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ABSTRACT. Value distribution is developed on polydiscs with the special emphasis

that the value distribution function depend on a vector variable. A Lemma of the

logarithmic derivative for meromorphic functions on polydiscs is derived. Here the

Bergman boundary of the polyd+/-scs is approached along cones of any dimension and

exceptional sets for such an approach are defined.
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i. INTRODUCTION.

Value distribution for polydisc exhaustions has been studied by Ronkin [i],

Stoll [2 and others. They emphasized the growth of entire holomorphic and

meromorphic functions and the representation of canonical functions to a given

divisor in Cn. For applications to mathematical logic, Lee A. Rubel and

C. Ward Henson [3], [4] inquired if the Lemma of the logarithmic derivative could

be established for a meromorphic function on a fixed given polydisc.

In the classical one variable theory, the Lemma of the logarithmic derivative

has been one of the basic tools for a long time. In several variables, the

analogous Lemma was proved only recently. For ball exhaustions of En, Vitter 5

proved the Lemma for differential operators with constant coefficients and derived

nthe defect relation for meromorphic maps f / See also Stoll 6].
m
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Vitter’s Lemma extends easily to differential operators with polynomial or, with

proper modifications, to differential operators with entire coefficients.

Earlier, a weak version of the Lemma was proved by Gauthler and Hengartner [7] for

the special operator D’ z /z I + + Zn /Zn, which does not permit the

extension to a general differential operator. The differential operator D’ suffices

for meromorphlc functions, but imposes unnecessary restrictions for meromorphlc maps

f cn /p Recently, Shlffman has shown how to derive Vitter’s Lemma from the
m

result of Griffiths and King [8], which also can be interpreted as a Lemma of the

logarithmic derivative. Biancoflore and Stoll [9] gave an elementary proof of

Vitter’s result. The same method will be used to obtain the Lemma of the

logarithmic derivative for polydiscs.

A theory should reflect the intrinsic algebraic, geometric and analytic

structures of the mathematical landscape under consideration. Our development of

value distribution theory on polydiscs will adhere to this principle. This is

an important feature of this paper, which is mostly self contained and requires only

a minimal knowledge of several complex variables.

Let us outline the main result. The euclidean space n is partially ordered

by its coordinates Denote by llrll the length of r in Rn For z (z I zn) e

define II (Iz II znl). For 0 < h e n define

/

RnO,)-- (r Rn o <r

n

+
Let be the rotation invarlant measure on the torus )<r> for r n(h) such that

n

/

has total volume I. In Rn(h), we could approach h via th with t only.

However Rubel is interested in the more general approach r h with 0 < r < h. We

introduce admissible approach cones M with < dim M < n which contain both cases.

On M we introduce a measure A
M

such that AM(M) . If E

_
M with AM(E) < ,

then h can be approached from M E.
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Let f be a non-constant meromorphic function on ])(b). The characteristic

+
Tf(r,q) of f is a function of two points r and q in IRn(b). Take T q[l,n] and

+
Keep n(b) fixed. Then there is an open subset E ofdefine f 8f/Sz.

the manifold M with AM(E) < such that for all r e M E with r > we have

log+Tflog+,f/f,lln < 17 (r,) + 19 log+

<>

2. POLYDISCS.

For any set S let S
n
be the n-fold cartesian product. If S c_ and if

< a < b < +, define

S[a,b] {x S a < x < b}

S(a,b] {x E S a < x < b}

+
s s(0,) ( s x > o}

S(a,b) (x E S a < x < b}

S[a,b) {x S a < x < b}

s s[0,) (x s x_> 0}.
+

nIf S c_ define S, S {0}. If x (x ,xn) and y (yl,...,yn) are vectors

in n, define x < y if x.
3

-< YJ for all j l[l,n] and x < y if xj < yj for all

j lq[l,n3. If S

_
n, define

s() { s < }-

For (Zl,...,zn) and m (Wl,...,Wn) in n, and p 6 lq and define

z +m (z l+w I Zn+Wn) Z .m (ZlW ,ZnWn)

% (%Zl,...,%Zn) P (z,...,zP)n

I)n

llZll (IZl12 + + IZn[2) I/2 eZ (eZl,...,eZn)
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log (log z log Zn
log

if 6 (,)n

Cn n0 0 (0 0) (I,...,)
n n

Here log is the principal value. For r n, define the polydiscs
+

n

The Bergman-Shilov boundary is given by

A surjective, real analytic map er n /)<r> is defined by r() r-e for

all n. If r > 0, then D<r> is an n-dimensional, oriented, real analytic

manifold such that r is an orientation preserving, local diffeomorphism which is

bijective on [0,2)n.
For r , we obtain the unit disc D D(1) with ID D[I] and 3 ]D<I>.

+
For r IRi, define the diagonal manifold

A(r) U ID<tr> Air] U ID<tr>.
teA(0, I) t [0, i]

A surjective, real analytic map r IR(0,1) IR
n A(r) is defined by

8r(t,) tr(#) for all t IR(0,1) and e n. Moreover, A(r) is an

(n+ l)-dimensional, oriented, real analytic manifold such that 8r is an orientation

preserving local diffeomorphism which is bijective on IR(0,1) x [0,2)n.
On (,)n, we introduce the holomorphic differential forms

dz dz
n

A A (2. i)n (2i)n z z
n
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n (2i)n-I ^
%=I =I zu/ U I

(2.2)

For j lq[l,n] we have

dz.
(2.3)

Let Jr ]D<r> / (,)n be the inclusion map. Then

* * I
r (2)n dl A ^ dn > 0 (2.4)

D<r>

(2.5)

, ,
Hence -n-ir() is a positive measure on )<r> of total mass such that -n-ir() is

invariant under the action of ]3<I > on 3<r> defined by (z) - z for e )<i > and
n n

z e )<r>. In particular, if F )<r> / is integrable, then

F(eiz) d nn
]D<r> zeU)<r> 0

(2.6)

Let X be a form of bidegree (i,I) on an open subset U 0 of cn where

n
i

X. dz ^ dX
,=I "

(2.7)

Then X is said to be non-negative (respectively positive) at e U if for all

0 x we have

n

X(Z)xx >- 0 (respectively > 0).
U,=I

(2.8)
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If S E U and X is non-negatlve (respectively positive) at every point of S we say

that X is non-negatlve on S (respectively positive o__n S) in signs X > 0 on S

(respectively X > 0 on S). On U n (,)n we have

(2.9)

/

Take r n and assume that U A(r). Let Ir A(r) / U be the inclusion map. For

t ](0, I) and (I ’n E n we have

n i(-v)*. (1)nrlr(X A n (t,) E X(tr ei)rre
U,=I

2t dt ^ d (2.10)

where d dl A A dn. In particular

r(X A En _> 0 if X > 0 on A(r)

lr( X A Kn > 0 if X > 0 on A(r).

nFor 0 + E define h
I

{ / by hI(u) u. If EID<r>, then

((I) {0}) c_ A(r). The identities (2.6) and (2.10) and Fubini’s theorem imply

easily

+
LEMMA 2.1. Take r E . Let X be a form of bidegree (i,I) on an open

neighborhood U of A(r). Assume that It( X A n is integrable over A(r). Then

^ (X) n() (2.11)

+ +
COROLLARY 2.2. Take c n and r IR. Let X be a form of bidegree (I,I) on an

open neighborhood U of A(rr). Assume that Irr(X ^ n is integrable over A(rr) Then
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x ’, . (x) ().
(rr) e<r> (r)

Take n ] and p .[0,n]. Let (p,n) be the set of all injective increasing

maps T l[l,p] / l[l,n]. If p 0, then (p,n) . If p [l,n], let

][l,p] / lq[l,n] be the inclusion map. If p n, then (n,n) }. For
p n

T (p,n), we assign various operators.

The complement T (n-p, n) is uniquely defined by Im T n Im T or by

Im T u Im l[l,n]. Clearly T T and .
n

A surjective linear map T / p called the T-projectlon is defined by

T(z) (zT(1)’’’’’ZT(p)) Cp" (2.12)

Let 6jk be the Kronecker symbol. Define j (6j I ’6in)" For each Cn-P an

cp / cn called the T-injection at is defined byinjectlve, affine map T

p n-p

(1 T__, w,() +
p=l

(2.13)

If 0 -P, then TO is linear. If % > 0 and n and m belong to cP, then

TO(U-m) T0(n) T0(m) "[0(u 5k) T0(n) I. (2.14)

If , then one and only one number p .[0,n] and map e (p,n) exist

such that z (j) 0 for j I, p and z (j) 0 for j n-p. The map

is called the support of . Obviously p 0 iff 0. Also

Im O Im o n Im o (2.15)

Take r n. Let F be a function on ])<r>. Define
+
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S(r F) 1 2 2 il i#n
F(r e r e d

(2)n 0 0
n dn (2.16)

provided the integral exists (perhaps in the sense of summability where +oo or

are permitted). If r > 0, then

(r,F) Fn.
<>

(2.17)

If 0 < r # 0, then o e T(p,n) with p e El n] Take 0 e Cn-p Abbreviate

Then

(r,F) (F o0)flP
m< () >

(2.18)

If r 0, then

(0,F) F(0). (2.19)

Take p e lq[ l,n] and T e T(p n). Take z e m<z~(r) > then Tz0D<T(r) >) <r>

Hence F TZ is defined on )<nr(r)>. By Fubini’s theorem M(r(r) F

exists for almost all z D<(r)> and we have

M(r,F) M((r),H).
More explicitly, this is written as

(2.20)

If r > 0, then

M(r F) M(n(r) M( (r) F Tz))

m<r> zm<(r)> m<r(r) >

(2.21)

(2.22)

Sometimes we shall write (r,F) as in (2.18) even if r has some zero coordinates.
Then (2.21) writes as in (2.22) which is more instructive.
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3. PLURISUBHARMONIC FUNCTIONS.

