’bAxy for aAx bgAy i.e Ax’AyCAxy x,yG

(ii) For each x,yEG the mapping (a,b)/a-b of A A into A is bilinear.x y xy

(iii) (a’b)’c a’(b.c) a,b,cgA

(iv) [la’bll-< llall" l[bl[ a,bgA

To obtain continuity for the product mapping p:AxA/A recall 4. i

PROPOSITION 6.2. The product in A is continuous if and only if P is

continuous.

One of our goals is to generalize the above to the case where the convolution is

just measurable--and not necessarily continuous. In this regard, we have:

PROPOSITION 6.3. The product in A is measurable if and only if P is
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measurable. It is ultra-measurable if and only if P is ultra-measurable. If A

is countably dense, then these are equivalent to measurability for P (4.5).

To introduce involution into A suppose further that I is an involution

field in with i as before. For a in A define

a* i(a) I (a)(a)

PROPOSITION 6.4. We have

(i) (a*) (a) -I V(a) aA i.e. (Ax), _c Ax_l xG

(ii) For each x in G the mapping a/a* from A into Ax_I (resp. A-
x x

into Ax_l) is conjugate linear (resp. linear).

(iii) (a’b)* b*’a* a,bgA

(iv) a** a agA

To obtain continuity and measurability for the involution mapping i:A-

recall 5.1 and 5.4:

PROPOSITION 6.5. The involution in A is continuous if and only if I is

continuous.

PROPOSITION 6.6. The involution in A is measurable if and only if I is

measurable. It is ultra-measurable if and only if I is. If A is countably

dense, then these are equivalent to the measurability of I

DEFINITION 6.7. By a (measurable) Fell bundle (A,; P,I) over G we will

mean a Banach bundle (A,) over G together with measurable product and in-

volution fields P and I (The underlying continuity structure A will be

understood to be CS(G,A) as before.) If P and I are continuous, we will say

that (A,;P,I) is a continuous Fell bundle over G (equivalently, a Banach

*-algebraic bundle over G ).

In Section 3 of [i], Fell defines a continuous Fell bundle (A,:-,*) over G

to be a Banach bundle (A,) over G with product and involution * given

axiomatically. Clearly, the corresponding product and involution fields P and I

are then determined as follows:



GENERALIZED GROUP ALGEBRAS AND THEIR BUNDLES 229

P (a,b) a’b
xy

Ix(a) a* aA
x bAy, x,yEG

Of course, these fields are continuous relative to A CS(G,A) since and

are continuous operations on A (6.2, 6.5). To extend his construction to that of

a measurable Fell bundle, the appropriate measurability requirements on and *

would be given by 4.4 and 5.4.

EXAMPLE 6.8 [2 ,p.130]. Let B be the 2-dSmensional Banach *-algebra 2 with

-algebra structure given by

(a,b) (a’,b’)= (aa’,bb’)

(a,b)* (b ,a

and norm given by

ll(,b)ll (II, Jbl) a,a’ ,b,b’g

Let G be the cyclic group {i,-i} of order 2 and {AI,A_I} the closed

subspaces of B given by

AI {(a,a):ag}

A_I {(a,-a):a}

Since G is discrete, we have A AIA_I Define P an,d I by

P ((a,xa), (b,yb)) (ab, xyab)
x,y

Ix((a,xa)) (a ,xa x,ygG, agAx, bgAy

Of course, P and I are continuous.

EXAMPLE 6.9 [2,p.131]. Let D {ze:Izl-<l} and D the ususal boundary of

D Let B be the Banach *-algebra C(D) with pointwise *-algebra structure. For

G {i,-i} let AI,A_I be the closed subspaces of B given by

A
I

{fgC(D)’f(-z) f(z) zg3D}

A_I {fgC(D):f(-z) f(z) zgD}

Then A AIXA_I once again and continuous P and I are given by



230 I.E. SCHOCHETMAN

P (f,g) xy(f’g)xy

I (f) f x,yeG, feA
x

geAx y

Before leaving this section, we wish to point out one of the main consequences

of replacing a continuous Fell bundle by a measurable one.

DEFINITION 6.10 [2,p.i15]. A measurable Fell bundle (A,:P,I) over G is

saturated if the span of A "A is dense in A i.e. the range of P hasx y xy x,y

dense span in A for all x,yeG
xy

PROPOSITION 6.11 [2,p.i15]. If (A,;P,I) is saturated, then:

(i) The span of A "A is dense in A xeG
e x x

(ii) The span of Ax’Ax_I is dense in A xeG
e

Conversely, if P is continuous, then (i) and (ii) imply saturation.

Hence, the converse implication is questionable for measurable Fell bundles

since its proof depends on the continuity of the product in A This also affects

Propositions 11.4 and 11.5 of [2] in the same way.

7. BUNDLE IDENTITIES.

The purpose of this section is to extend (and rephrase) Fell’s study of approxi-

mate identities (units) in [1,2] to the context of a measurable Fell bundle.

Let (A,;P,I) be such a bundle. It is clear then that the fiber A over the
e

identity e in G is a Banach *-algebra

DEFINITION 7.1 [i,p.34]. A (bounded) approximate identity in A is a net {u.}

in A satisfying:
e

(i) llujll-< 8 all j for some 8>0

(ii) Iluj’a all 0 aeA

(iii) Ila’uj all o aeA

In particular, {uj } is an approximate identity in Ae in the usual sense.

DEFINITION 7.2 [i,p.34]. The net {u.} in A is a strong approximate
3 e

identity if it is an approximate identity and (ii) and (iii) of 7.1 hold uniformly
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on compact subsets of A

In Prop. ii.I of [2], Fell showed that these two notions agree in the case of

continuous Fell bundles. This appears to be false in the measurable case. To

determine what is true, we proceed as follows.

