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ABSTRACT. This work investigates the behavior of solutions of certain nonlinear fourth

order differential equations. An example is given showing that these equations can have

both oscillatory and nonoscillatory solutions simultaneously. Finally, several criteria

for the existence of oscillator solutions are established.

KEY WORDS AND PHRASES. Nonlinear foh order eqution, ory and nonoco
olutons as yptotc behavior.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 34CI0.

1, INTRODUCTION

This paper is concerned with the differential equations

y"" + p(t)y’ + q(t)f(y) 0

and

y’"’ + p(t)y’ + q(t)f(y) r(t)

where

(1.2)

(i) p(t), p’(t), q(t), r(t) are continuous on [0,m) and satisfy p(t) > O,

q(t) > 0 for all t z O.

(ii) f is continuous on (-,m), and satisfy
f(Y) > m > 0 for all y O.
Y

(lii) mq(t) p’(t) > 0 for all t > O.

We will confine ourselves to those solutions y of (I) or (2) which are defined on some

half-line [to,m), to O, and are not identically zero on any subinterval of [to,m).
Such a solution is termed oscillatory if it has a zero on every half-line [tl,m), tI

a to

amd nonoscillatory otherwise.
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The main objective if this work is to investigate the solutions of (i.i) and (1.2)

relative to their asymptotic behavior and oscillation properties. An example showing

that (i.i) can have both oscillatory and nonoscillatory solutions is given after which

the nonoscillatory solutions of (1.2) are examined and several oscillation criteria are

derived for (1.2). The techniques used herein are similar to those used by Heidel [i]

and Waltman [2] in their investigations of nonlinear third order equations, and also has

points of contact with articles by this author [3] and the recent work of Lovelady [2]

on nonlinear fourth order equations.

2. MAIN RESULTS.

Consider the functional

F[y(t)] p(t)y2(t) + 2y(t)y’"(t) 2y’(t)y"(t)

where y + y(t) is a solution of (i.i). Computing F’[y(t)] and making the appropriate

subsltutl.ons we find that

F’[y(t)] ffi-2y"2(t) 2q(t)y(t) f(y(t)) + p’(t)y2(t)

-2y"2(t) (2mq(t) -p’(t)) y2(t) < 0.

Thus F[y(t)] is decreasing on [0,=o) since y is not identically zero on any half-line.

No solution of (|.i) can have more than one multiple zero since this would imply F could

be zero at two points, contradicting the decreasing nature of F.

THEOREM i. Let y(t) be a solution of (i.i). If F[y(t)] > 0 on [0,oo), then

(i) y,,2(t)dt <

a

and

(ll) (2mq(t) p’(t))y2(t) <

a

PROOF. Differentiating F[y(t)] and integrating from a to t, we obtain

t t t

t t

F[y(a)] 2[ y"2(s)ds [ (2mq(s) p’ (s))y2(s)ds.
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But this implies

2I yn2(s)ds + I (2mq(s)- p)(s))y2(s)ds < Fly(a)]

a a

from which the result follows.

COROLLARY. Let y(t) be a solution of (1.1). If p’ (t) 0 and F[y(t)] > 0 for all

then

(R)f. (R), (ii) (R)- i y2
/

Y"2(t)dt <
/
q(t)y2(t)dt < and (iii) -p’(t) (t)dt <

a a a

COROLLAEY. Let yt) be a solution of (I.i). If F[y(t)] > 0 and lira inf [2rap(t)

0.then

(i) Iy2(t)dt <m, (ti) I yt2(t)dt <(R) and (iii) I y2(t)dt <(R)

It should b noted that Theorem I and its corollaries remain equally valid if it is

assuaed only that Iia F[y(t)] >

IIROREM 2. Suppose I p(t)dt If y(t) is a nonoscillatory solution of (I.i),

0

r[y(t)] > 0 on [0,’).

PROOF. Suppose without loss of generality that y(t) > 0 on [at) for some a 0

and assue F[y(t)] < 0 on [a,(R)). We will show that the latter assuptlon leads to a

ontradlction.

Consider the function

y" (t)S(t) 2 + (s)ds
y(t) P

2y (t)

u t- follows that a(t) is decreasing on Is,m) and he raio

() y"()
y()

be 8ave fo lar . In fac q() . us y(e) > 0 on s half-llne [b,),
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where b >- a and y(t) is increasing on [b,oo).

Let < 0 be a number satisfying Q(t) < B on [b,oo). Then

y"(t) < By(t) < y < 0 (2.1)

for some 7 < O. Such a y exists because y(t) is increasing. But (2.1) implies y’(t)

as t which is clearly impossible and the result follows.

COROLLARY. Suppose y(t) is a solution of (i.i) for which F[y(t)] < 0 on soe half-

line [a,oo). Then y(t) is oscillatory. In particular, any solution having a multiple

zero is oscillatory.

EXAMPLE. Consider the equation

y + (2 +e-2t) y3y + + y O. (2.2)

-t
The function y(t) e is a solution of (2.2). It follows from the corollary that (2.2)

also has oscillatory solutions, e.g., and nontrivial solution satisfying y(a) y’ (a) 0

at some a > 0.

THEORE 3. Suppose y(t) is an oscillatory solution of (1.1) satisfying Fly(c)] < 0

for some c > 0. Then y’(t) is unbounded.

PROOF. Consider the function

N[y(t)] 2y(t)y"(t) 2y’2(t), t e c.