Let B be a subset oflRn. A function g B +R u {_oo} is said to be increasing
+

if g(x) _< g(y) whenever x E B and y e B with x _< . The set B is said to be

I l-Ilogarithmic convex if x e B and E B and e (0,I) implies x e B. The

function g is said to be logarithmic convex, if B is logarithmic convex and if x B

and E B and e (0,i) imply

g(xy1-) _< Xg(x) + (I- )g(). (3.1)

+
Here we are mostly interested in the case where B is a polydisc. Take b e Un.

+
Then n(b) is logarithmic convex. Take p lq[l,n] and T T(p n) Then (b) E IRp

T+

If 0 E Cn-p, an injective linear map T
O

cP cn is defined which maps uP(T(b))
+

inton(b). Define T log r(b) P. Given a function g n(b)
+ +

define

h
T P(BT) /m u {_oo} by hT(X) g(T0(eX))

LEMMA 3. I. If g is logarithmic convex, then h is convex.

(3.2)

PROOF. Take x and inP(BT). Take % E(0,1). Define %. Then

x) >’TO )h (x + g) g(T0(eXXeg)) g(T0(e (eg)

_< %g(T0(eX)) + g(T0(eY)) XhT(x) + hT(Y) q.e.d.

+
Observe, if T In, then T0(u(T))-- Rn(b) is the interior of n(b) In

+
+

particular g(ex) is convex and g is continuous on Rn(b), if g is logarithmic convex.

LEMMA 3.2. If h is convex for each T e T(p,n) and p q[1,n] then (3.1) holds

for all X n(b) and y n(b) with o o and for all IR(0,1).
+ + x y
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% i-% th
PROOF. Define z x y Then T where the j coordinate of

the vectors z, x or y is positive if and only if j e Im T. Hence x and exist in

P() such that x T0(ex) and 0(e). Define %. Then

e XT0(eg) g(T0(exx+y)) hT(X + g)g(xXy) g(r0(x) )

< XhT() + hT() g(0(eX)) + g(0(eg)) Xg(x) + g(g) q.e.d.

If O , the conclusion of Lemma 3.2 may be incorrect: Take n 2 and

(2,2). Define g(x,y) if x 0 or y 0 and g(x,y) 0 if 0 < x < 2

and 0 < y < 2. Each function h
T

is constant and therefore convex. If 0 < < I,

then (0,0)%(I,i) I-%
(0,0) and

g((0 0)%(I i) i-%) g(0,0) > % %g(0,0) + (I %)g(l,l).

However we have the following result:

LEMMA 3.3. If g is increasing on n(h) and if h is convex on P(8y) for all
+ T

g(p,n) and p e lq[l,n], then g is logarithmic convex.

I-PROOF. If 0, then (3.1) is trivial since g(0) -< g() and g(0) -< g().

xy Im ^ Im O Put x. 0 yj ifDefine 1 and z Then Im oz x y

j Im z and j x.3 > 0 and yj yj > 0 if j Im z. Then x (x I,...,n n(h)+
and y (YI’’’" ’Yn n(b) with o o o and x x and y y. Also we have

+ x y z

z %. Lemma 3.2 implies

g(x%y) g(%) -< %g() + g() -< %g(x) + g(y) q.e.d.

+
PROPOSITION 3.4. Take b n. An u_er .s.emi-continuous function

g ’-()n-- R {_oo} increases and is logarithmic convex if and only if the function
+

u re(h) +IR o {-} defined by u(z) g(Izl) is plurisubharmonic.
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PROOF. If u is plurisubharmonic, a theorem of Vladimirov [i0] p. 88 (see also

Ronkin [i] Theorem 2.1.2) implies that g increases and that all h% are convex. Hence

g increases and is logarithmic convex. If g increases and is logarithmic convex,

then g increases and all h% are convex. By Vladimirov’s theorem u is

plurisubharmonic, q.e.d.

+
Take h

_ n. Let u be a plurisubharmonic function on )(h). For r e IRn(b) define
+

M(r,u) Max{u(z) z )<r>} (3.3)

M(r,u) 1
2 2 u(rei) d dn. (3 4)

(2)n 0 0

Then M(IZl;u) and M(Izl,u) are plurisubharmonic functions of z on )(b) (Ronkin [I]

pages 75 and 84). Therefore M(r,u) and M(r,u) increase and are logarithmic convex

functions of r in n(b). If u -, then M(r,u) and M(r,u) are real numbers for all

+ +
r e IRn(b). If some coordinates of r are zero, the same remains true if u r0

_.
+

PROPOSITION 3.5. Take b n. Let u )(b) B be a pluriharmonic function.

Then M(r,u) u(0) for all r n(b).
+

PROOF. Since u and -u are plurisubharmonic we have

u(0) _< M(r,u) -M(r,-u) _< -(-u(0)) u(0) q.e.d.

A function g :(b) u {-,+} is said to be quasipluriharmonic if there are

plurisubharmonic functions u and v such that g u v. Strictly speaking

g is defined except for a pluripolar set

z {z u(z) v(z)}g-

called the indeterminacy. For 0 < r < h, the integral average

is well defined.

M(r,g) M(r,u) M(r,v) (3.5)
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Let S(b) be the real vector space of all quasipluriharmonic functions on (b).

Then the set p(b) of all pluriharmonic functions on (b) is a linear subspace of

S(h). Let Q(b) S(h)/p(h) be the quotient vector space and let 0 S(b) Q(b) be

the residual map. An element of (b) is called a quasipluriharmonic class on )(b).

Take h Q(b). Then h 0(g) with g S(b). If h O(g) with g S(h) then

+ +
g g + v where v p(b). Take r n(b) and q n(b). Then

M(r,g) M(r,g) + v(0)

M(q,g) M(q,g) + v(0).

Subtract ion implies

M(r,g) M(q,g) M(r,g) M(q,g).

Therefore the valence function of h is well defined independent of the choice of the

representative g by

N(h,r,q) M(r,g) M(q,g) (3.6)

for 0 < r < b and 0 < q < b. For fixed r and q, the function N(h,r,q) is linear

+
in h. If r, q, p belong to IRn(b), then

N(h,r,q) + N(h,q,p) N(h,r,p) (3.7)

N(h,r,q) -N(h,q,r). (3.8)

The set S+(b) of all plurisubharmonic functions u - on )(b) is contained in

S(b) and S+(b) is closed under addition and multiplication with non-negative numbers.

Define Q+(b) 0(S+(b)) in Q(b). Each g Q+(b) is called a plurisubharmonic class.

If u S+(b) such that 0(u) g and if 0 < r < b and 0 < q < b, then

N(g,r,q) M(r,u) M(q,u). (3.9)

The definition extends to all q n(b) with u o -, and the extension does not
+ q,0

depend on the choice of u. The function N(g,r,q) increases in r and decreases in q.
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If 0 _< q _< r < b, then

N(g,r,q) _> 0. (3.10)

If q is fixed and r converges to b, then N(g,r,q) measures the growth of g.

Now, we will give examples of valence functions of divisors, meromorphic maps

and meromorphic functions.

+
Take b n. Let O(b) be the integral domain of all holomorphic functions on

)(b). Let K(b) be the field of meromorphic functions on 3(b). Then K(b) is the

field of quotients of O(b). Define K,(b) K(b) {0} and let

,
(b) {f O(b) f(z) 0 for all z ]D(b)} (3.11)

be the multiplicative group of units in O(b). The quotient group D(b) K,(b)/O (h)
is written additively and is called the modul_______e o_f divisor on D(b). Let

K,(b) D(b) be the residual map. Define O,(b) O(b) {0}. Then

D+(b) (@,(b)) is the additively closed subset of non-negative divisors. We write

the variable as an index, f (f) for all f c K,(b). If Df is non-negative,

we write f 0. If f K,(b), then f g/h where g 0 and h 0 are holomorphic

functions on re(b). Therefore loglf loglg loglh S(b) and the map f + loglf
,

is a homomorphism. If f (), then loglf J(). Hence if f (h),

the valence function of the divisor

N(r,q) N(p(loglfl),r,q (3.12)

is well defined independent of the representative f with v f. Obviously, if

0 < r < h and 0 < < b, the definition (3.12) is also known as the Jensen formula

f n"
re<r> re<q>

+The map Ng(r,q) is an additive homomorphism. If r, p, q belong to n(b), then

N(r,q) + N(q,p) N(r,p) -N(p,r). (3.14)
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If D+(b), then Nv(r,q) increases and is logarithmic convex in r with

N(r,q) -> 0 if 0 -< q -< r < b. (3.15)

Naturally, if we consider divisors on complex manifolds and spaces the

definition of divisors has to be localized.

Let V be a complex vector space of dimension m + > i. Define V, V {0}.