Let D-CG feDAx and agAe The left and right translates of f by a are

defined by

f(x) a-f(x) P (a,f(x))
a e,x

and

f (x) f(x).a P (f(x),a) xED
a x,e

Then af fa belong to DAx which is a linear space, i.e. DAx is a (two-

sided) A-module in general. Now consider C(D A) c DAxe

PROPOSITION 7.3. Let F be a total subset of C(A) Then the following are

equivalent

(i) C(D,A) is a left (resp. right) A-module.
e

(ii) For each h in F a in A the vector field h(resp, h is
e a a

A-continuous on D

DEFINITION 7.4. We say that c(A) is locally an A "-module if C(K,A) is an
e

A -module, for each compact subset K of G
e

The following is our measurable Fell bundle version of Prop. ii.I of [2].

THEOREM 7.5. Let {u.} be an approximate identity in A If C(A) is
3

locally an Ae-module, then {uj} is a strong approximate identity in A In

particular, if multiplication in A is continuous, then C(A) is actually

(globally) and A -module.e

REM.ARK 7.6. Observe that if C(A) is locally an A -module, then the
e

corollaries 11.2 and 11.3 of [2] are valid.

8. MULTIPLIERS.

There are two additional significant distinctions between continuous and

measurable Fell bundles which involve multipliers. We will briefly discuss here the

multiplier theory [1,4] we require in this and succeeding sections.
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DEFINITION 8.1. If x is an element of G then a multiplier m of order

x for the measurable Fell bundle (A,;P,I) is a pair (ml,m2) satisfying the

following

(i) ml,m2 are continuous mappings of A into itself which are bounded in the

sense that

Ilmill sup{lirai(a)ll :aeA}

is finite for i 1,2

(ii) For each yeG ml(resp. m2) is a linear mapping of A into A
y xy

(resp. Ayx)
(iii) a-ml(b) m2(a).b a,beA

(iv) ml(a-b) ml(a)-b a,beA

(v) m2(a.b) a-m2(b) a,beA

For convenience, as usual, we will write ma for ml(a) and am for m2(a)
aeA Let M (A) denote the set of multipliers of order x and M(A) UGMx(A)x

Also, let z:M(A)+G be the canonical projection.

Each M (A) is a Banach space under the canonical linear operations and norm
x

given by

llmll max(llmlll,llm211), mgMx(A) xeG

Thus, (M(A),z) is algebraically a Banach bundle. Moreover, there is a product and

an involution in M(A) given by

(m-ml)a m(m’a) a(m-m’) (am)re’

and

m*a (a’m)* am* (ram*)*

for agA m,m’eM(A) The operations have the following properties:

(i) If meMx(A),m’eMy(A) then mm’eMxy(A)
(2) The product is bilinear on Mx(A)XMy(A)
(3) The product is associative.

(4) If meM (A) then m*gM -I(A)x x

(5) The involution is conjugate linear on M (A)
x
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(6) The involution is anti-multiplicative.

(7) The involution is self-invertible.

and llm*ll ilmll

(9) The left and right identity mappings of A fon the identity of

M(A) in M (A)
e

We are now ready to describe one of the distinctions between continuous and

measurable Fell bundles referred to at the beginning of this section.

If the Fell bundle (A,;P,I) is continuous, then A can be mapped into

by right and left multiplication:

tuba ba amb
ab a,bgA

However, in the measurable (non-continuous) case, this does not seem possible, since

the left and right multiplications may fail to be continuous.

The remaining distinction involves the notion of unitary multiplier.

DEFINITION 8.2. If meM(A) then m is unitary if llmll -< I and

m*m mm* 1 the canonical identity in M(A)

The unitary multipliers U(A) in M(A) form a group under multiplication.

Also, if Ux(A) u(A)OMx(A then

and

U(A) UGUx(A)

m*eU _I(A)_ if meUx(A) xeG
x

DEFINITION 8.3. A measurable Fell bundle has enough unitary multipliers if,

for each x in G Ux(A)# [2,p.122].

LEMM% 8.4. If (A,;P,I) has enough unitary multipliers, then the Banach

spaces {A :xeG} are all isometrically isomorphic [2,p.123].
x

LEMMA 8.5. If P is continuous and A has an approximate unit as well as

enough unitary multipliers, then A is saturated (6.10 and [2,prop.ll.5]).

REMARK 8.6. In general, if A is saturated, then it may not have enough

unitary multipliers even if P is continuous and A has an identity [2,p.130].
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The implication in 8.5 is questionable in the measurable case because its

proof, namely Prop. 11.4 of [2], is questionable for non-continuous P (Recall

the end of Section 6.)

There is a notion stronger than "enough unitary multipliers" called "homo-

geneity" which we will study in detail in Section i0.

Finally, M(A) can be equipped with a topology called the strong tppology

[1,5]. In this topology, a net {M.} in M(A) converges to m in M(A) if

m.a ma am. am agA
3 3

For this topology, involution is continuous and the product is separately continuous.

The mapping :M(A) A is continuous relative to this topology but possibly not

open. Consequently, .vIU(A) is a continuous homomorphism of U(A) into G (onto

if there exist enough unitary multipliers). Note that multiplication in U(A) is

separately continuous but possible not jointly continuous.

Let MI(A) {meM(A) :llmllo-<l}
The following will be useful in Section i0.

PROPOSITION 8.7. If A has a strong approximate identity and P is ultra

measurable, then the mappings (m,a)+ma and (m,a)/am of MI(A)A "into A are

measurable in the sense of 3.10. In particular, if P (i.e., p) is continuous,

then these mappings are continuous (compare with [l,Prop.5.1]).

