Internat. J. Math. & Math. Sci. 289
Vol. 5 No. 2 (1982) 289-299

GENERALIZATIONS OF p-VALENT FUNCTIONS
VIA THE HADAMARD PRODUCT

ANIL K. SONI

Department of Mathematics and Statistics
Bowling Green State University
Bowling Green, Ohio 43403, U.S.A.

(Received July 1, 1981)

ABSTRACT. The classes of univalent prestarlike functions Ra’ o 2 -1, of Ruscheweyh
[1] and a certain generalization of R, were studied recently by Al-Amiri [2]. The
author studies, among other things, the classes of p-valent functions R(0 + p - 1)
where p is a positive integer and 0 is any integer with a + p > 0. The author shows
in particular that R(o + p) € R(¢ + p - 1) and also obtains the radius of R(a + p)
for the class R(a + p - 1).

KEY WORDS AND PHRASES. p-valent starlike functions, p-valent close-to-convex
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1. INTRODUCTION.

The classes of univalent prestarlike functions Rd’ a 2 -1, were studied by
various authors [1,2]. The author extends these classes to the classes of p-valent
starlike functions R(a + p - 1), where p is a positive integer and a is any integer
greater that -p. The present studies give, along with other results, a method to
determine the radius of R(a + p) for the class R(a + p - 1).

Let Ap denote the class of regular functions in the unit disc D = {z: [z]| < 1}
having the power series

00
f(z) = 2P+ }Z: anz“, p a positive integer, z € D. (1.1)
n=p+1
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We denote by S*(f), the subclass of A, whose members are starlike of order B,

1
0 <B <1.

Ruscheweyh [1] introduced the following classes 'Ku' of univalent prestarlike

functions:
a (o#1)
+
K, = {£(2) |£(2) « A and Re (z gfi)) © > & > 1 , z € D},
(z" "£(2))
a € N0 = {0,1,2,...}; where F(n) denotes the n-th derivative of the function F. As
o+l
observed by Ruscheweyh, f ¢ K if and only if Re D _£@) > L , z € D where Daf(z)=
o o 2
D f(z)
f(z)* ———E—a;I . Here '*' denotes the Hadamard product of two regular functions,
(1-z) x o o
. - n - n % _ n
that is to say if f(z) 2;% anz and g(z) 2;% bnz , then f(z)*g(z) < anbnz .

1
= Sk (=
Ruscheweyh proved that Ka 1 c Kd and KO S (2). Hence for each a € NO, Kd is a

subclass of S*(%). Recently, Al-Amiri [2] studied a certain generalization of Ku,

in particular he obtained the radius of Ku+ in Ka’ a €N Further Singh and

1 0°
Singh [3] extended the classes Ku to the classes Ra, where

™ e@) . _a
s
Daf(z) a+ 1

z € D}, a e N .

Ra = {f(z)lf(z) € A1 and Re 0

They observed that Ra is a subclass of S*(0). In this note, we extend their ideas
to the class of p-valent functions.

We call a function f(z) € Ap to be p-valent starlike if it satisfies

zf' (z)

f(z)

close-to-convex if there exists a p-valent starlike function g(z) for which

Re >0, z € D. Further, we say that a function f(z) € Ap is p-valent

Let R(o + p - 1) denote the class of functions f(z) € Ap satisfying

(o+p)
*£(2))
* [(za_lf(z))(m_l)J e hred @

where G is any integer greater that -p. In Section 2 we shall show that
R(@ +p) c R(a+p - 1). (1.3)

Since R(0) is the class of functions which satisfy
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it follows by our definition taken from [4] that such functions are p-valent star-
like. Hence (1.3) implies that R(a + p - 1) contains p-valent starlike functions.

We denote by H(aa + p = 1), the classes of functions f(z) € Ap that satisfy the
condition

Re

£ (2)) @) - a(za_lf(z))(a+p_1):] La+p-1

(=% Lg(ay) (OFP7D)

for some g(z) ¢ R(o + p - 1), & integer greater that -p.
In Section 4 we shall show that
H(ax + p) c H(a + p - 1). (1.5)
Again since H(0) is the class of functions f that satisfy Re E§%£§L > 0, where g
is starlike, (1.5) implies that H(0. + p -= 1) contains p-valent close-to-convex

functions.

