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ABSTRACT. Value distribution is developed on polydiscs with the special emphasis
that the value distribution function depend on a vector variable. A Lemma of the
logarithmic derivative for meromorphic functions on polydiscs is derived. Here the
Bergman boundary of the polydiscs is approached along cones of any dimension and

exceptional sets for such an approach are defined.
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1. INTRODUCTION.
Value distribution for polydisc exhaustions has been studied by Ronkin [1],
Stoll [2 ] and others. They emphasized the growth of entire holomorphic and

meromorphic functions and the representation of canonical functions to a given

divisor in €. For applications to mathematical logic, Lee A. Rubel and
C. Ward Henson [3], [4] inquired if the Lemma of the logarithmic derivative could
be established for a meromorphic function on a fixed given polydisc.

In the classical one variable theory, the Lemma of the logarithmic derivative

has been one of the basic tools for a long time. In several variables, the

analogous Lemma was proved only recently. For ball exhaustions of Gn, Vitter [ 5]

proved the Lemma for differential operators with constant coefficients and derived

the defect relation for meromorphic maps f : " P . See also Stoll [ 61].
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Vitter's Lemma extends easily to differential operators with polynomial or, with
proper modifications, to differential operators with entire coefficients.
Earlier, a weak version of the Lemma was proved by Gauthier and Hengartner (7] for

the special operator D' = z, 3/321 toeeo bz B/an, which does not permit the

extension to a general differential operator. The differential operator D' suffices

for meromorphic functions, but imposes unnecessary restrictions for meromorphic maps
£: ¢ +]Pm. Recently, Shiffman has shown how to derive Vitter's Lemma from the

result of Griffiths and King [8], which also can be interpreted as a Lemma of the
logarithmic derivative. Biancofiore and Stoll [9] gave an elementary proof of
Vitter's result. The same method will be used to obtain the Lemma of the
logarithmic derivative for polydiscs.

A theory should reflect the intrinsic algebraic, geometric and analytic
structures of the mathematical landscape under consideration. Our development of
value distribution theory on polydiscs will adhere to this principle. This is
an important feature of this paper, which is mostly self contained and requires only

a minimal knowledge of several complex variables.
Let us outline the main result. The euclidean space R is partially ordered

by its coordinates. Denote by ||r|| the length of r in K. For z = (zl,...,zn) e

define |z| = (|z1|,...,|zn|). For 0 <h ¢ R" define
+
R'W) = {r e®' | 0 <r <h}
D(b) = {z ¢ ¢ | || <&}
D> = {z e @ | |z| = b}

+
Let Qn be the rotation invariant measure on the torus D<r> for r ¢ ]Rn(h) such that

+
Dr> has total volume 1. In R%(k), we could approach b via th with t > 1 only.

However Rubel is interested in the more general approach r - h with 0 <r <h. We
introduce admissible approach cones M with 1 < dim M < n which contain both cases.

On M we introduce a measure AM such that AM(M) =o, If Ec M with AM(E) < oo

then h can be approached from M - E.
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Let f be a non-constant meromorphic function on D(k). The characteristic

+
Tf(r,q) of f is a function of two points r and g in ]Rn(h). Take T ¢ N[1,n] and

+
1
define f‘r = aflazT. Keep g ¢ IRn(h) fixed. Then there is an open subset E of

the manifold M with AM(E) <o guch that for all r ¢ M - E with r > g we have

1
1]
S log+|fT/f|Qn 17 1og"T (r,0) + 19 log"

D<r>

IA

e - «ll

2. POLYDISCS.
For any set S let Sn be the n-fold cartesian product. If S c R and if

-© < a <b <+, define

Sla,bl] = {x eS| as<x<hb} S(a,b) ={x ¢S | a<x <b}

S(a,bl = {x ¢ S | a <x < b} Sla,b) = {x eS| a<x<b}

+

S =15(0,) ={x eS| x>0} S =5[0,%) ={xes | x2o0}.
+

If S ¢ Gn, define S, = 5 - {0}. If x = (xl,...,xn) and y = (yl""’yn) are vectors

in R®, define x < y if xj < Y for all j e N[1,n] and x < y if xj < Y for all

j eN[l,n]. If S ¢cR", define

IA

Sirl={x eS| x <r} S(r) = {x es | x <r}.

For % = (zl,...,zn) and w (wl""’wn) in €%, and p ¢«N and A € € define

z+uwms= (z1+w1, vees zn+wn) Zeowm = (zlwl,...,znwn)
Az = Ozg,eeniiz) P = (zf,...,zﬁ)
|z| = (izll""rlznl) z = (;l”"’;n)
Z Z
el = Clay 1?4 e+ 12 D2 Feelie®
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log 2 = (log Zys vees log zn) zA = e)\ log = if z € ((1:*)n

o
]

n
On=(0,...,0) eC 1

(1,...,1) e c*.

Here log is the principal value. For r « ]Rn, define the polydiscs
+

D(r) = {2 ¢ € | |2]| <1} Dirl = {z ¢ @ | |z] < r}.

The Bergman-Shilov boundary is given by

D> = {2z e € | |z] = r}.

A surjective, real analytic map oL R +D<r> is defined by ar(¢) =r- e1¢ for

all ¢ € rR*. If r > 0, then D<r> is an n-dimensional, oriented, real analytic

manifold such that a, is an orientation preserving, local diffeomorphism which is

bijective on R[0,2m)".

For r = 1 ¢ R, we obtain the unit disc D = D(1) with D = D[1] and 3D = D<L>.
+I1
For r ¢ R, define the diagonal manifold

A(r) = U D<tr> Alr] = u D<tr>.
teR(0,1) ter[0,1]

A surjective, real analytic map B_. : R(0,1) X R » A(r) is defined by
r

Br(t’¢) = tat(¢) for all t ¢ R(0,1) and ¢ ¢ R'. Moreover, A(r) is an

(n + 1)-dimensional, oriented, real analytic manifold such that Br is an orientation

preserving local diffeomorphism which is bijective on R(0,1) X ]R[O,ZT[)n.