9. GENERALIZED GROUP ALGEBRAS.

To construct a Banach *-algebra from a measurable Fell bundle (A,;P,I) over

G let LI(A,) denote the Banach space of (null equivalence classes) of (A,)-

measurable vector fields f which are -integrable, i.e. for which

Ilfll 1 ./*Gill (x) lld (x)<

(See [7,8] for the details.) The subspace Cc(A) of C(A) consisting of vector

fields with compact support is well-known to be dense in LI(A,) Also, in view of

the results in Section i, LI(A,) is the vector field version of the space

LI(A,) of -measurable integrable cross-sections [1,2]. Let be the (right)

modular function for G Before proceeding further, let us record an important
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result for future use. Once again, let %:GXG-G be the left projection (recall

2.5).

LEMMA 9.1. Let fELI(A%,) Then for -a.a.x in G the integral

fGf (x,y)d (Y)

belongs to A and the resulting (-a.e. defined) vector field
x

x fGf (x,y)d (y)

belongs to LI(A,)

PROOF. This is the vector field analogue of Prop. 2.11 of [i].

Now, for f,g in LI(A,) consider the vector field

-i(x,y) f(y-l)’g(yx) P(f,g)(y ,yx)

in I[Ak(x,y
PROPOSITION 9.2. This vector field is (A)t,ltt)-measurable.

LEMMA 9.3. The vector field of 9.2 belongs to LI(A ) and its LI-norm is

at most llfll l’llgll I
PROOF. This is a straightforward application of the scalar Fubini Theorem.

COROLLARY 9.4. For f,g in LI(A,) the vector field

x /Gf (y-l)- g (yx)d (y)

(defined -a.e. on G) belongs to LI(A,)

PROOF. Apply 9.1 to the integrand.

As a result of the previous discussion, for f,g in LI(A,) we may define a

vector field f’g in LI(A,) by

(f’g)(x) fGf(y-l)’g(yx)d(y) -a.a. x in G

We thus obtain a binary operation (multiplication or convolution) on LI(A,)
which satisfies

<_ llflll-Ilgll I f,ggLI(A,)

REMARK 9.5. Before going any further, observe that Fell defines convolution
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first in C (A) [i,8] and then extends it to all of LI(A,) Note that in his
C

case (that of a continuous Fell bundle), C (A) is closed under multiplication as a
C

consequence of the continuity of multiplication in A However, this is not true

for a measurable Fell bundle. Hence, for us, there is less advantage in first

multiplying elements of C (A) since the products may not be in C (A)
C C

PROPOSITION 9.6. Under multiplication, LI(A,) is a Banach algebra which we

denote by LI(A,;P)
,

define f inNext, we define involution in LI(A,;P) For f in Ax,
A by

X

f*(x) 6(x)-if(x-l)* 6(x)-ll(f-) (x) 6(x)-II (f(x)) xeG
X

LEMMA 9.7. For each f in LI(A,;P) the field f* also belongs to

LI(A,;P) in fact, llf*ll I llfll I Hence, we obtain a mapping * (involution)

from LI(A,;P) into itself.

PROPOSITION 9.8. Under involution LI(A,;P) is a Banach *-algebra which we

denote by LI(A,;P,I)

LEMMA 9.9. If the conditions of 1.16 hold, then LI(A,;P,I) is separable.

PROOF. The underlying Banach space LI(A,) is separable by the Corollary

to Proposition 2.2 of [l,p.20].

Next in this section, we turn to a study of identities in LI(A,;P,I)
Suppose A has a strong approximate identity. In the proof of Prop. 8.2 of

[i], Fell shows how to construct an approximate identity for LI(A,;P,I) Also

observe that this proof does not use the A-continuity of P or I Consequently,

we have

LEMMA 9.10. If A has a strong approximate identity (recall 7.5), then

LI(A,;P,I) contains an approximate identity (with the same bound).

PROPOSITION 9.11. The Banach *-algebra LI(A,;P,I) contains an identity

if and only if G is discrete and A has an identity.

PROOF. The proof of the corresponding result for classical group algebras
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[12,310] can be adapted to the vector field context. In particular, the identity

u of A and the identity f of. LI(A,:P,I) are related by f(e) u

For the remainder of this section, we investigate the correspondence between two

generalized group algebras whose underlying Fell bundles are connected by a "Fell

bundle morphism," i.e. a Banach bundle morphism having the appropriate additional

algebraic properties.

Suppose (B,T:Q,J) is another Fell bundle over G and LI(A,:Q,J) is the

corresponding generalized group algebra. Let :(A,)+(B,T) be a Banach bundle

morphism as in section 3 (with =EG) Then we have a field

{ :xeG} g GHOm(Ax,Bx..x

where x [A
x’

xgG If f is a vector field in HAx then it follows that

f is a vector field in B Furthermore, the correspondence f f is linear
x

between the underlying linear spaces of vector fields; notationally, we have

HA +liB
x x

Now suppose that is measurable (3.10). Then by 3.14, we have a linear mapping

M(A,) M(A,)

which is constant on null equivalence classes. If is continuous, then (3.9)

In particular,
c(A)+C(A)

c (A)< (A)
c c

since supp (f) _e, supp(f)

For convenience, let I111G denote

sup {llxl :xgG}

<m Then we have:We will say that is bounded if ..llII G

PROPOSITION 9.12. If (i.e.) is measurable and is bounded, then (modulo

nullity) is a bounded, linear mapping of Ll(A,) into Ll(A,) with norm at

most IIII G In particular, if each Cx’XgG is an isometry, then is an

isometry.
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In order that be a *-algebra homomorphism as well, we will have to require

more of

DEFINITION 9.13. The mpping

(A,;P,I) (,T;Q,J)

is a Fell bundle morphism if : (A,n)-(B,y) is a measurable Banach bundle morphism

and

(i) Px, (x) i.e. # P
y Qx,y xy x,y Qx, y (xXy)

(ii) Ix Jx i.e. I J
X X X X

for x,y in G

THEOREM 9.14. If (as in 9.13) is a bounded Fell bundle morphism, then

LI(A,p;P,I)/LI(A,p;Q,J)

is a Banach *-algebra homorphism.