An easy computation shows that N’[y(t)] Fly(t)] p(t)y2(t) F[y(t)|F|y(c)| < O. hu

N[y(t) as t o. The result follows by examining N[y(t)] along the ex of y"(t)

which are the extrema of y’(t).

We now turn our attention to the forced monllnear equation

y(4) + p(t)y’ + q(t)f(y) r(t) (2.3)

where we assume that p,q,r, and f satisfy conditions (i) and (li) listed above and he

additional hypothesis:

(iv)
oo[ r2(t)p’(t) < 0 for all t on [0,oo) and J p,(t) dt > _oo.

0

LA. Suppose y is a solution of (2.3). Then the functional H[y(t)] p(t)y2(t) +

2y(t)y"’ (t) 2y’ (t)y"(t) p’ (s) ds is nonincreasing.

t
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PROOF. Taking the derivative and making the appropriate substitution for y(4)(t)
we find that

H’[y(t)] =-2q(t)y(t)f(y(t)) 2y"2(t) + p’(t)[y(t) + r(t) 2
p’(t)

<- 0

Using the functional H[y(t)] we can now examine the behavior of certain nonoscillatory

solutions of (2.3).

THEOREM 4. Suppose y(t) is a nonoscillatory solution of (2.3) such that H
0 H|Y(to)]

< 0 for some t
O

Then

sgn y(t) sgn y’(t) sgn y"(t)

for all t > t I
> to

PROOF. Let y(t) be a nonoscillatory solution of (2.3) such that H|y(t0)] < 0.

Then it follows form the Lemma that H[y(t)] < 0 for all t > tO
and

p(t)y2(t) + 2y(t)y"’(t) 2y’(t)y"(t) < O, (2.4)

for t to But (2.4) implies that

d--(Y p(t) < 0,

y" t

hence-#-(--is decreasing and eventually of one sign. Thus y(t)y"(t)y’(t) # 0 for all

t on some half-line [tl,=). Assuming without loss of generality that y(t) > 0 on [tl,=),
the following cases must be considered:

(a) y(t) > 0, y’(t) > O, y"(t) > 0

(b) y(t) > O, y’(t) > O, y"(t) < 0

(c) y(t) > O, y’(t) < O, y"(t) > 0

(d) y(t) > O, y’(t) < O, y"(t) < 0

Case (d) is clearly Impossible. So let us suppose that (c) holds. Then

p(t)y2(t) + 2y(t)y"’(t) 2y’(t) < H
0

1
for all t -> t

I
and we conclude that y(t)y"’(t) < H

0
on [tl,).

Since y(t) is decreasing it is easy to see that y"’ (t) <
H
0

2y(tl)
which implies that
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y"(t) a contradiction. So (c) is impossible. Similarly, (b) is impossible and

the result follows.

Our oscillation criteria is based on theorem 4.

THEOREM 5. Suppose

t

q(t)dt =, llm sup I r(s)ds < and f(y) is nondecreasing.
t-o

t
1

Then any solution y(t) of (1.2) satisfying H[y(t0)] < O, for some to is oscillatory.

PROOF. Let y(t) be a nonoscillatory solution of (1.2) which satisfies H[y(t0)] < 0,

for some to Then according to our Theorem, there exists t I tO
such that sgn y(t)

sgn y’ (t) sgn y"(t) for all t > tI. Assume without loss of generality that y(t) > 0

on Itl,=]. Then from (1.2) we have

(4)
y (t) < r(t) f(y(t))q(t).

Integrating from tI
to t we get

t t

y"’(t) < / r(s)ds f(Y(tl)) / q(s)ds + y"’(tl).
t t
1 1

(2.5)

t

But based on the boundedness of ( r(s)ds, (2.5) implies y"’ (t) as t but this

t
1

would force y(t) to eventually become negative, a contradiction. Hence (1.2) cannot

have a nonoscillatory solution y(t) satisfying H[y(t0)] < 0, for some t o and the proof

is complete.

TIEOREM6. Suppose ftq(t)dt--andl Ir(t) Idt <. Then any solution of (1-2)

0 0

satisfying H[y(t0)] < 0, for some to is oscillatory.

PROOF. Suppose that y(t) is a positive nonoscillatory solution of (1.2) with

H[Y(t0)] < 0 for some t0. Since f(y) m and y’(t) > 0 on some half-line [tl,) it
y

follows that

t t

y":(t) _< y"’(tl)+ / r(s)ds- m[ q(s)y(s)ds.

t t
1 1

(2.6)
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Since y’ (t) is increasing it is easily verified that

y(t) > y’(tl)(t- tI) for all t >- t I.

Inequality (2.7) together with (2.6) shows that

t t

t
I

t
I

which implies y"’(t) as t , a contradiction.

This completes the proof of our Theorem.

Finally we have

(2.7)

[ p(t)dt and y(t) is a solution of (1.2) such that H[y(t0)] < O,7. Suppose

0

for some tO, then y(t) is oscillatory.

We omit the proof of Theorem 7 because of its similarity to the above proofs.

It appears from the above Theorems that any condition that implies oscillation in

(1.2) also implies oscillation in (i.i), thus it is natural to ask whether the oscillation

of (1.2) implies the oscillation of (I.i). We shall leave this as an open question

although the "feeling" that one gets from linear examples is that the answer is probably

a negative one.
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