Then , operates on V, by multiplication. The quotient space (V) V,/, is a

connected, compact complex manifold of dimension m called the compl.e.x projective

s_pace of V. The residual map IP V, /(V) is holomorphic. If A c_ V, define

(A) (A n V,) {IP(z) 0 + z A}. Let O(b,V) be the set of all holomorphic

vector functions V w(b) / V. Define O,(b,v) O(b,v) {0}. Two holomorphic

vector functions v O,(b,v) and w e O,(b,v) are called equivalent v w, if

V ^ W- 0. This defines an equivalence relation on O,(b,V). An equivalence class f

is said to be a meromorphic map from)(b) into (V) and each V in f is said to be a

..representation of f. The representation v is said to be reduced if for each

representation w of f there exists a holomorphic function g such that w gv. Each

meromorphic map has a reduced representation and if v and are reduced

representations, there are holomorphic functions h and h on )(b) such that v hv and

v hr. Hence hh and h e O (b) has no zeros. Moreover w gv ghv. Hence

is well defined independent ofTherefore the non-negative divisor w gg
the choice of the reduced representation . Moreover w is reduced if md only if

Let v and be reduced representations of the meromorphic map f, then the

indeterminacy

If [z ID(b) v(z) O} {z ]D(b) (z) O} (3.16)

n- 2 If z )(h) If thenis well defined analytic, with dim If

f() (v()) ((z)) IP(V) (3.17)
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is well defined and the map f )(b) If / (V) is holomorphic. If m is any

representation of f and if e )(h) with () + O, then f() IP(()).

Let W be a (p+ l)-dimensional linear subspace of V. The projective space (W)

is a project.ive, plane of dimension p in IP(V). If p m- I, then (W) is called a

hyperplane. Let V* be the dual vector space of V. Take a e (V*). Then a P()

where e V, is a linear map V . Then E[a] (ker ) is a hyperplane in

(V). The map a E[a] is a bijective parameterization of all hyperplanes in (V).

If a (V*) and if f()(h) If) E[a], then f is said to be linearly

non-degenerate for a. If v is a reduced representation of f and if V, then

o v O. The divisor ov depends on a and f only and is called the

a-divisor of f. The valence function of f for a is defined by

Nf(r,q;a) N a(r’q)" (3.18)

f

If w is a representation of f, there is a holomorphic function g 0 with w gv.

HenceHence w g v. By definition
w- g

a
(om m + f" (3.19)

Take a positive hermitian form (i) V V , called a hermitian product on V.

The associated norm is defined by llzll /zlz ). If x V and z V, we have the

Schwarz inequality

(3.20)

If e V* and B V*, vectors = e V and h V exist uniquely such that

(z) (zla) B(z) (zlh) for all e V.

A dual hermitian product on V* is defined by

(3.21)

(IB) (alb) (3.22)
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If I, then 1111 I1=11. Therefore (3.20) and (3.21) imply the Schwarz inequality

If z E (V) and a e (V*), then z (z) and a () with V, and V,. The

projective distance from z to E[a] is defined by

(3.24)

independent of the choice of the representatives and e.

+
The compensation function of f for a is defined for r e n(h) by

log0 -< mf(r,a) M og
[If,a]]

(3.25)

The definition extends to all r +Rn(b) with Oro(ID(Or(r))) If.

Let v be a reduced representation of f. Then logllvll is a plurisubharmonic

function on lD(b). If v is another reduced representation of f a holomorphic function

h without zeros exists such that v hr. Then

ogllil ogli=ll / log[hi

where log[h is pluriharmonic. Hence ogllli and ogll=ll define the same class

p(log]l I])=

The characteristic function of f is defined as the valence function of this class

which is

Tf(r,q)

Tf(r,q) m(=,ogll=ll)

(3.26)

(3.27)

D<r> D<q>
(3.28)
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The definition extends to all r e n(b) and q e n(b) with or0(3(O (r))) If and
+ + r

If r, p, q belong to n(b), theno (m( (q))) If.q0 q

Tf(r,q) + Tf(q,p) Tf(r,p) -Tf(p,r) (3.29)

Tf(r,q) _> 0 if 0 < q _< r < b. (3.30)

The function Tf(r,q) is logarithmic convex and increasing in r and decreasing in q

and continuous where 0 < q _< r < b.

Let m be a representation of f. Take a reduced representation v of f. A

holomorphic function g $ 0 exists uniquely such that m gv. By definition w Dg"

Then

logllwll C ii II + lglgiSn-) n lg"V’n
]D<r> ]D<r> ]D<r2

Therefore (3.28) and (3.13) imply

Tf(r q) ogllwl ogl[wll. N (r,q)
’ n n Wre<r" <q>

(3.31)

which generalizes (3.28).

Let v be a reduced representation of f. Take a (V). Assume that f is not

linearly degenerate for a. Take & V, with () a. Take 0 < r < b and 0 < q < b.

Tf_r(,q) \ ogllvlln $\ og[ v[in
D<r> ]D<q>

Nf(r q a) log[o vl oglo’, n n
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mf(r, a) log

mf(q, a) . log

W<q> so v

Addition and subtraction imply the First Main Theorem

Tf(r,q) Nf(r,q,a) + mf(r,a) mf(q,a). (3.32)

Define T
V

V / by TV(Z) llzll 2. One and only one positive form > 0 of

b idegree (I,I) exists on (V) such that *() dd
c

log V" Here d + and

d
c (i/4)(- ). Here is the exterior form of the Fubini-Stud Kaehler metric

on (V). We have

(3.33)

Denote the corresponding form on (V*) also by . Then

log ram(a) (3.34)

An exchange of integration implies

mf(r,a)m(a)
=i

(3.35)

Integration of the First Main Theorem yields

Tf(r,q) Nf(r,,a)n(a)
a(V*)

For V m+l write 1P 1P(V) and 1P IP(V*). On m+i definem m

ZlW + + z w Identify the compactified plane (l: {} with IPm m

setting

by

(3.36)
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m(z,w)
z (z,l) z
W

re(w,0) re(l,0) (3.37)

if z and 0 + w e . If e e (2)*, define (I,0) el and (0,I) 2 and

,
identify ?I with u {oo} by setting

2IP() --- if i # 0 and IP() if I 0 + so_-

2 is defined byIf z e and a , then (z i) with (z,l) z. Also (2)*

setting (Zl,Z2) z az 2. Then (e) a and e(z,l) z a. Define oo by

(I 0) 0 and (0 i) i Then

Ic(z,1) z al
IIII ll<z,)Ii ./t + al 2 /Izl 2

+

l(z,)l

IIII ll(z,1)ll ql + iz12

l%(z,o)

IIII II(,o)II

(3.38)

(3.39)

(3.40)

(3.41)

Hence the projective distance II II on 91 is the chordale distance on the Riemann

sphere of diameter in 3. On the Fubini-Study form is given by

i dz Adz (3.42)
2 (i + IZ12) 2

A meromorphic function f on D(b) is the quotient of two holomorphic functions g

and h 0 such that hf g and v (g,h) D(b) defines a meromorphic map from

D(b) into IP which is identified with f. All meromorphic maps from3(b) into i are

obtained this way except the map identical to m. The representation v is reduced if
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and only if g and h are coprime at every point of ID(b). For a e

_
P1 we have

a
f g-ah f

n
ID<r> re<q>

(3.43)

lgJIg12 + lh12 n (3.44)

Jl + lal2Jl + Ifl 2

me(r a) log
n

If a<r>
(3.45)

mf(r,) log Jl+ ]f12 .n
<r>

(3.46)

Our definition of the value distribution functions corresponds to the Ahlfors-

Shimizu definition and is guided by the intrinsic nature of the algebraic and

geometric structures which are involved in the given mathematical situation. The

classical definitions do not account properly of these features. We would destroy

the intrinsic coherence of the theory if we would insist that q 0 and that

mf(r,) be defined as the integral average of log+Ifl.

Our definitions recognize the absence of a natural one parameter exhaustion of

the polydisc and take advantage of the fact that every holomorphic line bundle on a

polydisc is trivial. If the polydisc is replaced by another complex manifold, the

definitions have to be localized and holomorphic line bundles become unavoidable,

also an appropriate exhaustion has to be chosen.

At present our definitions do not reflect the possible holomorphic slicings of a

polydisc and do not present the valence function as an integrated counting fur, ction

or the characteristic as an integrated spherical image. These properties will be

studied in the next two sections.

4. THE COUNTING FUNCTION.

+
Take b e n and a (b). Let g 0 be a holomorphic function on D(b). Then

there exists uniquely a non-negative integer g(a) called the zero multiplicity of g
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at = such that for each integer j -> (=) there is a homogeneous polynomial P. of
g J

degree j such that

g(z) P. (z a)
j= (a) J

g

(4.1)

for all z in a neighborhood of a in )(b) and such that P () 0. Obviously
g

(a) 0 if and only if g(a) 0. If h 0 is a holomorphic function on B3(b) then
g

gh(a) g(a) + Dh(a) (4.2)

Ng+h(a) Min(g(a),h(a)). (4.3)

Therefore the map @,(b) + defined by g g(a) is a valuation of the ring @(h).

Moreover gh(a) g(a) if and only if h(a) 0.

Let be a divisor on ID(b). Then v f where f 0 is a meromorphic function

on )(b). Let g and h be holomorphic functions on )(h) which are coprime at every

point of )(b) such that hf g. Then (g,h) is a reduced representation of the

meromorphic map f. Let f, g and h be another choice. A holomorphic function

u @*(b) on )(b) without zeros exists such that f uf. Then (ug,h) is another

reduced representation of f. Hence v O*(b) exists such that (g,h) (vug,vh).