Conversely, suppose -I B+A exists and is a Banach bundle morphism, so that

9.12 and 9.13 apply.

PROPOSITION 9.15 If ,-i are bounded Fell bundle morphisms for (A,;P,I)

and (B,T;Q,J) as above, then LI(A,;P,I) and LI(A,;Q,J) are isomorphic Banach

*-algebras which are equivalent as Banach spaces. In particular, if each is an
x

invertible isometry, xgG then these algebras are isometrically isomorphic.

I0. HOMOGENEITY.

Our objective here is to extend the main ideas and results of sections 6 and 9

of [i] to the setting of (measurable) Fell bundles. This will be useful in

Section Ii for comparing Leptin bundles with Fell bundles.

Recall that the unitary multipliers U(A) for the Fell bundle A form a

group and a topological space with the relativized strong topology.

DEFINITION i0.i. The Fell bundle A is (measurably) homogeneous if:

(i) A has enough unitary multipliers, i.e. (U(A)) G

(ii) The mappings (re,a) ma and (m,a) am of U(A)xA into A are measurable

(as in 3.10).



GENERALIZED GROUP ALGEBRAS AND THEIR BUNDLES 239

REMARK 10.2. For each x,y in G and m in U (A) the mapping a ma of
x

into A is a linear isoetry. Therefore, if o is onto (in particular, if
xy

is homogeneous), then the fibers {Ax:XgG are all isometrically .somorphlc.

LEMMA 10.3. If A has a strong approximate identity and P is ultra-measur-

able, then A is homogeneous if and only if A has enough unitary multipliers.

(Compare with Remark 3 of [i,p.49].)

PROOF. It follows from 8.5 that (ii) of i0.i is automatically satisfied under

the given hypotheses.

REMARK 10.4. In particular, if A is a continuous Fell bundle with approxi-

mate identity, then A is homogeneous if and only if IU(A) is onto (7.5).

Thus, for the case of such bundles, homogeneity is simply the existence of suf-

ficiently many unitary multipliers. Consequently, this latter property is really

the crux of the homogeneity property--both technically and intuitively.

In Section 9 of [I], Fell shows that all continuously homogeneous Fell bundles

can be constructed (up to isomorphism) from a given set of "ingredlent’s." We will

next extend this construction to the measurable case. Moreover, we will do this in

the setting of vector fields, describing the underlying con.tinulty structure

specifically.

Of even greater significance--especially for the needs of Section 13--is the

description of the underlying field of Banach spaces. This field is constructed in

the same way as is the field in Section 4 of [13]. However, the contexts in which

these constructions take place are different in point of view. Consequently, we

will also adopt the viewpoint of Section 14 of [13J--namely, that of group repre-

sentations. This will allow the results of Section 13 to follow immediately from

[13] and this section.

Let A be a Banach *-algebra with (bounded) approximate identity. Let N be

a subgroup of the topological group U(A) of unitary multipliers on A Suppose

also that H is a topological group extension of N with q:H-H/N the canonical

epimorphism on the space of right cosets. Assume also that G=H/N is locally
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compact in the usual quotient topology.

REMARK 10.5. The local compactness of G is not assumed by Fell in [i]. This

is essential for us here, since G will play the role of a base space X i.e. all

of Section I must apply to G However, this is not a severe additional assump-

tion, since Fell assumes G is locally compact for the main purposes of [l]--for

example, cross-sectional algebras, induced representations, etc.

Given such A, N and H, Fell constructs a field of Banach spaces over G by

defining an equivalence relation N in the space HA Consistent with our stated

point of view, observe that the topologicl group N is represented on A by:

t-iRt(a) a aEA tEN

Such R is a bounded, strongly continuous representation of N on A which we

call the right regular r.epresentation. If (x,a) and (y,b) are elements of

HXA define:

(x,a) (y,b)

if there exists t in N for which

-ib Rt(a at y tx

This defines an equivalence relation in HxA Denote the space (HxA)/~

of equivalence classes (x,a)" by A equipped with the quotient topology from

HA Observe that A can be viewed as the orbit space of HXA under the right

topological transformation group

(HXA)N HXA

where ((x,a),t) (tx,Rt(a)) agA, tEN xgH

The projection mapping :A-G is then given by

(x,a)~) q(x) agA, xEH

For each in G let AS -I(). Then A is the disjoint union of the

non-empty) fibers A, EG. If we define

J :A / A xe-eG
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by

J (a) (x,a) aeA
x

then J is a (well-defined) bijection, since
x

Jtx(a) Jx(Rt(a)) tgN agA xgH

Therefore, we may transfer the Banach space structure of A to A by such J

Specifically,

(x,a) + (x,b) (x,a + b)

.(x,a) (x,a)

ll(x,a)~ll llall ,a,bgA xgH

In this way, we obtain a field {A:eG} of Banach spaces over G

The continuity structure underlying the bundle (A,) over G is

A C(A) CS(G,A) This is obtained from C(H,A) in the following way. For D

a "saturated" subset of H i.e. D a union of N-cosets, define

CN(D,A) {fEC(D,A) f(tx) Rt(f(x)) xgH tgN}

Then CN(D,A) is a linear subspace of C(D,A) For f in CN(D,A) define

f~(x) (x,f(x))~ J (f(x)) xeH
x

The mapping f~ is constant on cosets and hence, defines a’mapping f~:G+A which is

easily seen to be a cross-section. Since f~ is also the composition of continuous

mappings, it is also continuous, i.e. f-f~ is a mapping of CN(D,A) into

CS(q(D) ,A). In particular,

{f~:feCN(H,A)} c C(A) CS(G,A)

LMMA 10.6. The mapping f+f~ of CN(H,A) into A is a linear bijection.