On (G*)n, we introduce the holomorphic differential forms

ce. A —2 (2.1)
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~ 1 nl1 B -1 A-1 dz11 n dz]_l
& = (z70) L v (/\T A WA & 2.2

u=1 H

For j € N[1,n] we have

3 -
2miz, En Qn' 2.3

Let j, : D<r> » ((l:*)n be the inclusion map. Then

* % 1
aj (@) = dé, A ... Add >0 (2.4)
tjr n (ZH)n 1 n
S Q = 1. (2.5)
n
DLr>

* *
Hence jr(Qn) is a positive measure on D{r> of total mass 1 such that jr(Qn) is
invariant under the action of D(1n> on D<r> defined by g(z) = ¢+ 2z for ¢ ¢ ]D<1n> and

2 ¢ D<r>. 1In particular, if F : D<r> + € is integrable, then

2T
_ 1 i¢
g B = S (21: So F(e™ ) dq’) & (). 2.6
D<r> zeID<r>

Let X be a form of bidegree (1,1) on an open subset U $ @ of ¢ where

n
i —_
X== ¥ x=4dz adz_. 2.7
2T wv=1 HV H \Y

Then X is said to be non-negative (respectively positive) at 2 ¢ U if for all

0+xe¢nwehave

n

! \Z)=1 Xug(i)xu;v 2 0 (respectively > 0). (2.8)
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If S ¢ U and X is non-negative (respectively positive) at every point of S we say

that X is non-negative on S (respectively positive on S) in signs X 2 0 on §

(respectively X > 0 on S). On U n (d:*)n we have

n
XAE = T Y=z dz 6 AQ. (2.9)
n 1=l HVTH TV n

+
Take r ¢ R® and assume that U o A(r). Let 1.8 A(r) + U be the inclusion map. For

t ¢ R(0,1) and ¢ = (¢1,...,¢n) ¢ R" we have

n
Brax A £ (6,0 = (55)" I e e'rre

i(¢ -9.)
H V¢ dt A d¢ (2.10)

where d¢ = d¢1 A oo A d¢n. In particular

*
1r(x A En) 20 4if X 2 0 on A(r)

*
It(XAE.n) >0 if x > 0 on A(r).

For 0O + £ € c“, define R,l N by ILz(u) = ug, If x ¢D<r>, then
L (e(1) - {0}) ¢ A(r). The identities (2.6) and (2.10) and Fubini's theorem imply

easily:

+
LEMMA 2.1. Take r ¢ K°. Let X be a form of bidegree (1,1) on an open

*
neighborhood U of A(r). Assume that Ir()( A F,n) is integrable over A(r). Then

§ xag = § (S £:(X>) 2 (). .11

A(r) zeID<r> \D

+ +
COROLLARY 2.2. Take r ¢R" and r ¢ R. Let X be a form of bidegree (1,1) on an

*
open neighborhood U of A(rr). Assume that lrt(XA gn) is integrable over A(xr). Then
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§ xng = § ( § 2:(x)) 2 (0.

A(rr) 2eDD<r> \D(r)

Take n ¢ N and p ¢ Z[0O,n]. Let &(p,n) be the set of all injective increasing
maps T : N[1,p] > N[1,n]. If p =0, then &(p,n) = P. If p e N[1,n], let

Ip : N[1,p] - N[1,n] be the inclusion map. If p = n, then &(n,n) = {‘ln}. For

T ¢ T(p,n), we assign various operators.
The complement T e T(n-p, n) is uniquely defined by Im T n Im T = # or by

ImT uIm T =N1,n]. Clearly T = T and Tn = p.

A surjective linear map me ot ¢ > ¢P called the T-projection is defined by
= P
’NT(I) (zr(l)""’zr(p)) € €. (2.12)

= -P
Let ij be the Kronecker symbol. Define Bj (Gjl""’sjn)' For each z ¢ € P an

injective, affine map T, : e® > ¢" called the T-injection at % is defimed by

n-p
+ ¥ z e~ (2.13)

P
T (m)=F w RN

4
z p=1 M TGD

If 2=0¢€ € P, then T, is linear. If A >0 and  and m belong to P, then

A A
To(n cm) = To(\!) . To(m) To(n ) = To(n) . (2.14)
If z € Cn, then one and only one number p € Z[0,n] and map O, € T(p,n) exist

such that zOz(j) # 0 for j =1, ..., p and zSz(j) =0 forj=1, ..., n-p. The map

a, is called the support of z. Obviously p =0 iff z = 0. Also

Im Ox.y = Im o, n Im og. (2.15)

Take r ¢ R®. Let F be a function on D<{r>. Define
+
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2m 27 i¢ i¢
1 1 n
#i(r,F) = e F(r.e seessr e ) do. ... do (2.16)
(2")n SO SO 1 n 1 n

provided the integral exists (perhaps in the sense of summability where +« or -«

are permitted). If r > 0, then

fi(r,F) = S FQ . (2.17)
D<r>
I£0 <r40, then 0, ¢ T(p,n) with p ¢ N[1,n]. Take 0 ¢ € F. Abbreviate

g = or. Then

fi(r,F) = S (F ooO)Qp. (2.18)
]D<1r0(r)>
If r = 0, then
@(0,F) = F(0). (2.19)

Take p € N[1,n] and T € T(p,n). Take 2 siD<ﬂ;(r)>, then T10D<ﬂr(r)>) c D<o,
Hence F °T, is defined oniD(nT(r)>. By Fubini's theorem ﬂ(nT(r), F orz) = H(z)
exists for almost all 2 €:D<W?(t)> and we have

fi(r,F) = m(ﬂ¥(r),ﬂ). (2.20)

More explicitly, this is written as

@(r,F) = @(nx(r), @M (£), For)). (2.21)
If r > 0, then
FQn = ( Fo TZQP> Qn_p(z). (2.22)
<> zem<n?(r)> m<nr(t)>

Sometimes we shall write #i(r,F) as in (2.18) even if r has some zero coordinates.

Then (2.21) writes as in (2.22) which is more instructive.
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3. PLURISUBHARMONIC FUNCTIONS.

Let B be a subset of R°. A function g : B *R u {-»} is said to be increasing
+

if g(x) < g(y) whenever ¥ ¢ B and 4 ¢ B with x < y. The set B is said to be

1
logarithmic convex if x € B and y € B and A € R(0,1) implies x)\g‘ A € B. The

function g is said to be logarithmic convex, if B is logarithmic convex and if x ¢ B

and ¥ € B and A € R(0,1) imply

gt < g0 + (- NgWw). 3.1

+
Here we are mostly interested in the case where B is a polydisc. Take h ¢ R,

+
Then R (k) is logarithmic convex. Take p ¢ N[1l,n] and T € T(p,n). Then HT(h) e RP.
+

If 0 € mn—p’ an injective linear map TO : c® - u:“ is defined which maps ]RP(TTT(h))
+

into R"(h). Define BT = log ﬂr(h) ¢ R’. Given a function g :R(h) >R U {-}
+ +

define
x
b :meT) +Ru {-=} by h (x) = glry(e). (3.2)

LEMMA 3.1. If g is logarithmic convex, then h'r is convex.

PROOF. Take x and g in:mP(BT). Take A ¢ R(0,1). Define p =1 - A. Then

h_l_(kx + uy) = g(‘ro(e)‘xeuy)) = g(‘ro(ex)xTO(ey)u)
< Ag(ro(e*)) + ug(TO(ey)) = X (x) + uh () q.e.d.
+
Observe, if T = 1, then T, (R'(B)) = K'(h) is the interior of l-l!;n(h). In
+

particular g(ex) is convex and g is continuous on ]Rn(h), if g is logarithmic convex.