For f € Ap’ define

— P
PGy = £y —E— (1.6)
a-=2)%*
where o is any integer greater than -p. Then
*PLe g L L (z)) P D) .
(o +p - 1) ‘ :
It can be shown that (1.6) yields the following identity ™
- +p—

20 P () = (@ + p)D*PE(2) - a0 LE(2)). (1.8)

From (1.2) and (1.7) it follows that a function f in Ap belongs to R(a + p - 1) if

and only if

Pe(z) L a+p-1

. (1.9)
a+p—lf(z) a+p

D

Note that for p = 1, the classes R(0. + p = 1) reduce to the classes Rd of Singh
and Singh [3]. Hence our results are generalizations of Singh and Singh.
From (1.4) and (1.7), it follows that a function f in AP belongs to

H(o + p - 1) if and only if

Re Z(Da+p:if(z))'_] R (1.10)
PPl | **P

for some g € R(a + p - 1).



292 A.K. SONI

In Sections 3 and 4 we shall describe some special elements of R(a + p - 1)
and H(ax + p - 1), respectively. These elements have integral representations. In
Section 5, we introduce the classes R%(a + p - 1) via the Hadamard product. Also
the radii of R(o + p) in R(a + p - 1) and of R%(a + p) in R%(a + p - 1) are deter-
mined. In Section 6, the classes R%(a + p - 1,B) which are extensions of the
classes R%(a + p - 1), are given. Many authors have considered a variation of these
classes, notably Ruscheweyh [1], Suffridge [5], Goel and Sohi [6]. However, this
note basically uses the techniques given by Al-Amiri [2].

2, THE CLASSES R(a + p - 1).

We shall prove the following:
THEOREM 1. R(a + p) €< R(a + p - 1).
PROOF. Let f € R(a + p). Define w(z) by

Da+pf(z) _a+p-1 + 1 - w(z)

1
Da+p—lf(z) o+ p o+pl+w(z)

(2.1)

Here w(z) is a regular function in D with w(0) = 0, w(z) # -1 for z € D. It
suffices to show that |w(z)| < 1l, z € D, since then (2.1) would imply that
fe R(o+p-1).

Taking logarithmic derivative of both sides of (2.1) and using the identity
(1.8) the following is obtained.

P i) _ 1 [_1 4+ Lotp) + (+p=2)u(z)

D(H—pf(z) T (e+p+1) 1+ w(z)

2zw' (z)
T (14w (z)) (otpt+(otp-2)w(z)) :| . (2.2)

The above equation must yield |w(z)| <1 for all z € D, for otherwise by using a

lemma of Jack [7] one can obtain 2,

and K 2 1. Consequently (2.2) would yield

' = =
€ D such that zgw (zo) Kw(zo), |w(zo)| 1

D°‘+P+1f(zo) N (a+p) + (a+p-2)w(z) 2k (2)

= + -
ey D (orptD) (T (z ) (@tp+D) (T (z))

(oe+p+(0t+p-2)w(z0))

|apt(ertp-2)w(zg) |*
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Since
Re — L L1 oo vizg)
T+u(zy) ~2° THw(zy) 2°

the above equation implies

o+p+l
D f(zo) o+
“Ta+p+1l”

p™Pe(z)
This is a contradiction to the assumption that f ¢ R(a + p). Hence f ¢ R(o + p = 1).

This completes the proof of Theorem 1.

3. SPECIAL ELEMENTS OF R(o. + p - 1).

In this section we form special elements of the classes R(da + p - 1) via the
Hadamard product of elements of R(0 + p - 1) and hy(z), where

00 + .

h (2) = L2P )

j=p

THEOREM 2. Let f € Ap satisfy the condition

D™Pe(z) | 2(ytp-l) (ahp-1) - 1

3.1
N TN TCT T o=V R G-

Re

p a positive integer, o any integer greater than -p and Y 2 -p + 2.

Then 2

I(Z) = f(z) h (Z) - © ( t fkt)dt (302)
Y 2'
belongs to R((l + P - l).

PROOF. Let f ¢ Ap satisfy the condition (3.1). From (3.2) we obtain

20"PF@E) + v PR = i D*Pe(2), (3.3)
and
20 PEG)) T + v PTIR(2)) = (i D®PLe(a). (3.4)
Define w(z) by
(65
e atasl, il lsxg. @)

Here w(z) is a regular function in D with w(0) = 0, w(z) # -1 for z € D. It
suffices to show that [w(z)l <1, z € D.
Taking the logarithmic derivative of (3.5) and using (1.8) for F(z) one can

get
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a+p [
o+p v _ notp . D F(z) 2zw' (2)
2(077F(2))" = D" "F(z) L"‘*P) e, T (l+w(z))(Ot+P+(a+P-2)w(z))jl'

(3.6)
Now (3.3) and (3.6) yield

(otp)+(otp-2)w(z)
1+ w(z)

e+ Pe(z) = D¥PR(2) - fy—a +

_ 2zw' (z)
(1+w (z)) (op+(otp=2)w(z)) |’