Furthermore, if hgA then h=f for the unique f in CN(H,A) given by

f(x) J _l(h(q(x))) xeH
x

Next suppose we are given a mapping of H into the topological group

AUtl(A) of isometric *-automorphisms of A having the following "admissibility"

properties

(i) T is a group homomorphism.

-i
(ii) Yt(a) tat Rt(Rt(a*))*) aeA teN
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(iii) Tx(t xtx
-I xgH teN where T’ is the unique extension of T tox x

M(A) defined by:

T’ (m)rx(S) Tx(ma) -, aeA meM(A)
x

The *-algebra structure of A is defined by means of T In terms of

operator fields, this structure is given by:

where

P N((x a) (y,b) ~) (xy a’T (b))

I((x,a) ~) (x-l,r -l(a)*) , a beA xe y]

x

LFLMA 10.7. The fields P and I are product and involution fields respec-

t ively.

EXAMPLE 10.8. (One-dimensional fibers [i,p.75]) If A is the complex numbers

then N U(A) is the circle group. Also, T must be trivial, since AUtl(E)
is trivial. Thus, for H as above, we have:

CN(H,A) {fgC(H) f(tx) f(x) tN xgH}

P,n((x,a) ~,(y,b) ~) (xy,ab)

l((x,a) ~) (x-l,) xEG yqG e,be

In order to motivate suitable definitions of measurability for T (as above),

consider the following characterizations of continuity:

PROPOSITION I0.9. Let T:H AutI(A) The following are equivalent for x

in H

(i) T is strongly continuous at x
o

(ii) The_ mapping of HxA into A given by (x,a) T (a) is continuous on
x

{x }A
o

(iii) For each f in C(H,A) the mapping of HxH into A given by

(x,y) Tx(f(y) is continuous on {x }H
o
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(iv) For each a in A the mapping of H into A given by x (X,lx(a))~o
is continuous at x

o

(v) The mapping of HA into A given by (x a) (x,I (a)) is continuous
x

on {x }XA
o

Moreover, under the above conditions, for each f,g in C(H,A) the mapping of

HH into A given bv (x y) f(x)’Y .g(y) is continuous on {x }H
X O

PROOF. All implications are straightforward with the exception of "(iv)

implies (i)" which follows from Lemma 9.1 of [l,p.70].

In view of 10.9, we propose the following:

DEFINITION i0.i0. A mapping :H AUtl(A) is measurable if, for each a in

A the mapping x-W[ (a) is measurable in the following sense: For each compact
X

subset K of G and >0 there exists a compact subset Kg of K such that

-I
(K-K a

< e and the mapping x Ix(a) is continuous on q (K ,a

There is also a stronger notion of measurability as in the case of bundle

morphisms.

DEFINITION i0.ii. A mapping :H AutI(A) is ultra-measurable if, for each

compact subset K of G and g > 0 there exists a comDact subset Kg of K such

-i
that (K-Kg) < and T is continuous on q (Kg) to AutI(A) for the topology

of pointwise convergence, i.e.

-I
T:q (K) AutI(A)

is strongly continuous.

As before, these two notions of measurability are equivalent in the presence of

separability.

Lh-MMA 10.12. If I is measurable and A is separable, then I is ultra--

measurable.

PROOF. This follows from Prop. 2 of [14,p.170] as in the proof of 3.13.

PROPOSITION 10.13. Suppose I is an admissible mapping of H into AUtl(A)
Let P and I be as above.
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(i) lf is measurable, then the oerator fields P and I are measurable.

(2) If is ,itr-measurable, then P and I are ultra-measurable.

(3) If T is continuous, then P and I are continuous (relative to A ).

It follows from the above that the ingredients (A,N,H,) yield a Fell bundle

A when T is admissible and measurable. The obvious next question is whether or

not A is homogeneous. For each y in H define:

M (x,a) (yx,T (a))
Y Y

and

(x,a)~M (xy,a) xgH agA
Y

LF.MMA 10.14. For each y in H M is a unitary multiplier of A i.e.
Y

M U(A)
Y

PROOF. See p. 71 of [i].

The previous lemma shows that (U(A)) G for the bundle A Consequently,

A will be measurably homogeneous if (ii) of i0.I holds. In particular, this will

be the case if (i) T is ultra-measurable, and (2) A has a strong approximate

identity (10.3). (Note that if {u.} is an approximate identity in A then

{(e,uj) ~} is an approximate identity in A .) These appear to be false in general--

unless is continuous (7.5). Hence, it seems unlikely that A is homogeneous

in the techncial sense of i0.i. However, in view of 10.4, we feel that A is as

homogeneous as it can be under the circumstances.

In the opposite direction, Fell shows [l,Thm. 9.1] that every (continuously)

homogeneous Banach *-algebraic bundle is isomorphic to one obtained from ingredients

(A,N,H,r) with continuous. In particular, the group extension H is chosen to

be U(A) This is not possible in the measurable setting, since it is not clear

that U(A) is a topological group. Perhaps there is another way of obtaining a

measurable generalization of his Theorem 9.1. For example, it may be possible to

replace U(A) by its image in U(LI(A,:P,I)) [2,pp.137-139]. We refer the reader

to Section V of [5] for further information regarding this possibility.
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ii. UNITARY FACTOR SYSTE.

The other two (equivalent) bundle constructions referred to in the introduction

are due to Leptin [3] and to Busby and Smith [4]. These constructions are quite

similar to each other, but very different from that of Fell. Although their objects

are quite familiar (vector-valued functions), their algebraic operations are not.