LEMMA 3.2. 1If h_[ is convex for each T ¢ T(p,n) and p ¢ N[1,n] then (3.1) holds

for all x ¢ ]Rn(h) and y e]Rn(h) with o, = 0g and for all A ¢ R(0,1).
+ +



626 W. STOLL

PROOF. Define z = x)\gl_A. Then Oz = Ox = Og = T where the jth coordinate of
the vectors %, X or ¥ is positive if and only if j € Im T. Hence X and 5 exist in

]RP(BT) such that x = To(ex) and ¥y = To(ey). Define U =1 - A. Then

[}

g('8" = gt (M 1 (M) = g1y ) = b OF + 1)

~

A (%) + uh (8) = Ag(ty(e™) + ug(ty(e) = Ag(0) +ugl®)  q.e.d.

N

If Ox % Oy’ the conclusion of Lemma 3.2 may be incorrect: Take n = 2 and
b = (2,2). Define g(x,y) =1 if x = 0 or y = 0 and g(x,y) = 0 if 0 < x < 2

and 0 <y < 2. Each function h,[ is constant and therefore convex. If 0 < X < 1,

then (O,O)A(l,l)l_)\ = (0,0) and

g(0,0M1, DY) = 50,00 = 1 > A = Ag(0,0) + (1 - Ng(l,1).
However we have the following result:
LEMMA 3.3. If g is increasing on R%(h) and if h‘r is convex on ]RP(BT) for all
+

T € T(p,n) and p € N[1,n], then g is logarithmic convex.

PROOF. If x}‘yl-A

0, then (3.1) is trivial since g(0) < g(x) and g(0) < g(y).

[}

Define y=1- A and 2 x)‘gu. Then m°z=ImeAIm°y‘ Put ;j=0=y if

]

JkImOzandxj=xj>Oandyj=yj>0ifjslmcz. Thenx=(x1,

~ n
...,xn) eﬁ (h)

and § = (;1,...,;7“) e RM(h) with o3 = GS = 0, and X< xandy <y. Also we have
+

73‘5“. Lemma 3.2 implies

m
L[}

g(xs?) = g5 < Ag(® +ug®) < Ag(x) + ugl) Ge.d.

+
PROPOSITION 3.4. Take b ¢ R®. An upper semi-continuous function

g : (k) *R u {-»} increases and is logarithmic convex if and only if the function
+

u : D(b) R u {-»} defined by u(z) = g(|z|) is plurisubharmonic.
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PROOF. If u is plurisubharmonic, a theorem of Vladimirov [10] p. 88 (see also

Ronkin [1] Theorem 2.1.2) implies that g increases and that all h_ are convex. Hence

g increases and is logarithmic convex. If g increases and is logarithmic convex,

then g increases and all h‘r are convex. By Vladimirov's theorem u is

plurisubharmonic, q.e.d.

+
Take b ¢ R®. Let u be a plurisubharmonic function on D(h). For r ¢ R%(b) define
+
M(r,u) = Max{u(z) | z ¢ D<rd} (3.3)
1 2m 2m ié
fi(r,w) = —— S g utre!® a0, ... ap . (3.4)
(2m) 0 0

Then M(Izi;u) and ﬁl(|z|,u) are plurisubharmonic functions of % on D(k) (Ronkin [1]

pages 75 and 84). Therefore M(r,u) and fl(r,u) increase and are logarithmic convex

functions of r in ]Rn(h). If u ¥ - then M(r,u) and #i(r,u) are real numbers for all
+

+
r e ]Rn(h). If some coordinates of r are zero, the same remains true if uooro $ —o,

+
PROPOSITION 3.5. Take h ¢ R®. Let u : D(h) + R be a pluriharmonic function.

Then i(r,u) = u(0) for all r ¢ R (b).
+
PROOF. Since u and -u are plurisubharmonic we have

u(0) < fi(r,u) = -fi(r,-u) < -(-u(0)) = u(0) q.e.d.

A function g : D(h) * R u {-o,4o} is said to be quasipluriharmonic if there are

plurisubharmonic functions u $ -© and v $ -» such that g = u - v. Strictly speaking

g is defined except for a pluripolar set

I, < {z | u(z) = - = v(z)}

called the indeterminacy. For O < r < b, the integral average

fi(r,g) = fi(r,u) ~ fi(r,v) (3.5)

is well defined.
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Let $(h) be the real vector space of all quasipluriharmonic functions on D(k).
Then the set J(h) of all pluriharmonic functions on D(h) is a linear subspace of
$(h). Let Q(h) = B(h)/P(h) be the quotient vector space and let p : (k) -~ @(h) be

the residual map. An element of ©Q(h) is called a quasipluriharmonic class on ID(h).

Take h ¢ @(b). Then h = p(g) with g « $(h). If h = p(g) with g € S(k) then
N + +
g = g + v where v € fi(h). Take r e‘mp(h) and g € EP(h). Then

fi(r,g)

f@i(r,g) + v(0)

f(x,8)

fi(g,g) + v(0).
Subtraction implies
fi(r,g) - @(n,g) = f(r,g) - A(n,g).

Therefore the valence function of h is well defined independent of the choice of the

representative g by
N(h,r,n) = fi(r,g) - fi(n,8) ¢ R (3.6)

for 0 < r < h and 0 < g < bh. For fixed r and g, the function N(h,r,q) is linear

+
in h. If r, g, g belong to Ep(h), then

N(h,r,q) + N(h,n,p) = N(h,r,pm) (3.7)

N(h,r,q) = -N(h,qg,r). (3.8)

The set S+(h) of all plurisubharmonic functions u i -» on D(h) is contained in
(k) and $, (1) is closed under addition and multiplication with non-negative numbers.

Define ®+(h) = p(5+(h)) in Q(h). Each g € ®+(h) is called a plurisubharmonic class.

If u € S+(h) such that p(u) = g and if 0 < r <h and 0 < g < b, then
N(g,r,n) = #f(r,u) - f(g,u). (3.9)

The definition extends to all g ¢ R"(h) with u °9.0 $ _», and the extension does not
+ ’

depend on the choice of u. The function N(g,r,g) increases in r and decreases in §.
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If 0 < g <r <h, then
N(g,r,n) 2 0. (3.10)

If g is fixed and r converges to h, then N(g,r,q) measures the growth of g.

Now, we will give examples of valence functions of divisors, meromorphic maps

and meromorphic functions.