3.7

Use (3.4) and (1.8) to eliminate the derivative and then apply (3.5) to get

e+ )0* P () = D PRy - [jy a4 (u+P)1++(3:§;2)W(2):]. (3.8)

Therefore (3.7), (3.8) and (3.5) give

D*Pe(z) _a+p-1 . 1 1 - w(z)
PP 1, a+p a+p (14w (z))
2zw' (z) (Y+p) + (Y+p-2)w(z)

T ) () vAprGAp-2w(z) |2 (3.9

Equation (3.9) should yield [w(z)l < 1 for all z € D, for otherwise by Jack's lemma

there exists zg € D with zow'(zo) = Kw(zo), K 21, and ]w(zo)| = 1. Applying this

to (3.9) it follows that

o+p
D) | a4 p-a 2 y+p-1
s - N Z
Da+p—lf(zo) o+ p (ot+p) 4 (y+p-1)

2(y+p-1) (atp-1) - 1
2 (otp) (Y+p-1) :

This contradicts the assumption on f given by (3.1). Hence F e R(a + p - 1). This
completes the proof of Theorem 2.

REMARK 1. For Y = 1 and p = 1, Theorem 2 reduces to a result given in [3].

The following special cases of Theorem 2 represent some improvement on theorems
due to Libera [8] in the sense that much weaker assumptions produce the same results.

By taking o = 0, p = 1 in Theorem 2 we get

zf'(z) L

1) > Y 21, z € D. Then F

COROLLARY 1. Let f € Al be such that Re

is starlike in D, where
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z
F(z) = LT 1. f Y Le(e)de. (3.10)
zY 0
For o = 1, p = 1, Theorem 2 reduces to

COROLLARY 2 Let f A. be such that Re[l + zf'(z) 1 > - L >1, z €D
: €8 £(2) 2y Vb :

Then F(z) as given in (3.10) above is convex in D.
Using the technique employed in the proof of Theorem 1 and Corollary 2 we

obtain the following result.
f' (2)
g' (z)
n
Re[l + E§7%§%~] > - é% , Y21, z € D. Then F(z) as given by (3.10), is close-to-
1
convex, i.e., Re F'(z)

G'(2)

COROLLARY 3. Let f € Al be such that Re >0, z € D and g be such that

>0, z € D and where G(z) is the convex function given by
z

. I tY_lg(t)dt.
0

Yy +1

At

G(z) =

We state without proof the following theorem since its method of proof is
similar to that of Theorem 2.

THEOREM 3. Let p be a positive integer and o be an integer greater than -p
and let Re Y 2 -p + 1. Then F(z) = f(z)*hY(z), as given by (3.2), belongs to
R(a + p - 1) for all £ € R(a + p - 1).

In case Y = 0, Theorem 3 can be improved as follows:

THEOREM 4. Let p be a positive integer, and o be any integer greater than -p.
Then for f(z) ¢ R(a + p - 1), 2

F(z) = £(2)* (z) = B2& . J e Le(t)de € R(a + p). (3.11)
z 0

PROOF. Let f(z) ¢ R(a + p - 1). Differentiating (3.11) and then applying

Q a+p-1
+p 0P

the operators D we get, respectively, by using (1.8)

(@+p) *0*Pez) = (@ + p + HD*PE(z) - D*PR(z)
and
@+ 2™ ez) = (@ + pD**PE(2).
Therefore
Re o+p+1 Da+p+lF(z) _ 1 = Re Da+pf(z) soa+p-1 .

a+p Da+pF(z) o+ p Da+p—1f(z) o+ p
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This implies that

p*PHE(,) ,_a+p
’
Da+pF(z) a+p+1

Re z € D.

Hence F(z) € R(a + p), and this completes the proof of Theorem 4.
REMARK 2. For p = 1, Theorem 4 reduces to a result of Singh and Singh [3].

4. THE CLASSES H(o + p - 1).

We state without proof Theorems 5 and 6 since their proofs use the same tech-
nique employed in Theorem 1. See Section 1 for the definition of the classes
H(a + p - 1).

THEOREM 5. H(a + p) <« H(a + p - 1).

THEOREM 6. If p is any positive integer, a is any integer greater than -p,
and Re Y 2 -p + 1, then 2

F(z) = f(z)*hY(z) = IL%}:L . J tY-lf(t)dt e H(a + p - 1)
z
0

whenever f(z) ¢ H(a + p - 1).