Cons equent ly

9(a) (a) -D(a)= g(a) -h(a) .
is well defined independent of the choice of f, g, and h and is called the

multiplicity of v a__t a. The map D(b) defined by v (a) is a homomorphism:
If . e D(h) and p 7z, then

(4.4)

(PVI + 2 (=) P)l(a) + 2 (a) 0(=) o. (4.5)

The divisor v is non-negative if and only if (a) _> 0 for all a )(h). The divisor

v is the zero divisor if and only if (a) 0 for all a e )(h). Therefore we can

identify a divisor v with its maltiplicity function a (a) and in fact this is one

way of defining divisors on complex manifolds.
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Let f be a meromorphic function on ]D(h). Take a e ?I" If f a, the a-divisor

a a
f is defined. Then f() is called the a-multiplicity of f a__t . If f 0, the

divisor f f is defined and f(=) is said to be the _multiplicity of f a__t =.

The function f 0 is holomorphic if and only if f() > 0 for all (), and f is

holomorphic and without zeros if and only if llf(i) 0 for all t e ID(I). Also

I/f() -f(). If fl 0 and f2 0 are meromorphic functions on ]D() then

flf2 () flCa) + f2Ca)" (4.6)

The map K,(b) / defined by f / f(a) is a homomorphism.

Let V be a divisor on )(b). The closure in )(b) of the set of all z e D(b) with

9(z) + 0 is called the support of 9 and denoted by supp 9. If 0 then supp 9 .
If 0, then the support of is an analytic subset of pure dimension n of

)(b). Let R(supp ) be the set of regular points of supp . Then the function is

constant on the connectivity components of R(supp ). If 9 > 0, then

supp {z D(b) () > 0}.
Let f be a meromorphic function on )(b) with indeterminacy If. Take a e I"

Assume that f a. Then

a
supp f If u {Z e ID(b) If f(z) a}. (4.7)

If a O, then supp f supp Of u supp f.

+
Take p lq and c 6Rp. Let )(c) /)(b) be a holomorphic map. Take a

divisor v on D(b) such that (D(c)) supp 9. Let f be a meromorphic function on

)(b) such that f. Then f 0 is a meromorphic function on D(c). The

pullback diviso r

q*()) foq (4.8)

is well defined and independent of the choice of f. If 9 >- 0, then *(v) >- 0. If

pj and j are divisors onD(b) with (ID(c)) { supp V.3 for j i, 2, then
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(m(=)) i supp(pl91 + P22 and

*(Plgl + P292 pl#*(l) + p2*(92). (4.9)

En EnFor 0 an injective linear map z + is defined by (u) us for

all u . If 0 + ID<r> and 0 < r < h, a largest number t0(r) > exists such

that ()(t0(r)))
_

)(h). Let 9 be a divisor onD(h). Take )<r>, then is

said to be restrictable __t , if and only if (D(t0(r))) supp w. Let Rg(r) be

the set of all )<r> such that w is not restrictable to . Then Rg(r) is a thin

real analytic subset of )<r>. For z )<r> R (r), the pullback divisor

V[] %() is defined. If u e (t0(r)) abbreviate v[,u] [z](u). For

Z )<r> Rv(r) and 0 -< t < t0(r) define the counting function o__f 9 in the

direction as the finite sum

n[z,t] [z,u]. (4.10)
ue)[t]

The function t nv[z,t] is semi-continuous from the right and is of bounded

variation on each compact subinterval of [0 to). There is a thin analytic cone C

with vertex 0 in n such that

lim n[z,t] n[0,t] (0) (4.11)
0 <t->0

for all 0 + z e ID(h) C. Here )<r> C is a thin real analytic subset of

If 0 + % )(t0(r)) and z D<r>- R(r), then %z )<l%[r>- Rv([i[r) and

n [%Z t] n [Z l%It] (4.12)

If _> 0, the function t / nv[,t] is non-negative and increases.

If . are divisors on ID(b) restrictable to z <r>, and if p. e for

j I, 2, then Pll + P22 is restrictable to and



640 W. STOLL

n [z t] p n [z,t] + p n [,t].
pIvl+p22 i 2 2

(4.13)

Let f 0 be a meromorphic function on )(b) such that Df. Take

z <r>- Rv(r). Then [z] fo% For 0 < q < r < t0(r) the Jensen formula and

the definition of the valence function for [z] imply

Nv[](r,q) loglf i loglf zll $ n[,t] -)<r> )<q> q
(4.14)

The function z Nv[z](r, q) is continuous on )<r> Cv, hence measurable on

Also

N[] (@r,r)
n[ r] for < @ (4.15)

log @

implies that n[,r] is a measurable function of on D(r). By (2.6) N[](Or,r) is

integrabie over ID<r> if r < @r < t0(r If u 0 then

n [z r] _<
Nv[](@r’r) t0(r)

for < @ < (4.16)v log r

Hence n[,r] is integrable over ID<>. Since every divisor is the difference of two

n ,r] is integrable over )(h) for all v (h). Thenon-negative divisors L

counting function n(r) of is defined by

nv(r) \ n[z i] (). (4 17)
0 n

zID<r>

Then

n(tr) $\ n[z,t]n(Z). (4.18)

If 0 < q < r < t0(r) (2.6) implies
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Nx)(rr,qr) N[z](r q) (z)
n

zD<r>

(4.19)

r r

t
z)<r> q q

If p_ e . and . e D(b) for j i, 2, then

n (r) Plnl) (r) + P2nx)2(r).P II+P22
(4.20)

If _> 0, then n(r) > 0 and n(tr) increases in t.

+
PROPOSITION 4. I. Take b n. Let v be a divisor on (b) such that

supp V n )<tb> for all t e IR[O,I). Then v is the zero divisor.

PROOF. W.l.o.g. we can assume that v _> O. Then 0 supp . If 0 < r < I,

then [rb] O. Hence nErb,t] 0 for. 0 -< t < i. By (4.17) we have n(rb) 0 for

all 0 < r < i. Since 0 supp , we are permitted to take q 0 in (4.19) and

obtain N(rb,O) 0 for all 0 -< r < I.

Assume that there exists z
0

supp such that r ZOI > 0. Then r < b. Take

< p < q such that qr < b and such that uz
0

supp if p < ul -< q- An open

connected neighborhood U of z
0

in )<r> exists such that uz supp for all u e

with p -< lul -< q and z U. Rouche’s theorem implies

n[z,t] n[zO,t]

for all z U and t e [p,q]. Hence n (tr) > 0 for p < t _< q, which implies

Nv(qr,0) > 0 by (4.19). A number s e (0,i) exists such that qr < sb. Then

0 < Nv(qr,O) _< N(sb,0)= 0

which is a contradiction. Hence z supp at most if a coordinate of z is zero.

Since 0 supp we conclude supp ; q.e.d.

By the same procedures as in Lemma 10.4 and Lemma 10.5 of 2 ], the following

result can be proved:
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+ +
PROPOSITION 4.2. Take b n and r n(). Let 0 be a divisor on (b).

Then A supp is an analytic subset of pure dimension n 1 in 3(). Define

A, A- {0}. Let A
0
be the set of all A, such that the restriction

A, +n-I is locally biholomorphic. Then A
0

is either empty or a complex

manifold of dimension n I. The complement A, A
0

is analytic in A,. Also

A
0

n A(r) is either empty or an (n-l)-dimensional real analytic manifold which

can be oriented such that n defines a positive measure on A
0

n A(r). We have

nv(r) v + 0(0).
n

A0nA(r)
(4.21)

+
Take Rn and let be a divisor on (h). Take p 1[ l,n) and define

p n p. Take (p,n). Then T(,n). Take any 3((h)). Then

T )(T(h)) +)(h) is an injective holomorphic map. We say that is

restrictable to by T if

r(D(r())) supp V. (4.22)

Let R(T) be the set of all z (()) such that v is not restrictable to z by i.

If z 3(()) R(T), the pullback divisor

v[T,z] Zz(V (4.23)
exists.

+ +
PROPOSITION 4.3. Take r e n() and e n(). Assume that (r) ().

Then

Nv(r’q) S Nv[r,z](Uy(r) ,uT(q))~(z). (4.24)
zD<p> P

PROOF. A meromorphic function f $ 0 exists on /D(N) such that f v. By (2.22)

we have
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D<r> D<q> zID<p> D< (r)>
T

ze<p> <gr(q) > ze<p>

If (q) qT(r) with 0 < q < I, then (4.19) implies

N[,z](TCr)’qT(r)) I
q

dt
n[T,z]Ct(r)) - (4.25)

For X (b) define

We have

n T(p,x) nvET z](X)~. (4.26)
P

zD<p>

I
Nv(r,q) nv T(p tT(r)) d__t

t
q

(4.27)

provided (r) (q) p and T (q) qT(r) with 0 < q < I.