+
Take b ¢ R". Let O(h) be the integral domain of all holomorphic functions on
D(h). Let X(b) be the field of meromorphic functions on D(h). Then X(h) is the

field of quotients of O(h). Define X (k) = K(h) - {0} and let

0" () = {£ c Oh) | £(x) 4 0 for all = « D(k)} (3.11)

*
be the multiplicative group of units in O(h). The quotient group D(h) = X, (k) /0 (h)

is written additively and is called the module of divisor on D(h). Let

u s XK, (h) > D(h) be the residual map. Define 0,(h) = 0(h) - {0}. Then

+
o (h) = u(®*(h)) is the additively closed subset of non-negative divisors. We write

the variable as an index, uf = u(f) for all f ¢ X, (b). 1If uf is non-negative,

we write He 2 0. If £ e X, (h), then f = g/h where g ¥ 0 and h $ 0 are holomorphic
functions on D(h). Therefore log|f| = log|g| - log|h| ¢ $(h) and the map £ v log|f]
is a homomorphism. If f ¢ 0*(h), then log|f| e J(h). Hence if v = He € ah),

the valence function of the divisor v

N, (r,1) = N(p(log|£|),r,n) (3.12)

is well defined independent of the representative f with v = Mo Obviously, if

0 <r <hand 0 < g < h, the definition (3.12) is also known as the Jensen formula

Nuf(r,q) = 8 log[f]Qn - S 1og|f|ﬁ5. (3.13)
D<r> m<y>

+
The map v »> Nv(r,q) is an additive homomorphism. If r, p, n belong to Rp(h), then

N (r,0) + N (a,8) = Nv(r,n) = -N (#,1). (3.14)
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If v ¢ B+(h), then Nv(r,q) increases and is logarithmic convex in r with
Nv(r,q) >0 if0<g<r <h, (3.15)

Naturally, if we consider divisors on complex manifolds and spaces the
definition of divisors has to be localized.
Let V be a complex vector space of dimension m + 1 > 1. Define V =V - {0}.

Then €, operates on V, by multiplication. The quotient space PV) =V, /C, is a

connected, compact complex manifold of dimension m called the complex projective

space of V. The residual map P : V, >~ P(V) is holomorphic. If A c V, define

P(A) =P(AnvV) = {IP(z) | 04 2 ¢ A}. Let O(b,V) be the set of all holomorphic
vector functions u : D(h) > V. Define 0*(h,v) = O(k,v) - {0}. Two holomorphic
vector functions u € 0*(h,v) and W € 0*(h,v) are called equivalent u ~wm, if

v Aw=0. This defines an equivalence relation on O, (k,V). An equivalence class £

is said to be a meromorphic map from ID(k) into PP(V) and each u in f is said to be a
representation of f. The representation % is said to be reduced if for each
representation W of f there exists a holomorphic function g such that w = gu. Each
meromorphic map has a reduced representation and if u and U are reduced

representat ions, there are holomorphic functions h and h on D(h) such that u = ht and

~ * e
= hu. Hence hh = 1 and h ¢ O (h) has no zeros. Moreover w = gu = ghu. Hence

=2

= ug. Therefore the non-negative divisor um = ug is well defined independent of

=

g
the choice of the reduced representation u. Moreover w is reduced if and only if

um = 0.

Let v and & be reduced representations of the meromorphic map f, then the

indeterminacy

I = {z «DW) | #(z) = 0} = {z eD(h) | u(z) = 0} (3.16)

is well defined, analytic, with dim I_ <n - 2. If z «¢D(h) - I_, then

£ £

£(z) =P(u(z)) = P(u(z)) € P(V) (3.17)
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is well defined and the map f : D(h) - I_ +P(V) is holomorphic. If w is any

£
representation of f and if z ¢ D(h) with w(z) =|= 0, then £(z) =P(wm(x)).
Let W be a (p+1)-dimensional linear subspace of V. The projective space P(W)

is a projective plane of dimension p inPP(V). If p = m - 1, then P(W) is called a

hyperplane. Let V* be the dual vector space of V. Take a ¢ P(V*). Then a = P()

*

where 0 € V, is a linear map o : V > €. Then E[a] = P(ker a) is a hyperplane in

P(V). The map a > Elal is a bijective parameterization of all hyperplanes in P(V).
If a e P(V*) and if £(D(h) - I.) ¢ Elal, then f is said to be linearly

*
non-degenerate for a. If # is a reduced representation of f and if a ¢ V, then

ou depends on a and f only and is called the

aou .ir 0. The divisor u; = ua

a-divisor of f. The valence function of f for a is defined by

Ne(r,m;a) = N _(r,0). (3.18)
He

If w is a representation of f, there is a holomorphic function g $ 0 with m = gu.

Hence aocwm = gaou. By definition My = M- Hence

a
“cxom = Uy + uf. (3.19)

Take a positive hermitian form (1) : V X V + ¢, called a hermitian product on V.

The associated nomm is defined by ||z|| Y(2|2). I1f x <V and £ ¢ V, we have the

Schwarz inequality

| (=]%)]

IN

=l =l (3.20)
If o € V¥ and B ¢ V*, vectors a € V and h ¢ V exist uniquely such that

a(z) = (zla) B(z) = (z|h) for all z ¢ V. (3.21)
A dual hermitian product on V* is defined by

(a]B) = (alb). (3.22)
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If a = B, then ||a|| = ||a]l. Therefore (3.20) and (3.21) imply the Schwarz inequality
la() | < [lell Izl (3.23)
*
If z ¢ P(V) and a € P(V*), then z = P(2) and a =P(0) with 2 € V, and a ¢ V,. The
projective distance from z to E[a] is defined by
| o) |
0 < jlz,af] = —— <1 (3.24)
lall 1l=1l
independent of the choice of the representatives # and Q.
+
The compensation function of f for a is defined for r ¢ ]Rn(h) by
( 1 ) 1
0 < m.(r,a) = fl{log , ] = S log Q< oo, (3.25)
f ’
I1£,all lle,all ™

<>

The definition extends to all r ¢ R (k) with 0. (]D(TT0 () ¢ Tg-
+ 0 r

Let ¥ be a reduced representation of f. Then logHuH is a plurisubharmonic
function on D(h). If ; is another reduced representation of f a holomorphic function

h without zeros exists such that & = hu. Then
log|[u]| = logllul| + log|n]

where log|h| is pluriharmonic. Hence log||u|| and log|/u|| define the same class
p(logllul)) = pCroglulD.

The characteristic function of f is defined as the valence function of this class

T(r,0) = N(pQlogl|ul]),r,m) (3.26)
which is

Te(r,n) = fi(r,logllu|]) - (a,log|lu]]) (3.27)

T (r,m) = S Log|[ull2 - S Log(|ullo . (3.28)

<> D<y>
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The definition extends to all r ¢ Ep(h) and g € Ep(h) with 0r (IKﬂb (r))) i If and

+ + 0 r
oxx (]D(TTO @ ¢ I. If r, p, 1 belong to R'(h), then
0 q
Te(r,m) + Te(a,p) = T (r,p) = -T (g,1) (3.29)
Tf(t,q) >0 if0<g<r<h. (3.30)

The function Tf(t,q) is logarithmic convex and increasing in r and decreasing in g

and continuous where 0 < g < r < h.
Let w be a representation of £. Take a reduced representation u of f. A

holomorphic function g # 0 exists uniquely such that w = gu. By definition pm = pg.