5. RADII OF THE CLASSES R(o. + p) AND R%(a + p).

Because discussing the problem concerning the radii of the classes R(a + p)
and R%(a + p) we define the classes R%(a +p-1). R%(a + p - 1) contains functions

f(z) € Ap that satisfy the condition

(2% (z)) (&P
(za—lf(z))(a+p—l) 2 ’

z € D, (5.1)

where a is any integer greater than -p. These classes have been studied by Goel
and Sohi [6].

From (1.7) and (5.1), it follows that a function f in Ap belongs to
R%(a + p -~ 1) if and only if

**Pe(2)

1
- > =, (5.2)
Da+p lf(z) 2

Our main interest is to determine the radius of the largest disc D(r) =

Daﬂ)f(z)_‘> B+p-1
D6+p—1f(z) 8+ 1

{z: |z| <r}, 0 <r<1so that if f e R(d0 + p - 1) then Re

8 >a, z D(r). A partial answer to this problem can be deduced by a simple appli-
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cation of a lemma due to (Ruscheweyh and Singh) [9]:
LEMMA 1. If p(z) is an analytic function in the unit disc D with p(0) =1,
Re p(z) > 0 and also

lu+ 1] N
ST, oy

A=2(s+ 1%+ [u)?-1.

Then we have

zp'(z)
Re |p(z) + S p() + 1 > 0.

The bound given by (5.3) is best possible.
THEOREM 7. Let p be any positive integer, o any integer greater than -p. If

f(z) € R(o + p - 1) then

o+p+1
D - f(2) - i + i - for lz] < ¢ ,
D +pf(z) P a,p
where
r = atp . (5.4)

®P 2+ V3 (o#p-D)
This result is sharp.
PROOF. Let f(z) € R(a + p - 1). We define the regdlar function q(z) on D by

o+p
D “f(z) 1
= (q(z) +a+p-1), zeD. (5.5)
Da+p_lf(z) (o + p)

Therefore q(0) = 1 and Re q(z) > 0 in D.
Taking logarithmic derivative of (5.5) and using (1.8) we get

o+p+1 '
D £(z) 2q'(z)
- (z) + (2 +o+p= 1:]. (5.6)

a+p _ 1
a+p+1  (pr |9

p**Pe(2)

Using Lemma (1) with S =1, uy=a +p -1, (5.6) and (5.3) show that

Da+p+lf(z) o+ p
Re ot e+ p+1 for
D¥"Pf(z) P
a+p
11
(a+ a2 - (@p-D? - D)2

lz| < , (5.7)

where

A= (a+p)-2@+p) +8.
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Minor computations yield the following:
L
A+ (A2 - (1% - DHE = @+ /I F @p-DZ )2 (5.8)

Thus (5.7) yields the radius T, P as given by (5.4).
The method of Al-Amiri [2] is used to determine the extremal functions. The

extremal functions thus obtained for this theorem are rotations of f(z) where f(z)

is given by

o+p
D Pf(z) 1 [1 +z ]
- = —+a+p-11], zeD.
Da+p lf(z) (o + p) 1 z

This completes the proof of Theorem 7.

REMARK 3. For o = 0, p = 1, Theorem 7 gives the well-known radius of convexity

=2-Y3.

for the class of starlike functions: L
’

Now an easy modification of the method used by Al-Amiri [2, Theorem 4] gives
the following result.

THEOREM 8. Let p be any positive integer, o any integer greater than -p. If
f(z) € R%(u + p - 1), then f(z) satisfies (5.2) with a replaced by o + 1 for

lz] <r where
oP B 5
(a+p-1) +2(x+p+ 2)

Rl (@ +p+3)+20+p+2)

[N

This result is sharp.
REMARK 4. For p = 1, Theorem 8 becomes a special case of a result due to
Al-Amiri [2, Theorem 4].

6. THE CLASSES R (o + p - 1,B8).
2

By R%(a + p - 1,8), we denote the classes of functions f(z) € Ap that satisfy

o+p o+p+l
D f(z)+BD f(z)—|>%’z€D,

p®Ple (s p**Pe(2)

Re | (1 - B) (6.1)

for some B > 0, p any positive integer and o any integer greater than -p. Again
using the technique employed in [2], the following theorem is obtained.
THEOREM 9. Let p be any positive integer, O any integer greater than -p. If

£(2) € R (¢ +p - 1), then f(z) satisfies (6.1) for |z| < Top.b where
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. | erp+1-28 +2@@rpr1rp)t |t
= 1
a,p,8 (+p+1+28) +2B@+p+1+8))?2

This result is sharp.

REMARK 5. For B

1, Theorem 9 reduces to Theorem 8. Also for p = 1, Theorem
9 represents a special case of a theorem due to Al-Amiri [2, Theorem 8].
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