If ()((b))) supp , we are permitted to use q 0
0

n
V

(p tT(r)) d__t
T t

(4.28)

If we abbreviate T0(V) then we have N(r,q)_ N(r,0) N(p,0) which leads us

to a generalization of formula 4.2.3 by Ronkin [i]

N(r,0) N(p,0)
0

nv T(p tT(r) d__t
t

(4.29)

Take p and identify T {I} lq[l n] with T(1) e qEl,n]. Then i(r) r
T

st
is the T coordinate and qT qrT" Hence

1 r

n
V (p,tT(r)) dt
,T -= nv,T (p’t) d__ttq

If r (rI ,rn) and q (r rT_I,qT,rT+ ,rn) then

(4.30)
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r

Ng(r,q) ng,y(p,t) dtt
q’t-

(4.31)

where p (r ,rT_l,rT+ ,rn) and

nv, T(p,t) nu[y,z] (t)n_
zD<p>

(z) (4.32)

n[% z](t) [T,z,u]. (4.33)
uW[t]

If 0 < q < r < b are arbitrarily picked, we can represent N(r,q) as an integral

sum. Define

rT (ql ’q%’rT+l ’rn) (4.34)

Pr (ql ,q%_l, r%+l rn (4.35)

Then r
0

r and rn q" Also (rr) p% .(rT_I Hence

r

N(rT_ rr) n, (pr t) d-it
r t

(4.36)

By addit ion

r

Nv(r q) n,%(p% t) d__t
t

%=i q_
(4.37)

5. THE SPHERICAL IMAGE AND THE CHARACTERISTIC.

+
First let us consider the 1-dimensional case. Take b . Let V be a complex

vector space of dimension m + with a hermitian product. Let be the associated

Fubini-Study form on (V). Take a meromorphic map f ID(b) (V). Since )(b)

has dimension i, the map f is holomorphic. The spherical image of f is defined by

Af(t) f*() V t [0,b). (5.1)

ID(t)
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The function Af increases and is non-negative. Also Af(t) > 0 if and only if f is

not constant and 0 < t < b. If 0 _< q < r < b, the characteristic is given by

Tf(r,q) r Af(t) "t
tq

(5.2)

The identity (5.2) is easily derived from the definition (3.28) in applying Stokes

Theo rein twice.

+
Take h n. Let f )(h) (V) be a meromorphic map. Let If be the

indeterminacy of f. Let u )(b) V be a reduced representation. If M is a

connected complex manifold and if M )(h) is a holomorphic map such that

(M) i If, then f is a meromorphic function on M, and v is a representation

which may not be reduced. In order to counterbalance this effect, we have to

introduce indeterminacy multipli_city If(=) for each ID(h). There is an integer

cn *of-> 0 and for each integer j -> a homogeneous vector polynomial uj

degree j such that 0 and such that

v(z) vo(z a)
j=V

]
(5.3)

for all z in an open neighborhood U of a in )(h). Define If(a) . Obviously

If() > 0 if and only if = If. If G is an open, connected subset of , if

G D(h) is holomorphic such that (G) i If, then 0 and o() If(()).

+
Take r n(b) and z )<r>. The meromorphic map f is said to be restrictable

t__o if and only if ()(t0())) If. The set Rf(r) of all )<> such that f is

not restrictable to , is a thin real analytic subset of 3<>. For 3<> Rf(),
a meromorphic map

f[] f % D(t0(r)) re(V) (5.4)

is defined. For 0 _< t < t0() the spherical image of f in the direction is

defined by
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Af[z,t] Af[z](t) + If(0) f[]*() + If(0) -> 0.

re(t)

(5.5)

If 0 + ut D(t0(r)) then u m<lul=> Rf(lulr) and

Af[uz,t] Af[z, [u[t]. (5.6)

The function t / Af[z,t] increases. For 0 < q < r < t0(r) define the characteristic

of f in the direction by

r
r

Tf[,r,q] Tf[](r,q) + If(0) log
q

Af[z,t] >_ 0. (5.7)

Let u :D(b) / V be a reduced representation of f. For )<r> Rf(r) the

vector function v 0 is a representation of f[] on D(t0(r) Let be the

divisor of = g on . Define the divisor [z] > 0 on)(t0(r)) by

vo
(u) _> 0

Uv[Z,u] z

(0) If(0) > 0voz

if 0 + u e 3(t0(r))

if u= O.

If 0 + u )(t0(r)) then v[z,u] > 0 if and only if z(u) uz e If. If u 0,

< n 2 andthen v[z,u] > 0 if in (5.3) with a 0 we have vV(z) 0. Since dim If
vv 0, we see that u 0 for almost all z e <r>- Rf(r). By (3.31) and (5.7)

we obtain

Tf[z.r,q]  o II.o e,  o II= e, lln 
])<r> D<q>

(5.9)

Since NpvEz 0 for almost all z in ]3<r>, the function Tf[z,r,q] is integrable over

re<r> and (2.6), (3.27) and (5.9) imply

Tf(rr,qq) Tf[z,r,q]n(Z). (5.10)

zD<r>
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If z e ]D<r>- Rf(r) and if 0 < t < Ot < t0(r), then

Tf[,St,t]
Af[,t] _<

log @ Af[,t] for 8 I. (5.11)

Therefore Af[,t] is integrable over )<r>. The spherical image of f is defined by

Af(r) Af[,l]n. (5.12)

The identity (5.6) implies

Af(tr) Af[,t] for 0 < t < to(r).n
(5.13)

From (5.7), (5.10) and (5.13) we obtain

r
dt

rf(rr,qr) Af(tr) -q
(5.14)

+
If 0 < q < r < and x define

+_r_ log+ q_L(x,r,q) log
x x

if x>_ r

r
log- if q < x -< r

x

log
r

if 0 < x -< q.
q

PROPOSITION 5.1. If r e n(b) and 0 < q < r < t0(r) then

(5.15)

+ If(0)Af(r) f*() ^ n
A(r)

Tf(rr’qr) zA(r) L llzll ’r’ql f*() ^ n + If(0) lg
r

"\llrl[ q

(5.16)

(5.17)

PROOF. If z D<r>- Rf(r), then

f[]*() (f )*() (f,())
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Therefore Lemma 2.1 implies

Af(r) ( f[z]*() + If(0))n(Z)
zD<r> D

%z(f*()) (Z) + (0) f*() ^ n + If(0).n f
z<r> A(r)

If z A(t0(r)r) then IZl u(z)r with 0 < u(z) < t0(r). Moreover

[II[ u()llr[l. If 0 < t < t0(r) then A(tr) if and only if 0 < u() < t.

Define X(x,t) if q -< x -< t <- r and X(x,t) 0 if q -< t < x -< r. Then

q A r)

q A(rr)-A(qr)

/\(rr) -A (qr) q

f*() ^ n + If(0))
X(u(z) t)f*() ^ ndTt- + Af(qr) log

r
X(u(z),t) f*() ^ n + Af(qr) log

q

r _r f,() ^ n + If(0) log _r
log U(z) f*() ^ n + log

q q
A(rr)-A(qr) A(qr)

+ (0) log _rm(u(z),r,q)f*() ^ n f q
A(rr

Take a (V*) and assume that f is not linearly degenerate for a. Take

q.e.d.

+ a
r (n(b) and z <r>- Rf(r). If Uf is restrictable to z, then

mf[z] (r, a) log i
)<r> llf z’ all

(5.8)

is defined for 0 < r < t0(r). If 0 u with lu[t < t0(r), then

mf[uz] (r, a) mf[z](lulr,a). (5.19)

Also (2.6) implies

mf(r,a) log
’ n

3<> IIf,all
log
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mf(r,a) mf[](l,a)n() (5.2o)

mf (rr,a) mf[] (r,a) n()
z<r>

(5.21)

Now, we will slice the characteristic parallel to the coordinate planes. Here

we encounter the difficulty, that the pullback of a reduced representation of a

meromorphic map may not be a reduced representation anymore. We will show that the

problem does not occur for "almost all slices". Some preparations are needed.

For the technical apparatus we refer to Andreotti-Stoll [i I.

+ +
LEMMA 5.2. Take h n and r e n(h). Let A be an almost thin subset of 3(h).

Then A n ]I)<r> has measure zero on ]D<r>.

PROOF. By definition there is a sequence {Av}eq of thin subsets of )(h) such

that A 0 A For each p A there exists an open neighborhood U (p) of p in
=i

)(h) and analytic subset B(p) of U(p) such that A n U (p) B(p) and such that

dim B (p) < n. Hence B (p) 3<r> has measure <r>. Consequently,zero on

A n U (p) 3<r> has measure zero on 3<r>. A countable union of these neighborhoods

U (p) covers A Hence A n 3<r> has measure zero on 3<r> for each q.

Therefore A )<r> has measure zero on )<r>; q.e.d.

+
Take h IRn. Let f 3(h) /(V) be a meromorphic map. Let v 3(h) V be a

reduced representation of f. Take p lq[l,n). Then p n p [l,n). Take

(p,n). Then (,n). We have the surjective projection

~ D(h) /m((h)). (5.22)

For e 3((b)) we have an injective holomorphic map

such that
)(T(h)) ID(h) (5.23)

Zm 3(T(h)) I() (5.24)
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is biholomorphic. Define

Rf(Y) {Z ])({(b)) Tl(If ]D(T(b)) } (5.25)

Sf() {z ])(()) dim Tl(If) > p I}. (5.26)

Then Rf(T) c_ Sf(T). If )(()) Rf(T), the meroorphic map f restricts to a

meromorphic map

f[y,] f T )(nT()) +(V). (5.27)

If 6 D((b)) Sf(), the reduced representation )(b) V restricts to a

reduced representation oz ID(()) / V of f[T,]. By (5.24) we have

Sf(T) {z e )((b)) dim If 0 l(z) > p I}.

LEMMA 5.3. Sf(T) is almost thin in ])((b)).