Then

.
§ soglimlle, = vogliulie, + © 10glsla,.
<> D<r> D<r>

Therefore (3.28) and (3.13) imply

T.(rm) =\ 1og”m“Qn - S log”mHQn - N, (rm (3.31)
D<r: D> v

which generalizes (3.28).

Let u be a reduced representation of f. Take a ¢« PP(V). Assume that f is not

*
linearly degenerate for a. Take o ¢ V, withP(0) = a. Take 0 < r <h and 0 < g < bh.

Then
¢ C ,

Tf(r,q) = ‘3 log“uHQn - l\ log”uh@n

D<r> <>

. C i v

No(r,n,a) = y logjo ouIQn - ) logla ou|§zn
D<r> o<g>

_ T - Ivlio — . | o
0 J‘Og||0‘““n Q lOgl!u”C‘n

D<r> D<ig®
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el 1ol
g— Q

£
D<r> loou| 7
lull [lel
mf(n,a) = S log — a.
laoul

D<y>

Addition and subtraction imply the First Main Theorem

Te(r,m) = N(r,0,2) + mc(r,a) - m.(q,a). (3.32)
Define Ty ¢ V >R by Tv(z) = I|z||2 One and only one positive form w > 0 of
bidegree (1,1) exists on PP(V) such that P*(w) = ad® log Ty Here d = 3 + 0 and

a¢ = (i/4m) (—8_ - 9). Here w is the exterior form of the Fubini-Study Kaehler metric

on P(V). We have

S wm=1.

P(V)

Denote the corresponding form on P(V*) also by w. Then

1 m
S log —— w'(a) = % T
H=1

wepirny |zl

An exchange of integration implies

f=a

m 1 21
S mf(r,a)w (a) = '2— z -1—1' .
aeIP(V¥) =l
Integration of the First Main Theorem yields
n
T(r,q) = S N (r,m,8)w (a).

acP(V¥*)

+1 . *
For V = @ write ]Pm =1P(V) and ]Pm =P(V¥). On ¢m+1 define

(zlm) =z, + ...+ z W Identify the compactified plane € u {*} with IPl by

setting

(3.33)

(3.34)

(3.35)

(3.36)
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P(z,w) = % P(z,1) = z P(w,0) = P(1,0) = « (3.37)

ifzeCandO%wedC Ifac (032)*, define a(1,0) = o and a(0,1) = o, and

*

identify 1P1 with € U {=} by setting
Q,
2,
P(a) =-—-= if a. $0 and P(a) =« ifa =04%o0,.
otl 1 1 2

*
If z ¢ € and a ¢ €, then (z,1) ¢ 0:2 with P(z,1) = z. Also a ¢ (mz) is defined by

setting Ot(zl,zz) =z, - az,. Then P(®) = a and o(z,1) = z - a. Define a_ by

cxoo(l,o) = 0 and ocw(O,l) = 1. Then

|a(zsl)l IZ - a'
llz,all = - = (3.38)
all 11z, 1) |] Ji + |al? «/|2|2 i1
[a(1,0) | 1
[|=,all = = (3.39)
lledl T,oll - [y a2
lo,(z,1)] 1
llz,=] = = (3.40)
loll Il [ L2
[a,(1,0) ]
l[o,@]| = ——————=0 (3.41)
lo I 11z, 0]
Hence the projective distance “ N H on ]‘E’1 is the chordale distance on the Riemann
sphere of diameter 1 in ]R3. On € the Fubini-Study form is given by
i _dzndz (3.42)

2m (1 + IZIZ)Z :

A meromorphic function f on D(h) is the quotient of two holomorphic functions g
and h ¥ 0, such that hf = g and u = (g,h) : D(h) » mz defines a meromorphic map from

D(h) into ]JP1 which is identified with f. All meromorphic maps from D(h) into ]P1 are

obtained this way except the map identical to «. The representation u is reduced if
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*
and only if g and h are coprime at every point of D(h). For a € € ¢ P1 we have

a _ *
He = Moan Mg = W (3.43)
Tf(t,q) = g log J[g]z + |h|2 Qn - g log /[glz + |h|2 Qn (3.44)
D<r> D<g>
Jl + Ialzﬁ+ HE
m _(r,a) = g log ) Qn (3.45)
o<r> £ - a
_ € 2
m_(r,®) = A log J1 + |£| Qn. (3.46)
D<r>

Our definition of the value distribution functions corresponds to the Ahlfors-
Shimizu definition and is guided by the intrinsic nature of the algebraic and
geometric structures which are involved in the given mathematical situation. The
classical definitions do not account properly of these features. We would destroy

the intrinsic coherence of the theory if we would insist that g = 0 and that
mf(r,W) be defined as the integral average of log+|f[.

Our definitions recognize the absence of a natural one parameter exhaustion of
the polydisc and take advantage of the fact that every holomorphic line bundle on a
polydisc is trivial. If the polydisc is replaced by another complex manifold, the
definitions have to be localized and holomorphic line bundles become unavoidable,
also an appropriate exhaustion has to be chosen.

At present our definitions do not reflect the possible holomorphic slicings of a
polydisc and do not present the valence function as an integrated counting fur.ction
or the characteristic as an integrated spherical image. These properties will be
studied in the next two sections.

4. THE COUNTING FUNCTION.

+
n
Take b € R and a e D(h). Let g # 0 be a holomorphic function on D(k). Then

there exists uniquely a non-negative integer ug(a) called the zero multiplicity of g




VALUE DISTRIBUTION ON POLYDISCS 637

at a such that for each integer j 2 ug(a) there is a homogeneous polynomial Pj of

degree j such that

o

g(z) = T P.(z-a) (4.1)
J‘=ug(a)

for all % in a neighborhood of & in D(k) and such that P‘J () $ 0. Obviously
g

ug(a) = 0 if and only if g(a) # 0. Ifh $ 0 is a holomorphic function on D(h) then

ugh(a) = ug(a) + uh(a) (4.2)

u . (a) 2 Min(ug(a),uh(a)). (4.3)

g+h

Therefore the map (I)*(h) - Z+ defined by g > ug(a) is a valuation of the ring O(h).
Moreover ugh(a) = ug(a) if and only if h(a) 4 0.
Let V be a divisor on D(h). Then v = Mg where f ¥ 0 is a meromorphic function

on D(h). Let g and h be holomorphic functions on D(h) which are coprime at every

point of D(h) such that hf = g. Then (g,h) is a reduced representation of the
meromorphic map f. Let E, gand h be another choice. A holomorphic function
u ¢ O*(h) on D(ht) without zeros exists such that f = uf. Then (ug,h) is another
reduced representation of f. Hence v ¢ O*(h) exists such that (g,ﬁ) = (vug,vh).
Consequently

v(a) = u;(a) - () = ug(a) S ez (4.4)
is well defined independent of the choice of f, g, and h and is called the
multiplicity of v at a. The map D(h) *

> Z defined by v > u(a) is a homomorphism:
If \)j < O(h) and P € Z, then

(pv; + v (a) = pv, (@) + v, (@) 0(a) = 0. (4.5)

The divisor V is non-negative if and only if v(a) = 0 for all a « D(h). The divisor
V is the zero divisor if and only if v(a) = 0 for all a < D(h). Therefore we can

identify a divisor v with its maltiplicity function a -+ v(a) and in fact this is one

way of defining divisors on complex manifolds.