In this section, we review Leptin’s approach (as in [5]) and show how it gives rise

to a homogeneous Fell bundle.

Let G be a locally compact group and A a Banach *-algebra with approximate

identity. Let M(A) U(A) and AUtl(A) be as above. The ingredients for the

Leptin construction [5] are G,A together with the following:

DEFINITION ii.i. A unit factor system (T,W) for (G,A) is a pair of

strongly measurable mappings

T:G/Aut
I (A) W:GG-U(A)

satisfying:

(i) Wxy,z.T -l(Wx,y) Wx,yz.Wy,z x,y,z in G (multiplication in M(A)).
z

(ii) aW W T (a) where T T
_i

T _IT-I for x,v in G, a in A
x,y x,y x,y x,y -i -iy x V x

(iii) W W (EA,EA) T
e EA, x,y in G, a in A

e,x x,e

REMARK 11.2. As in the case of T there is a notion of measurability for

W,T betwaen strong measurability and strong continuity--namely Bourbaki measur-

ability [i0,p.169]. This is what we will call ultra-measurability for W,T for

obvious reasons. As in i0.12, we have:

LEMA 11.3. For W(resp. T) strongly measurable and A separable, W(resp. T)

is ultra-measurable.

Let (A,) be the trivial bundle GA over G (product topology)with

z(x,a) x xEG aA Let A be the Banach space {x}XA canonically isomor-
x

phic to A, xSG For each f in C(G,A) let fG be the mapping

EGf GG GA
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Then {fG fgC(G,A)} is a continuity structure A in Ax for which

A C(A) CS(G,A)

The algebraic structure in A is defined as follows in terms of operator

fields:

(x a)(y b) Px,y((X,a) (y,b)) (xy,W
x -i,yTy (a)b)

(x a)* Ix(X a) (x-I -_I,W* _i
T l(a*)) x,ygG a, bgA.

x X

PROPOSITION 11.4. (i) The field P (resp.l) is a measurable product (resp.

involution) field.

(2) If W,T are ultra-measurable, then so are P,I

(3) If W,T are (strongly) continuous, then so are P,I (relative to % ).

PROOF. Parts (i) and (3) are straightforward. Part (2) is proved as in

Section i0.

The resulting Fell bundle (A,;P,I) will be called a Leptin bundle and will

be denoted by (G,A:T,W)

PROPOSITON 11.5. Every Lepti bundle has enough unitary multipliers.

PROOF. As on p. 329 of [5], for z in G define:

.Iz(X,a (zx,Wz,xa)

(x’a)lZ (xz’Wx,zT -l(a)) (x,a) e GXA
z

Hence, every Leptin bundle is a homogeneous Fell bundle in the weak sense of

having enough unitary multipliers.

Observe that if {u.} is an approximate identity in A then {(e,uj)} is
3

an approximate identity in A where:

(e,uj)(x,a) (x,T _l(uj)a)
x

and

(x,a)(e,uj) (x,auj) (x,a) e A

PROPOSITION 11.6. If T is strongly continuous, then {(e,u])} is a stron
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approximate identity for A

PROOF. This can be proved directly or obtained as a consequence (by 7.5) of

the following result.

PROPOSITION ]1.7. Let (G,A;T,W) be a Leptin bundle. Then:

(I) C(A) is locally a right A-module.

(2) If T is strongly continuous, then C(A) is locally a (two-sided) A-module.

COROLLARY 11.8. If A is separable and T is strongly continuous, then the

Leptin bundle (G,A;T,W) is homogeneous in the sense of i0.i.

PROOF. This follows from i0.3 together with ii.3, ii.4, ii.5, and II.6.

PROPOSITION 11.9. Every Leptin bundle is saturated.

PROOF. This would normally follow from Prop. 11.5 of [2]. However, since the

validity of this proposition is questionable in the case of measurable bundles, its

conclusion has to be verified directly.

The generalized Ll-algebra LI(G,A;T,W) corresponding to the underlying Leptin

L
1

bundle is the Banach space (G,A,) with convolution and involution ifor ight

Haar measure) given by:

f*g(x) f_W-I_ T
x,y -I

Y
-1)f(xy g (y) d (y)

f*(x) (x)-Iw* TI *)
-I (f (x-l) xEG

x ,x

for f and g in LI(G,A,) This Banach *-algebra is isometrically isomorphic

to our generalized group algebra LI(I\,;P,I) of Section 9 by the mapping

fLl (G,A;T,W)f- fG
Moreover, by 11.6 and 9.11, LI(G,A’T,W) will have an approximate identity if T

is continuous.

As observed in Section IV of [5], certain homogeneous bundles give rise to

equivalent Leptin bundles. Suppose (A,N,H,T) are the ingredients for a homo-

geneous Banach *-algebra bundle as in Section I0. Let (A,;P,I) denote the

corresponding Fell bundle, where A HA/ and (x,a) q(x) xaH agA
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Assume also that G H/N is locally compact (as before) and that there exists a

measurable cross-section G H If we define

T TO(_I)

and

,n (n) (Oo(n)

then we obtain a Leptin bundle (G,A;T,W) [5,p.333]. Leinert also shows that the

group algebras LI(A,;P,I) LI(A,;P,I) and LI(G,A;T,W) are isometrically

isomorphic. This can also be concluded from the following.

Define

GA+A

by

(,a) (o(),a) (,a) g GA

Then it is easy to verify that is an invertible, bi-measurable Fell bundle

isomorphism. Hence, the algebra isomorphism follows from 9.15.