PROOF. By [I] Theorem 1.14 m { If rankx zllf < - I} is analytic in If
and by [I Lemma 1.30 E’ (E) is almost thin. Take z e Sf(T). Then

x 6 If n nl(z) exists such that dimx If n l(z) _> p I. An open, connected

neighborhood U of x inD(b) exists such that If n U X u u Xr where each 3X" is

a branch of If n U with x e X. for j I, r and where X. is locally irreducible

at x. A branch N of If {l(z) n U exists with x e N and dimx N > p I. Then

N c_ X. for some j. By [i3 Lemma i. 7 we obtain

II _< rank 7~ IX. dim Xrankx ’ f T 3 j dlmx Xj .I()
< dim If dim N < n 2 (p- I) {- I.

Therefore x E and z (x) E’. Hence Sf(T) c_ E’ is almost thin; q.e.d.

+ +
THEOREM 5.4. Take r IRn(b) and q n(b). Assume that p _(r) _(q). Then

Tf(r,q) Tf[r,z](y(r),y(q))~(z). (5.28)
zD<p>

P
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PROOF. Let ID() V be a reduced representation of f. Take

z m<p> Sf(I). Then f[I,z] exists and v Iz is a reduced representation of f.

Therefore

p p

Now2.221 implze

D<p> D<r> D<q>
zogll,,ll Tf(r,) q.e.d.

If z() o_i(r) with 0 < q < I, then (5.14) implies

Tf[i,](%(r) qT(r)) Af[% ](t%()) d__t
t

q

Define

Then we have

Af, %(p,t%(r)) Af[,](tT(r)) d__t
.t

dtrf(,) Af,(,t[()) T
q

(5.29)

(5.3o)

(5.3,)

provided nT(r)t _()t and z () qua(r) with 0 < q <
%

Take p and identify (l,n) with (I) e IN[l,n]. Then

r

Af, ( twy(r)) Af, ( t) d-it
Y "[ t

q’r
(5.32)

If r (r rn) and (r ri_l,q%,r%+ ,rn) then

r

Tf(r,8) : Af,i(,t) d__tt
q’r

(5.33)

where (r ,r%_l,rT+l,...,rn) and

Af% (;, t)

z<W<p>

dt
Af[%, ](t) T (5.34)
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AfEt,z](t) fET,z]*(m).

DEt]

(5.35)

Take 0 < q < r < b and define rT and p% as in (4.34) and (4.35). We obtain

r

Tf(r,q)
dt

Af,(pT,t) -- (5.36)

Take a (V*) and assume that f is not linearly degenerate for a. Take

p e IN[l,n). Then p n p c IN[l,n). Take c T(p,n). Then % e T(p,n). Take

+ +
b R and r n(b). Take z D(~(b))_

% Sf(%)_ such that is restrictable to z

by . Then

mf[r, ] (,a) log (5.37)

l:)<p> Iifz, all P

+
is defined for all p P(r(b)). Then (2.22) implies

mf(r,a) mf[r,z](%(r),a)(z). (5.38)

z<(r) >

6. THE LEMMA OF THE LOGARITHMIC DERIVATIVE.

Take 0 < r < R < b <_ +. Let f $ 0 be a meromorphic function on 3(b). By [9]

Lemma 2.1 (see also Hayman [I, Lemma 2.3) we have

< log+mf(R,0) + log+mf(R,) + 3 log+nf (R, 0)log+If /fla
3<r>

+ 3 log+nf(R,) + log
+ R r

2
+ lg+ + lg+

R r(R- r)

(6.1)

+ 8 log 2.

+
We keep the notation of the last three sections. Take b n and and in

+
n(b). Take IN[l,n] and assume that

0 < r r (r) < (R)_ R < b ~(r) p T(R).T
(6.2)



VALUE DISTRIBUTION ON POLYDISCS 653

Let f 0 be a meromorphic function on ID(b). Abbreviate

0 f
f f f (6.3)

T z
THEOREM 6. i. Under these assumptions we have

iog+mf g+mf + (p R)log+If/fl% -< (R,0) + io (R,) + 3 log n, T

D<r>

(6.4)

+ R + r+ 3 log+n (p R) + log + log
+ + io + 16 log 2,

(R_ r)2
g -r

PROOF. For z e <p>- Rf(r) we have fiT,z] f Tz The chain rule implies

f[i,z], f T Now (2.22), (4 26) and (5 38) imply

log+l fr/f In
)<r>

D<p> D<r>

+-< log mf[y, z] (R, 0)n_
re<p>

+ io g+mf[ y, z (R’)n-
re<p>

++ 3 log ng[,z](R)n_
re<p>

++ 3 log n[y,z](R)n_
re<p>

+ log+ R

(R- r)

+ r+ io
i + log + 8 log 2
r R- r

_< log+ mf[r, z] (R’0)n-I
re<p>

+ log
+

mf[y, z] (R’)n-
re<p>

+ 3 log
+

n[y,z](R)n_
re<p>

+ 3 log
+ + R + r

n[T,z](R)n + log
2 + lg+-- + log

r R- r
)<p> (R- r)

+ 16 log 2

log+mf g+mf + (p,R) + 3 io
+ (p R)(R, 0) + io (R,) + 3 log ng,T g n, Y

+ R log+ + r + 16 log 2+ log
2
+ + log R- r(R- r)

q.e.d.

THEOREM 6.2. If 0 < q _< r, we obtain under the same assumptions

g+T
f

iog+mflog+IfT/fl _< 8 io (R q) + 4 (q 0) + 4 log+mf( )n
D<r>

2R + 2 log
+ + 24 log 2.+9 log_ r 7

(6.5)
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PROOF.

Define

Define @= (R + r)/2R < I. Then r < @R < R and OR r (R r)/2.

(r ,rT_I,OR, rT+ rn).

Then r < < and (r) r < () --OR < C) R and ~(r) ~C) ~()-Since Nv(,) > 0, the First Main Theorem implies

mf(,0) < Tf(,) + mf(,0) < Tf(,) + mf(,,O)

log+mf(,0) < log+Tf(,) + log+mf(,0) + log 2 (6.6)

log+mf(;,) < log+Tf(,) + log+mf(,) + log 2. (6.7)

By (4.31) we have

N(R,q) Ng(R,r) + N(r,q) _> Ng(R,r) n9 T(p,t) --_>

r @R

R-@R R- r> n,T (g’@R)
R n (

,’[ 2R

n) y(t, t) d-it
t

iog+N(, 2R(,OR) -< ) + lg+
R r g+(Tf 2R-< io (R,q) + mf(q,0)) + log R- r

or

log+n log+Tf 2R + log 2(p,OR) _< (R,q) + log+mf(q,0) + log R- r
(6.8)

1o g+n
Also we have

g+Tf 2R + log 2(p,OR) -< io (,) + log+mf(q,) + log R- r
(6.9)

+ OR
log

(OR r)
log+ OR + R +

< + log + log
2 OR- r OR- r R

log+ ++ R + r + log+ 2R +
2R + loglog R- r R- r

<- 2 log R- r r

+ r 2R
<_ loglog

R- r R- r
Now, Theorem 6.1 for r and and (6.6)-(6.11) imply (6.5), q.e.d.

(6. I0)

(6. II)
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THEOREM 6.3. Take h n. Take r n(h) and q n(h) with 0 < < r < h.

Take < 0 and 0 < q R such that 0 < q" h < -< r < @r < h. Let f 0 be a

8f
meromorphic function on )(h). Take % q[l,n]. Define f%-----. Then

655

log+IfT/fl -< 8 log+Zf(Or,) + 4 log+mf(,0) + 4 log+mf(,)n
<r>

20 ++ 9 log O-L I + 2 log --+ 24 log 2.
qbT

PROOF. Theorem 6.2 can be applied with r rT and R Or
T

and

(6.12)

R-- _(rl,...,rr_ I,R,rT+l,...,rn)"

Then R < Or and Tf(R,) <_ Tf(Or,). Also 2R/(R- r) 20/(0 I) and I/r _< I/qbT.

Consequently (6.5) implies (6.12); q.e.d.

Theorem 6.3 is a preliminary version of the Lemma of the logarithmic derivative.

For r to approach h, we have to eliminate 0. If we restrict ourself to the approach

rb b with > r 1 this could be accomplished along classical lines and would

result in the usual "exceptional intervals". Rubel and Henson want to consider the

approach h > r h. In order to satisfy both cases, we introduce a more general

method resulting in "exceptional sets" of dimensions between and n.

+
Take h R

n
and p .[0,n). Define 6 Rn(h) +(0,I] by

+

6(x) Min{1- (xj/bj) J l,...,n} (6.13)

for x e n(h). Let B be a real, pure p-dimensional, oriented submanifold of class C
k

+

in n with k I. Denote by B the differential geometric measure on B. It equals

the p-dimensional Hausdorff measure. For e B, let T be the real tangent space and

N the normal space of B at . Then we have the orthogonal decomposition

n Tx Nx. Let _Ox n Nx be the projection. The manifold B is said to be an

approach base if the following conditions are satisfied.
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(aY The manifold B has finite volume B(B) <

(b) If x B, then 0 _< x < b, that is, B
_
n(h).
+

(c) If B and t and + t(h ) e B, then t 0.

(d) If p > 0, there is a number > 0 such that for each e B we have

(e) If p > 0, then

log(I/6) dB < oo.

B

(6.15)

The closure B is compact and contained in n[h]. If e B, then b h + ( N) B
+

which contradicts (c). Hence

Define the associated approach cone by

M { + t(h ) B and t (0,i)}. (6.16)

+
If B, then x < h and < + t(h ) < for 0 < t < I. Hence M _n(h).