638 W. STOLL

Let f be a meromorphic function on D(h). Take a € ]Pl. If f $ a, the a-divisor

u; is defined. Then u?(a) is called the a-multiplicity of f at a. If f ¥ 0, the

o

divisor Mg = ug - Mg is defined and uf(a) is said to be the multiplicity of f at a.

The function f ¥ 0 is holomorphic if and only if uf(a) 2 0 for all a ¢ D(h), and f is
holomorphic and without zeros if and only if uf(a) = 0 for all & ¢ D(h). Also

Ul/f(ﬂ) = —uf(a). If f1 £ 0 and f2 % 0 are meromorphic functions on ID(h) then

u (@) = u_ (a) + . (). (4.6)
£15 £ £

The map XK, (h) ~ Z defined by f + uf(a) is a homomorphism.

Let Vv be a divisor on D(k). The closure in ID(h) of the set of all z ¢ ID(k) with
v(z) ¥ 0 is called the support of V and denoted by supp V. If V = 0 then supp V = §.
If v * 0, then the support of V is an analytic subset of pure dimension n - 1 of
D(h). Let R(supp V) be the set of regular points of supp V. Then the function V is
constant on the connectivity components of R(supp V). If v 2 0, then

supp vV = {2 ¢ D(h) | v(z) > 0}.

Let f be a meromorphic function on D(h) with indeterminacy If. Take a ¢ P, .
Assume that f $ a. Then
a
supp Mg = I u {z « D(k) - I, | £(z) = a}. (4.7

If a = 0, then supp uf = supp ”2 U supp uc;.

+
Take p ¢ N and £ ¢ RP. Let ¢ : D(c) >~ D(h) be a holomorphic map. Take a
divisor v on D(k) such that ¢(ID(c)) ¢ supp V. Let f be a meromorphic function on

D(k) such that v = uf. Then f o ¢ # 0 is a meromorphic function on D(r). The

pullback divisor

*(v) = 4.
*(v) Heop (4.8)
is well defined and independent of the choice of f. If v 2 0, then ¢*(v) =2 0. If

p. ¢ Z and v, are divisors on D(h) with ¢(D(rc)) é supp \)j for j = 1, 2, then
J J
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#(D(r)) ¢ supp(p v, + p,V,) and

O (pv; + PyVy) = py9*(V)) + pyd*(v,). (4.9)

For 0 f % ¢ e an injective linear map 9’; : € > € is defined by R’z(u) = uz for
all u e € If 04 2z eD{r> and 0 < r < h, a largest number to(t) > 1 exists such
that 2l(m(t0(r))) c D(k). Let Vv be a divisor on D(h). Take 2z ¢ D<r>, then v is
said to be restrictable to %, if and only if Zz(m(to(r))) ¢ supp v. Let R\)(r) be
the set of all z 'e D<r> such that V is not restrictable to %. Then R\)(r) is a thin

real analytic subset of D<r>. For % e D<r> - R\)(t)’ the pullback divisor

*
viz] = Jl,z(\)) is defined. If u ¢ di(to(t)), abbreviate v[z,u] = v[zl(u). For

z e Dr> - [\)(r) and 0 < t < to(t) define the counting function of v in the

direction # as the finite sum

nv[z,t] = ¥ viz,u]. (4.10)
uebD[t]

The function t -~ n\)[z,t] is semi-continuous from the right and is of bounded

variation on each compact subinterval of IR[O,tO) . There is a thin analytic cone C\)

with vertex 0 in € such that

lim n\)[z,t] = n\)[O,t] = v(0) (4.11)
0<t~>0

for all 0 % z ¢ D(h) - C\). Here D<tr> n C\) is a thin real analytic subset of ID<r>.
If 0 ¢ A e]D(tO(t)) and £z ¢ D<r> - R\)(r), then Az « D<|A|r> - RV(I)\|1') and

n [Az,t] = nv[z,lklt]. (4.12)

If v 2 0, the function t — nv[z,t] is non-negative and increases.
If \)j are divisors on D(h) restrictable to z ¢ D<r>, and if p. ¢ Z for
J

j=1, 2, then pl\)1 + p2\)2 is restrictable to % and
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[z,el=7p

. 4.13
lnvltz,tj + pzn\)z[z,t] ( )

n
PPV,

Let f $ 0 be a meromorphic function on D(h) such that v = pf. Take

z ¢ D<r> - Rv(r). Then v[(z] = Heog - For 0 < q <r < to(r) the Jensen formula and
F3

the definition of the valence function for V[z] imply

J
D> D>

r
. dt
Nppy(ma) =\ tegleetgle - tegleeg s, - Sq nfeel 8L

The function % - Nv[z](r,q) is continuous on D<r> - C,» hence measurable on D<r>.

Also

Nv[z](er,r)
log ©
implies that nv[z,r] is a measurable function of z on D(r). By (2.6) Nv[z](er,r) is

- nv[Z,r] for 1 <6 »1 (4.15)

integrable over D<r> if r < Or < to(r). If v 2 0 then

to(r)

Nv[z](er’r)

for 1 <8 < (4.16)

nv[z,r] - log © T

Hence nv[Z,r] is integrable over D<r>. Since every divisor is the difference of two
non-negative divisors, nv[z,r] is integrable over D(k) for all v < D(h). The

counting function nv(r) of V is defined by

)

n,(r) = ) n l2,1]2 (2). (4.17)
2eD<r>
Then
r
= \ r 3
nv(tt) ) nsz,t]Qn(z,. (4.18)
2cID<r>

If 0 <q<rc< to(r), (2.6) implies
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N (rr,qr) = S Ny 5900, () (4.19)
2eID<r>

T r
dt _ dt
 Coamafam=0 aenE.
zeD<r> d

If pj € Z and vj € A(k) for j = 1, 2, then

n (r) = p,n_ (r) + p.n_ (r). (4.20)
pl\)1+p2\)2 1 \)1 2 vz

If v 2 0, then nv(r) > 0 and nv(tr) increases in t.