12. TWISTING PAIRS.

Let G and A be as in Section ii. The Busby-Smith approach [4] to con-

structing a generalized group algebra from LI(G,A,la) requires the following:

DEFINITION 12.1. A twisting (S,V) for (G,A) is a pair of strongly

measurable mappings

S G AutI(A) V GXG U(A)

satisfying

(i) s (Vy )v v v
x ,z x,yz x,y xy,z

(multiplication in M(A))

(ii) (SxSy(a))Vx,y Vx,ySxy(a)

(iii) V V EA) S
e

S
A

for x
x,e e,x (EA’ ,y,zgG aeA

LEMMA 12.2. For V(resp. S) strongly measurable and A separable, V(resp. S)

is ultra-measurable, i.e. Bourbaki measurable (recall 11.2).
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As in Section ii, the underlying bundle (A,) is the product bundle (GA,)

with continuity structure

A {fG feC(G,A)}

The algebraic structure in A is defined by operator fields P and I as follows:

(x,a)-(y b) P ((x,a) (y,b)) (xy,aSx(b)Vx,y)x,y

-i
(x,a)* I ((x,a)) (x V* S (a*))

x -i -i
X X X

for x,y in G and a in A

Twisting pairs (S,V) for (G,A) are in one-to-one correspondence with

unitary factor systems (T,W) for (G,A) [5,pp.317-318]. This correspondence is

given by

-IT S
x x

W S-Iv x,ygG
x,y xy x,y

Thus, S and V are strongly continuous (resp. measurable) if and only if T,W

are. Moreover:

LEMMA 12.3. The mappings S and V are ultra-measurable if and only if the

mappings T and W are.

PROPOSITION 12.4. (i) The field P(resp.l) is a measurable product (resp.

involution) field.

(2) If S and V are ultra-measurable, then so are P and I

(3) If S and V are strongly continuous, then so are P and I (relative to

The resulting Fell bundle (A,;P,I) will be called a Busby-Smith bundle

and will be denoted by (G,A;S,V)

THEOREM 12.5. For corresponding pairs (T,W) and (S,V) the Leptin bundle

(G,A;T,W) is measurably isomorphic to the Busby-Smith bundle (G,A;S,V)

PROPOSITION 12.6. The following are equivalent for x in G
o

(i) T is strongly continuous at x
o

(2) S is strongly continuous at x
o
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(3) i.e. is continuous at x
o

-iPROOF. (I) is equivalent to (2) since S T xgG (3) is equivalent to
x -l’

x

(2) since the mapping x S (h(x)) is continuous at x for h in C(G,A) ifx o

and only if h is continuous at x
o

COROLLARY 12.7. The Fell bundles (G,A;T,W) and (G,A;S,V) are homomor-

phically isomorphic if T (equivalently S) is strongly continuous. (Note that the

bundles don’t have to be continuous Fell bundles in this case.)

REMARK 12.8. Clearly, 11.5 through 11.9 are valid also for Busby-Smith bundles.

The twisted group algebra LI(G,A;S,V) corresponding to the underlying Busby-

Smith bundle is the Banach space LI(G,A,) with product and involution (for right

Haar measure) given by

f’g(x) fGf(xy-l)s -I(g(y))V(xy-I’y)d(Y)
and

(x)-Iv(x,x-l)*Sx(f(x-i))* xgGf*(x)

for f and g in LI(G,A,) The algebra LI(G,A;S,V) is isomorphic to the

algebra LI(G,A;T,W) (9.13) by the mapping

f [x S-l(f(x))] fELl(G,A;S,V)

and hence, to our algebra LI(A,;P,I) by the same mapping. Moreover, by 9.11,

11.6, and 12.5, LI(G,A;S,V) will have an approximate identity if S is strongly

continuous.

EXAMPLE 12.9 [5,p.330]. Let A be LI() and G the circle group identified

with [0,i] under addition modulo i. Define Sx Tx E
A

xgG and

V,W:GxG U(A) by

V a W a a x+y<lx,y x,y

where

V a W a aI x+y>_lx,y x,y

al(n) l+n nE
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Then V a aV aeA and (S,V) is a twisting pair (equivalently, (T,W) isx,y x,y

a unitary factor system) for (G,A) The mapping V is not strongly continuous at

any point (x,y) in GxG where x+y 1 However, V is ultra-measurable ll.2).

In the next section (13.2), we will see that LI(G,A;S,V) is isometrically isomor-

phic to the group algebra LlR)

13. GROUP EXTENSIONS.

Suppose N is a closed normal subgroup of the locally compact group H with

G H/N (right cosets) and q H- G the quotient mapping. Let 0,

be right Haar measures for N,H respectively. Let be the right Haar measure

on G defined [15] by

IHf(X)dg(x) fG /N f(tx)dO(t)d(q(t))

for f in Cc(G) Let 6H G 6N be the respective modular functions for

H,G,N Of course, 6HIN 6N
On p.77 of [i], Fell shows how to construct ingredients (A,N,H,T) for a

homogeneous Banach *-algebraic bundle (A,n;-,*) called the (H N) -group extension

bundle. Specifically, A LI(N,D) N is identified with a subgroup of U(A) and

(a) (t) 6(x)a(x-ltx)
x

where

6(x) d0(xtx-l)/dO(t) xeH teN aeA

Fell then verifies directly that the cross-section algebra LI(A,;’, *) is

isometrically isomorphic to the group algebra LI(H,))
In this section, we will accomplish these two tasks in very different ways. We

will show that the mapping arises naturally from a certain induction of Banach

space representations ([16,3] and [13,4]). As a consequence of this approach,

it will then be automatic that the previous Ll-spaces are isometrically isomorphic.

LI LI *)Transferring the *-algebra structure from (H,) to (A,;’, (i.e. to

LI(A,;P,I)) then completes the picture.