EXAMPLE I. Take
n

B n(b)I xj/bj+ j=l

M
n

X n(h) I x./b. >
+ j=l J 3

Simple calculations show that the conditions (a)-(e) are satisfied. Hence B is an

approach base and M the associated approach cone. Observe that M u {h} is an open

+
neighborhood of h in IRn(h) u {h}.

EXAMPLE 2. Take B {0}. Then M {tb 0 < t < I}.

While the geometric meaning of the conditions (a)-(d) is obvious, the

condition (e) is more difficult to analyze. For this purpose we offer the following

cons iderat ions

LEMMA 6.4. Let B be a real, pure p-dimensional, oriented submanifold of class
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C
k

in -- with k -> I, with p _> and with B(B) < m. For each % (0,i] define

B() B ran((1 )b).
+

Assume there are constants c > 0 and q > 0 such that B(B(%)) _< c%q for all

% (0, I]. Then (6.15) is satisfied.

PROOF. Observe that B(1) B and B() {x B (x) <_ %}. For m q we have

A(m) B(I/m) B(i/(m + I)) {x e B I/(m + I) < (x) < l/m}

d (B(1/m)) cm
-q

m B

a B(A(m)) d dm+m m I"

This yields the estimate

log(i/) dnB
<- % log(m + I) dDB a

m
log(m + I)

m= m
B A

m

( rm__ 1 r-I )lim d log(m + I) , din+ log(m + I)
r-o

m
m=

lim(m--rdm
log(l + i/m) dr log(r + I))

_< c m
-q log(l + l/m) <- c m

-l-q <
m=l m=l

q .e.d.

A map y N x n / is defined by y(t,x) x + t(h x) for t e and x ( IRn.
Obviously (0,x) x and (l,x) b. If 0 < s < t < then x < (t,x) < b. By

definition M g((0,1) x B).

LEMMA 6.5. The map y (- {i}) x Nn is injective.

PROOF. Assume that x and x exist in B and + t and t R such that

g(t,x) g(,). Then t(b x) - x + (b ). Hence

t t
X +- (b x) X +----It ( x + (b ) (b x)) B.

Hence t t and x x; q.e.d.
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LEMMA 6.6. The map U(0,1) B M is a homeomorphism.

PROOF. By definition the map is surjective, hence by Lemma 6.5 the map

IR(0,1) B M is bijective. Trivially the map is continuous. It remains to be

shown that is open. Let U be an open subset of(0,1) B. Take (t,x) e U.

Assume that (t,x) is not an interior point of (U) in M. A sequence {(t9,9)}961q

exists inlR(0,1) B U such that (tg,) (t,) for v . By going to a

/ and x for withsubsequence we can assume that t

(t,x) e [0, I] B U. Then (t,) (t,). If t I, then b (I,) (t,x) 6M

which is wrong. Therefore and (,) (t,x) e U which is impossible.

Therefore (’U) is open in M; q.e.d.

Let V + @ be an open connected subset of P. Let U @ be an open subset of B

C
1

and let g V U be an orientation preserving diffeomorphism of class Let

gv. be the partial derivatives of g. Define w IR x V +n hy w(t,v) (t,g(v)) for

t and v e V. Then

wt(t v) b g(v) w (t v) (I t)g
v

(v). (6.17)
V.

W
t
(t,V) ^Wvl(t,) ^ Am (t,) (I t)P(b g(v)) ^ gv (V) ^ ^ gv (V). (6.18)

Vp p

The vectors gv (v), gv (v) span Tg(v By (d) we have b g(v) T
p

g(v)"

Therefore

(v) A A gv (V) + 0.(b g(v)) A gVl P
(6.19)

In fact if x g(v), then

A(x)
II (- g(v)) ^ gv (v) ^ ^ gv (v)II

p

IIgv (v) ^ ^ gv (v)II
p

(6.20)

depends only on x and not on the parameterization g. Hence A B is globally

defined.
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LEMMA 6.7. If x e B, then

659

(6.21)

PPROOF. We have b x 0(b_ ) + .. a gv (u) Hence
j=l j

j

II(- x) ^ gv (v) ^ ^ gv (")ll ll0( x) llg
v

(.) ^ ^ gv (")IIp
p

or A() IIo( )If. By (6.14) we have A(x) _> y. Also

A()2  )112<- Ii - 112
n

2 n
(b xj) _< b

2 2

which implies A(X) <-Ii11, q.e.d.

By (6.18) and (6.19) the map IR(O,I) x B _n is smooth. In conjunction with

Lemma 6.6 we have proved:

THEOREM 6.8. M is an embedded, oriented, differentiable manifold of pure

dimension p + and of class C such that (0,I) B M is an orientation

preserving diffeomorphism of class C

Let M and B be the differential geometric measures on M and B respectively.

In the situation (6.17)-(6.20) we have

dB Ilgv ^ ^ gv II dv ^ A dVp
p

dM
(i t)P[/( g) ^ Sv ^ ^ gv II dt ^ dv ^ ^ dv

p P

Hence globally

dDM (I t)PA() dt ^ dB. (6.22)

Now, Lemma 6.7 implies

0-<-- (B) (M) <
p B UM UB(B) < .

p+
(6.23)

Here we are able to give another example where the conditions (a)-(d) imply
condition (e)
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+
PROPOSITION 6.9. Take c n. Let A be a pure (n-l)-dimensional, oriented

C
k

submanifold of class in n with k _> 1. Assume that B A n n(h) is relative
+

compact in A. Then B(B) < oo. Assume that there exists a number > 0 such that

(6.14) holds. Then (6.15) is satisfied. If also condition (c) holds, then B is an

approach base.

PROOF. Define Bo { c B () 1- (x./b.)} for j n. Then

B B u u B Each B. is a compact subset of A. Take a B with a. bn J 3 J

Then there exists an orientation preserving diffeomorphism V U of class C

where U is an open neighborhood of a in A and where V is an open neighborhood

of 0 in
n-I

and where g(0) =. Let V be the gradient. Abbreviate

G llv A ^ Bv II > 0
n-i

G. (-i)
i-I det(Vg Vgi_ Vgi+ Vgn)1

Then (6.20) reads
n

(A g)G ! (bi gi)Gi I"
i=

Assume that Vgj(O) 0. Since A() _> > 0 for all B, we have A() _> > 0 by

continuity. Also Vgj(0) 0 implies G.(0)I 0 for all i j. Therefore

0 < A(a)G(0) (bj gj(0))Gj(O) (bj aj)G.(O) 0.

This contradiction shows that Vgj(O) # O. Therefore d(b. x.) 0 at a.
J 3

Consequently log(b x.) is locally integrable at B if a. b If a bJ 3 J 3 J J j’

then a.3 < b.3 and log(bj xj) is trivially locally integrable at m. Since Bj is

compact, log(bo x.) is integrable over B.. Therefore
3 3 3

3 dB
<log(i/6) dB

-< log
b. Xoj=l B JB

J
If E is a measurable subset of M, then the set

q.e.d.

E {t m(0,1) + t(h- x) E}
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is measurable for almost all x e B. Let g E /IR be integrable over E. Fubini’s

theorem implies

E xeB E(x)

g(y(t,x))(l- t) p dt)A(x) dB(X). (6.24)

Define

d(r)
(E)

rE lib rllP+l I- t p+l
xB m(x) Ilb-

(6.25)

Then 0 -< (E) <_ oo.

LEMMA 6.10. Define 0 Min{llh xll x e }- Then Y0 > O. Define

Y1 (I/Yo)P Y2 YIIhlI-P-I"

Let E be a measurable set on M. Then

2 t d() AM(E) YI t
B E() x B E()

(6.26)

PROOF. Recall that 0 < y -< A() < llh- II -< llhll Hence

2
Y () <(0)p

]lhllp+l -ii h xllp+l
-<

ii h llp YI

which with (6.25) implies (6.26); q.e.d.

For 0 < r _< s <- define

M[r,s] y([r,s] x B) M(r,s) y(IR(r,s) x B)

M(r,s] y((r,s] x B) M[r,s) ([r,s) B).

Then M M(O,I) and M o {h} M(0,1]. If t. IR(O,I) for j and if t. for

j oo, then {M(tj,l]}jq is a base of open neighborhoods of h in M u {h}. If

0 < r-< s < i, then (6.26) implies

r
Y2B(B) log

s

54(M[r,1))

r
_< AM(M[r,s]) _< YIB(B) log

s

(M(O,s]) < .
(6.27)

(6.28)
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LEMMA 6. II. Define

Q {(t,) B and 0 < t < I- 6()}. (6.29)

Then (Q) < . If e B, if 6() < t < and if r (t,), then r e M- Q and

(6.30)

PROOF. According to (6.26) we have

dt
dB( log(I/6) dB

<
t i,

B

Also r + t(b ) M- Q if and only if 0 _< 6() < t < I. If so, then

h- r (I- t)(b- K) where (I- t) <- 6(). Hence

q.e.d.

Let g M / and h M / be functions. We say that g(r) -< h(r) for most r in

M and write g(r) < h(r) on M if there exists a measurable subset E of M with (E) <

such that g(r) _< h(r) for all r 6 M- E.

LEMMA 6.12. Let g, h, k and be real valued functions on M. Then

(a) If g -< h and h -< k on M, then g <- k on M.