+
PROPOSITION 4.1. Take h ¢ R®. Let v be a divisor on D(#) such that

supp V n D<th> = @ for all t € R[O,1). Then v is the zero divisor.
PROOF. W.l.o.g. we can assume that v 2 0. Then O * supp V. If 0 <r <1,

then Virh] = 0. Hence n\)[rh,t] =0 for 0 <t < 1. By (4.17) we have nv(rh) = 0 for

all 0 <r < 1. Since O § supp Vv, we are permitted to take q = 0 in (4.19) and

obtain Nv(rh,O) =0 for all 0 < r < 1.

Assume that there exists £, € supp V such that r = lzol > 0. Then r < h. Take

1 < p < q such that qr < h and such that uz }: supp v if p < |u[ < q. An open

connected neighborhood U of z_ in D<r> exists such that uz § supp V for all u ¢ C

0

with p < |u] € q and 2 ¢ U. Rouche's theorem implies
] = >
n\)[z,t_l nv[zo,t] > 1

for all 2 € U and t € R[p,q]. Hence n\)(tr) >0 for p £t < q, which implies

N\)(qr,O) >0 by (4.19). A number s ¢ R(0,1) exists such that qr < sh. Then
0 <N,(qr,0) <N (sh,0) = 0

which is a contradiction. Hence % ¢ supp vV at most if a coordinate of % is zero.
Since 0 & supp V we conclude supp V = #; q.e.d.
By the same procedures as in Lemma 10.4 and Lemma 10.5 of [ 2], the following

result can be proved:
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+ +
PROPOSITION 4.2. Take b ¢ R™ and r ¢ R*(h). Let v 4 0 be a divisor on D(h).

Then A = supp V is an analytic subset of pure dimension n - 1 in D(h). Define

A, =4 - {0}, Let AO be the set of all %z € A, such that the restriction

P A, +]Pn_1 is locally biholomorphic. Then Ao is either empty or a complex

manifold of dimension n - 1. The complement A, - A0 is analytic in A,. Also

A0 n A(r) is either empty or an (n - 1)-dimensional real analytic manifold which

can be oriented such that En defines a positive measure on AO n A(r). We have

nv(r) = g vén + v(0). (4.21)

a%na(r)

+
Take b ¢ R® and let v be a divisor on D(h). Take p ¢ N[1,n) and define

P=n-p. Take T € T(p,n). Then T ¢ E(;,n). Take any % € ]D(‘n_?(h)). Then
T, :]D(TTT(h)) > D(h) is an injective holomorphic map. We say that v is

restrictable to %z by T if
Tz(m(”'[(h))) ¢ supp v. (4.22)

Let R\)(‘r) be the set of all z ¢ ]D(ﬂ;(h)) such that v is not restrictable to z by T.

If %z ¢ ]D('rr;(h)) - R\)(T)’ the pullback divisor

*
vit,z] = rz(v) (4.23)

exists.
+ +
PROPOSITION 4.3. Take r ¢ R'(b) and n ¢ K°(h). Assume that g = m(r) = m~(n).
T

Then

Nv(‘"") = S Nv[r,z]("r(’)’"r(“)m;(’) . (4.24)
zeD<p>

PROOF. A meromorphic function f $ 0 exists on D(k) such that uf = V. By (2.22)

we have
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Nv(t,q)= S longIQn— S log|f|9n= S ( S loglfo’r;lﬂp)ﬂs(z)

<> D<y> zeD<p> ]D('ITT(t)>
- ( § 1ogle oTl|Qp)Q;(z) - Nyrr, 01 (T (8T ()0 C0)
zeID<p> ]D<1r1_(q) > zeDD<p>

If ‘lTT(ll) = qTTT(t) with 0 < q < 1, then (4.19) implies

1
dt
Nt 21 (M) amp (o)) = Sq fyrr,z3 (R (4.25)

For % € "T(h) define

nv,_[(n,x) = S n\)[‘r,z](x)QS' (4.26)
zeD<p>
We have
1 dt
N,(r,n) = Sq n, #tm(r) 5= (4.27)

provided W?(t) = Tr;(q) = p and nT(q) = qTTT(l') with 0 < q < 1.

If ?O(ID(‘N?(II))) ¢ supp v, we are permitted to use q = 0
1 dt
N (r,a) =So “v,r(’”t"r(’)) - - (4.28)

~*
If we abbreviate U = TO(\)), then we have Nv(r,q) = N\’(r,O) - Nu(p,O) which leads us

to a generalization of formula 4.2.3 by Ronkin [1]

1
_ dt
Nv(t’o) Nu(p,o) = SO nv’T(p,tnT(t)) K (4.29)

Take p = 1 and identify T : {1} » N[1,n] with T(l) ¢ N[1,n]. Then nT(r) =

is the T°© coordinate and 9, = qr.- Hence

1 T
dt T dt
Sq n\),r("’t"r(r)) e =S nv’_r(}!,t) < - (4.30)
q
T

If v = (rl,...,rn) and g = (rl""’r‘r-l’q‘r’r‘wl""’rn)’ then
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r dt
N, (r,m) =S o, 0 (4.31)
g
where p = (rl""’rT—l’rT+1""’rn) and
n\),r(p’t) = S nv[T’z](t)Qn_l(z) (4.32)
zeID<p>
n (ty = L vlT,2,ul. (4.33)
viT, 2] ueD[t]

If 0 < g <r < h are arbitrarily picked, we can represent Nv(r,Q) as an integral

sum. Define

£ = (ql""’qT’rT+l""’rn) (4.34)
go= (ql,...,qT_l,rT+1,...,rn). (4.35)
Then ro = r and ro= 4. Also ﬂ_?(r_c) =5 = ﬂ?(rr—l)' Hence
.
- dc
N\)(rt-l’rr) =) nv,r(p'r’t) t (4.36)
ar
By addition
r
n g'r dat
Nm = T ) o, (Lo o (4.37)
=1 qp

5. THE SPHERICAL IMAGE AND THE CHARACTERISTIC.

+
First let us consider the l-dimensional case. Take b ¢ IR. Let V be a complex

vector space of dimension m + 1 with a hermitian product. Let w be the associated
Fubini-Study form on P(V). Take a meromorphic map f : D(b) » P(V). Since ID(b)
has dimension 1, the map f is holomorphic. The spherical image of f is defined by

o
Af(t) = 3 f*(w) V t e R[O,b). (5.1)
D(t)
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The function Af increases and is non-negative. Also Af(t) > 0 if and only if f is

not constant and 0 <t <b., If 0 < q < r <b, the characteristic is given by
r
T = a0 . (5.2)
f Jq £ t

The identity (5.2) is easily derived from the definition (3.28) in applying Stokes

Theorem twice.