Let G,H,N be as above with E {e} and iE(e) i Then i
E

is both the

LIidentity representation of E and the regular representation of E on (E) The
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Ll-induction [16] of i
E

from E up to N is then the (right) regular represen-

L
I

tation RN of N on (N,0) [16,4.5]. Consequently, Ll-induction of R
N from

LIN up to H is the regular representation of H on (H,) [16,6.4]. The

representation space FI(H,RN) of R
H

(by this induction) is given as in Section 3

of [16]. On the other hand, the Ll-induction of iE from E directly up to H

is also (modulo equivalence) the representation R
H [16,4.5] Therefore, the re-

presentation spaces LI (H,) and FI (H,RN) must be isometrically isomorphic Banach

spaces. If

T LI(H,) FI(H,RN)
denotes the isomorphism, then it is given [16,p.72] by

(Tf)(x)(t) f(tx) xEH tEN fELl(H,)
In particular, if fEC (H) then so is Tf and the images of such f by T

are dense in FI(H,)
Since LI(H,) has a *-algebra structure, it may be transferred to FI(H,RN)

via T by requiring:

(Tf)’(Tg) T(f-g)

(Tf)* T(f*) f,gELI(H,)

In the case of involution, for f in C (H) we have:

(rf)*(x) H(X)-l[rf(x-l)]*(x-l(.)x) xEH

If, for y in H and a in LI(N,o) we define

T a(s) (y-l)a(y-lsy) sEN
Y

then, combining the above, we obtain [15]

(Tf)*(x) G(q (x) -l) T (Tf(x-l) *) xgH
x

In the case of multiplication, for f,g in C (H) we have:
c

(Tf)’(Tg)(x) fGTf(y-I)*NT -l(Tg(yx))d(q(Y))
Y

where * denotes the usual convolution in A LI(N,0)
N

Next observe that the representation R
N

of N on A which is given by

Rt(a) a(’t) aELI(N,0) tEN
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is also given by

-I
R
t
(a) a’t

where the right side is the action of the multiplier in U(LI(N,0)) corresponding

-i
to t on the function a Hence, by the beginning of Section i0 (or Section 4

of [13]), there exist:

(i) a field {A eG} of Banach spaces over G each isomorphic to

A eI(N,0)
(2) a continuity structure A in H as in 10.6. Moreover, the disjoint union

of the A with the A-topology is precisely A HXA/~ (as in Section i0)

with the quotient topology.

PROPOSITION 13.1. The mapping defined above is a strongly continuous

homomorphism of H into AUtl(A) satisfying:

-I
(i) T (a) tat teN aEA

t

(ii) T (t) xtx
-I xEH tEN

x

PROOF. Left to the reader. Compare with example 3 on p. 77 of [i].

As a consequence of the above, (H,N,A,T) is the set of ingredients of a

(continuously) homogeneous Banach *-algebraic bundle (A,n; ,*) The underlying

product and involution fields P and I are given as in Section i0. We thus

obtain the generalized group algebra LI(A,;P,I) Since the constructions of

{A EG} and A above are just special cases of those given in Section 4 of

[13], it follows that FI(H,) is isometrically isomorphic to LI(A,) as

Banach spaces. If S is the isomorphism, then [13,4.12]

Sf() (x,f(x)) xEEG

f in FI(H,RN continuous with compact support module N Thus, thefor

LI(A-algebra structure of LI(H ) may in turn be transferred to ,) by

V ST In particular, for f, g in C (H) we obtain:
c

(Vf)*() V(f*)() S(T(f*))() (x,Tf*(x)) xE

and

Vf’Vg V(f*Hg) S(T(f*HG))
We may then verify that the two *-algebra structures on LI(A,) are
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isomorphic. Note that {Vf feC (H)} is dense in LI(A,) Consequently,
c

LI(H,) and LI(A,;P,I) are isometrically isomorphic Banach *-algebras.

EXAMPLE 13.2. Consider the locally compact group extension

0 7/. l /G /0

where G is the circle group identified with [0,i). Then A LI(. N .
H ]R and T (a) a xgH aEA since H is abelian and hence, 6 is trivial.

X

The quadruple (A,N,H,I) forms the ingredients for a homogeneous Banach *-algebraic

bundle (A,;-,*) as above. Observe also that G is locally compact and there

exists a measurable cross-section O:G H given by the canonical injection of

[0,i) into It then follows from the results of Section ii that there also

exists an isomorphic Leptin bundle (G,A;T,W) such that the corresponding algebras

LI(G,A;T,W) and LI(A,V;P,I) are (isometrically) isomorphic. In turn, these are

isomorphic to LI(H) Finally, we leave it to the reader to verify that the

Leptin bundle for this example is precisely the one described in 12.9.

APPENDIX

In this Appendix, we state those properties of multi-linear mappings which will

be used in Section 3. All proofs are left to the reader.

Let AI,...,An, B be Banach spaces. Suppose

:AI x...x An B

is an n-linear mapping. Define

+ sup
) (aI a

n
aigAi ai# 0 l__n}

PROPOSITION AI. Suppose $ is bounded, i.e. I1< oo. Then:

(i) ll(aI an) <- llaIII llanll
(ii) sup{If (aI an) aieAi,llaill i l-<i<_n}

(iii) (aI an)-@(bI b
n II-< llal-blll" lla211--- llanll +

+llblll lla2-b211 lla311 llanll + + llblll llbn_lll llan-bnll]
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for al,bleAl;...;an b eA
n n

and

LEMMA A2. Let m be a positive integer,

i
k{a

k i _< i
k

_< m} c

{ek i i
k

_< m} k i, n

Then

all [ ennan i an (al an
i iI in n

THEOREM A3. The space Homn(Al,...,An;B) of n-linear mappings as above

which are bounded is a Banach space relative to the norm
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