< <(b) If g h and 0 k on M, then gk -< hk on M.

(c) If g <- h and k <- on M, then g + k -< h + Z.

(d) If to (0,I) and g(r) h(r) for all r e M[t0,1), then g(r) -< h(r).
<

(e) If g(r) for r / b with r M and if a e and 0 < g e then a 6g(r).

(f) If g(r) < h(r) then lira inf g(r) lira sup h(r)
Mr+b Mr+b

PROOF. (a) to (e) are trivial. In the case (f), there exists a measurable

set E in M with AM(E) < such that g(r) < h(r) for all r e M- E. Take a sequence

{tj}je with 0 < t.3 < such that t.3 for j . By (6.28), r.j M[t.,l)3 E

exists. Then r. b for j and g(rj) <_ h(r.). Therefore

lim inf g(r) _< lim inf g(r.) _< lim inf h(r.) _< lim sup h(r)
Mr/b j-+oo 3 j-+oo 3 Mr+b

q.e.d.
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+
LEMMA 6.13. Let g n(b) IR be an increasing function. Define

+
S sup{g(r) r e In()} -< oo. Then

g(r) S for r with r e M.

PROOF. The function g(rb) of r 6 (0,i) increases. Therefore g(rb) s for

r . Obviously s -< S. Take T < S. A point r
0
with 0 -< r

0
< b exists such that

T < g(r0). A number r
0

e (0, I) exists such that r
0

< rob. Then

T < g(r0) -< g(r0b) -< s. Hence S -< s. We find that s S and g(rb) S for r

if 0 < r < I.

Again take T < S. A number r
0 r0(T) e IR(0,1) exists such that g(r0b) > T.

Take r e M[r0,1). Then r x + t(h x) with r
0

< t < and e B. Therefore

r (I t)x + tb > tb > rob which implies T < g(r0b) < g(r) < S for all r M[r0,1).

Hence g(r) S for r b if r e M; q.e.d.

In order to eliminate Q we need the following well-known Lemma.

LEMMA 6.14. (Hayman [123 Lemma 2.4 p. 38) Take to 6 [0,i). Let

T [t0,1) +IR be a continuous, increasing function. Assume that there is a

positive number c > 0 such that T(t) -> c for all t R[to,l). Define

g > 2T(t)

Then E is open in lR[t0,1) with (i/I t) dt 2.

E

(6.31)

PROPOSITION 6.15. Define Q by (6.29). Let T M /IR be a continuous,

increasing function. Assume that there are constants c > 0 and s e IR(0,1) such that

T(r) > c for r e M[s,l). Define T
O Max(c,T) as a function on M. A continuous

function p M +IR
n

is defined by

p(r) (t + (I t) c )eTo( (6.32)

for all r 6 M where (t,) R(0,1) B is uniquely determined by r y(t,). Then

+
r < p(r) < b for r M and p(r) n(h). Let Q(r) be the largest number such that
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@(r)r -< p(r) for r M. Then @(r) > I. Define =0 g(Sllll2/c)" Then

2@(r) + colog @(r)
< log T(r) + 2 log

II h rll
(6.33)

for all r M[s,l) Q. In particular

2@(r) < log T(r) + 2 loglog @(r)

on M. Define Y0 Min{llh x[I x e } > 0 and

+ c
O

(6.34)

Y3 B(B)YP(2 + lg ls)" (6.35)

Then there exists an open subset E of M with (E) < 3 < such that

T(p()) _< 2T(r) for all M- E. (6.36)

In particular T((r)) -< 2T(r) on M.

PROOF. Trivially T
O is continuous and T

O
_> c on M. Take M. Then

r y(t,) with 0 < t < and g B. Hence

0 < t < t + (I t)c <
er(r)

0 < r y(t,x) < p(r) < y(t,x) < b.

+
Consequently, @(r) > and p(r) n(b). Take r M[s,l). Then r x + t(b x)

with x B and s _< t < i. Also

p(r) x + It + (I t)c)-) (b x) + (1 t)c
er(r)

(b- x).

For each j E [l,n] we have

@(r)r.j < rj + (I-.)c (bj x.)

with equality for at least one j. Since r. > 0 we obtain
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@(r) i + (i- t)c
eT(r) Min

rol_<j_<n 3

We have b- r (I- t)(b- x). Hence lib rll (i- t)llb- xll and

O(r) + c
Min - 3

ii b Xl er(r)
l_<j<n ro

3

where rj x. + t(bo x.) s(b x.). Hence
-1 3 3 j J

(6.37)

(6.38)

@(r) _< + -_<
se se se (6.39)

Also r. (I- t)x. + tb < (i- t)bj + tb b HenceJ j j

b. -x. b. -x.
Min J 3 >_ Min - (x)

l-<j -<n r. b
3 l_<j -<n j

(r) + (x).
eT(r)

(6.40)

Now assume that r M[s,I) Q. Then > t -> (x) by (6.29). Consequently

(x) >_ t

Since lib- x li <-IIII, we obtain

@(r) + I+
lib xll 2 eT(r) eT(r)

(6.41)

Now (6.39) and (6.41) imply

or

8111122@(r)
@(r)-

sc

T(r)

2@(r)
log T(r) + 2 log + log0 < log @(r)

811112
sc

for all r M[s,l) Q, which proves (6.33). Now (6.28) and Lemma 6.11 prove (6.34).
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The open set E is defined by E {r e M T((r)) > 2T(r)} u M[0,s). Then

T(p(r)) -< 2T(r) for all r M- E. For x B and t E IR(0,1) define

rx(t) r((t,g)). Define

According to Lemma 6.14 we have

i t
E(X)

Therefore Lemma 6. I0 implies

-<2 +log
i_ s

q.e.d.

LEMMA 6.16. Let f be a non-constant meromorphic function on )(h). Then

Tf(rh,sh) > 0 if 0 < s < r < i.

PROOF. If f has a point of indeterminacy at O, then If(0) > 0 and (5.17)

implies that Tf(rh,sh) >_ If(O) log r/s > 0. Hence we can assume that f is

holomorphic at 0. If Tf(rb,sh) 0 for some pair 0 < s < r < I, identity (5.14)

implies Af(tb) 0 for s -< t -< r. Then (5.5) and (5.13) show that Af[](t) 0 for

almost all z E )<h> and s -< t -< r. Hence f[z] is constant on D(t) and therefore on

)(I) for almost all z )<h>. By continuity f[] is constant for all <h>. Let

f() P%()
X=O

be the development into homogeneous polynomials at 0. Then

f(z) P%()z
)--0

for all Cn and z e sufficiently small. Because f(zz) is constant for

and z )(i) we have P%IID<h> 0 if % > 0. Hence f P0 is constant.

Contradic t ion q. e d.

LEMMA 6.17. Let f be a non-constant meromorphic function on )(h). Take

/

q n(h) and q > 0 with qh < q. Then there exist numbers c > 0 and s (0,i) such

that > g and T(=,g) >- c for all M[s,l).



VALUE DISTRIBUTION ON POLYDISCS 667

PROOF. A number q0 e U(q,l) exists such that q < q0b < b. Take s e U(q0,1).

By Lemma 6.16, c Tf(sb,qo) > 0. Take r 6 M[s,l). Then

r x + t( x) (i t)x + tb with x e B and s _< t < I. Hence r > s > q0b > q

and

T(s,q0h c > 0 q.e.d.T(r,q) T(sb,q)

Now, the Lemma of the logarithmic derivative follows easily, which constitutes

the main result of this paper.

+ +
THEOREM 6.18. Take b Un and q un(b) Let f be a non-constant meromorphic

function on 3(b). Let M be an approach cone. Take lq[l,n]. Then

log+Idzf/ fln -< 17 log+Tf(r,q) + 19 log
+

D<r>

(6.42)

for r e M.

PROOF. Take q > 0 with qb < q. Then c > 0 and s e (0,I) exist such that

r > q and T(r,q) >_ c for all r 6 M[s,l). For T(r,q) define p M +IRn by (6.32) and

@(r) as the largest number such that

r < O(r)r _< p(r) < b for r M.

Then (6.34) and (6.36) hold for T(r) T(r,q). Also we have (6.12). Let cj be

positive constants. Take -< r < b. Then

g+T 2@ (r)log+,fi/f,l _< 8 io f(O(r)r q) + 9 log
n 1

D<r>

+ C

g+T
f

20 (r)<- 8 io (p(r),q) + 9 log @(r) + C

<; 8 log+(2Tf(r,q)) + 9 log Tf(r,q) + 18 log + c
2

< g+Tf; 17 io (r,q) + 19 log
+

where the constant is swallowed by log(i/llb r[l (see eemma 6.12e) q.e.d.

Now, it is possible to derive the defect relation along the lines of Vitter 5

and Stoll 6 ].
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Naturally, Theorem 6.18 extends immediately to any differentiable operator
n

D= A
j=l J -j

where the A. are bounded continuous functions. If we want Df/f to be meromorphic,

we have to take Ao as bounded holomorphic functions on )(b). We even could take A.

unbounded, if we add a correction term on the right-hand side in (6.42). If the A.

are bounded holomorphic functions on )(h), then Df/f is meromorphlc. We have

mDf/f(r,oo) log i + Df/fl 2

]D<r>
lFIDf/fIn + log 2

In<r>

log+Tf +mi)f/f(r,oo) -< 17n (r,l) + 19n log

if the constant c
2

in the proof includes n log 2 and n log C where C is an upper

bound of the A..
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