+
Take h ¢ R®. Let f : D(h) » P(V) be a meromorphic map. Let If be the

indeterminacy of f. Let u : D(h) > V be a reduced representation. If M is a
connected complex manifold and if ¢ : M > D(h) is a holomorphic map such that

o) ¢ I

£ then f° ¢ is a meromorphic function on M, and # o ¢ is a representation

which may not be reduced. 1In order to counterbalance this effect, we have to

introduce an indeterminacy multiplicity lf(a) for each a ¢ D(h). There is an integer

Vv > 0 and for each integer j > Vv a homogeneous vector polynomial uj : @ > € of

degree j such that v, % 0 and such that

u(z) = L u,(z - a) (5.3)
j=v 7

for all z in an open neighborhood U of a in D(h). Define 1f(a) = V. Obviously

If(a) > 0 if and only if a ¢ I I1f G # 0 is an open, connected subset of €, if

£

$ : G > D(h) is holomorphic such that ¢(G) i If, then o ¢ $ 0 and uuoq)(x) > 1f(¢)(x)).

+
Take r ¢ R*(h) and z ¢ D<r>. The meromorphic map f is said to be restrictable

to z if and only if ’Lz(]D(tO(t))) i If. The set Rf(t) of all % ¢ D<r> such that f is

not restrictable to %, is a thin real analytic subset of D<r>. For % ¢ D<r> - Rf(t),

a meromorphic map
flz]l = £ o!&z :]D(to(r)) > (V) (5.4)

is defined. For 0 < t < to(r) the spherical image of f in the direction z is

defined by
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Af[z,t] = Af[z](t) + lf(O) = S flzl*(w) + 1f(0) > 0. (5.5)
D(t)

If O * ut € ]D(to(t)), then uz ¢ D<|u|t> - Rf(lulr) and
Af[uz,t] = Af[z,|u|t]. (5.6)

The function t > Af[z,t] increases. For 0 < q < r < to(t) define the characteristic

f f in the direction % by

r
r _ dt
Tf[z,r,q] = Tf[z](r’q) + If(O) log; = Sq Af[z,t] < 20 (5.7)

Let u : D(h) + V be a reduced representation of f. For z ¢ D<{r> - Rf(t) the

vector function u o 9,2 * 0 is a representation of f[z] on D(to(t)). Let quJL be the

z

divisor of m o 2; on €. Define the divisor uu[z] 2 0 on ]D(to(t)) by

!
o

Hyog (W 2 if 0 % u € D(ty(r))
w,lz,ul = * (5.8)
“nolz(o) - 10 20 ifu=o0.

I£ 0% ue D(ty(r)), then y [z,ul > 0 if and only if & (u) = uz ¢ I,. Ifu=0,

then uu[z,u] >0 if in (5.3) with a = 0 we have n\)(z) = 0. Since dim If <n -2 and

v $ 0, we see that My 20 for almost all % e D<r> - R.(r). By (3.31) and (5.7)

we obtain

T,02,7,q] = S Logllu e 2 ||2, - g logllue g lie, - N, (). (5.9
D<r> Dg> v

Since Nu (2] = 0 for almost all z in D<r>, the function Tf[z,r,q] is integrable over
u

D<r> and (2.6), (3.27) and (5.9) imply

T (rr,qm) = S T,[2,7,q10_(2). (5.10)
zeD<>



VALUE DISTRIBUTION ON POLYDISCS 647

If 2 ¢ D<r> - Rf(r) and if 0 <t < Ot < to(t), then

Tf[z,et,t]

Af[z,t] < Tog ©

- Af[l,t] for 6 - 1. (5.11)

Therefore Af[z,t] is integrable over D<r>. The spherical image of f is defined by

Af(t) = S Af[z,llﬂn. (5.12)
2eID<r>
The identity (5.6) implies
Af(tr) = S Af[z,tmn for 0 <t < co(r). (5.13)
z2eDD<r>

From (5.7), (5.10) and (5.13) we obtain
r dt
Tf(rr,qr) = Sq Af(tr) i (5.14)

+
If 0 < q <r <® and x € R define

0 if x2r
L(x,r,q) = lc;g+£ - 1og+ i=4 log I s q<x<r (5.15)
X X X
r .
log ; if 0 <x < gq
+ ~
PROPOSITION 5.1. If r e R(h) and 0 < q < r < to(r), then
= *
Af(t) S fx(w) A ﬁn + lf(O) (5.16)
A(r)
T(rea) = (1 1= FR(w) A E (0) log & (
rr,qr) = —,1,q w) A + 1_(0) log — . 5.17)
f > ||t n f g q

zeA(r)

PROOF. If z ¢ D<r> - Rf(t), then

2% (W) = (£ 08 )%w) = L (£4(w)).
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Therefore Lemma 2.1 implies

S (S flzl*(w) + lf(O)) Qn(z)
D

z2eID<r>

Ag(n)

[}

S S JL:(f*(w))Qn(z) +1,00) = S £XW) AL+ 1.(0).
zeD<r> D A(r)

If z ¢ A(to(r)r), then |z| = u(z)r with 0 < u(z) < to(r). Moreover

2]} = w@)||r]]. 1£0 <t < to(¥) then 2 ¢ A(tr) if and only if 0 < u(z) < t.

Define X(x,t) = 1 if q < x <t < r and X(x,t) = 0 if q <t < x < r. Then

r
T (rr,qr) = | ( ( owong + xf(0)> £
94 M(er)

t dt r
S S x(u(z), ) f*(w) A En)_t_ + Af(qr) log 1
4 M (rr)-A(qr)

1]
=

r
0 x,0) & £x@) a5 + agler) Log
ACrr)-A(gr) ¢

r r r
—_—— f% L ogx
log " £x(w) A gn + Q log q £x(w) A gn + 1f(0) log q

(=) J
A(rr)-A(qr) A(qr)
_ xr
= S L(u(®),r,q) f*(w) A En + lf(O) log . q.e.d.
Alre)

Take a € P(V*) and assume that f is not linearly degenerate for a. Take

+
r e IRn(h) and #z ¢ D<r> - Rf(r). If u; is restrictable to %, then

1
Were(Tsa) = S 8 Al € (5.18)
D<r> Hf ° z° a“
is defined for 0 < r < to(r)_ If 0 $ u ¢ C with lu]t < to(r)’ then
mf[ui](r’a) = mf[z](|u|r,a). (5.19)

Also (2.6) implies
1 ~ 1
m(r,a) = € log 0 = 5 S log ————— Q.9 (2)

o n D) 1
D<r> l£.all z2<D<r> D1 ll£ o Lo all "
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mf(r,a) = S mf[l](l,a)ﬂn(z) (5.20)
ze D<r>

mf(rt,a) = g mf[z](r,a)(ln(z). (5.21)
zeID<r>

Now, we will slice the characteristic parallel to the coordinate planes. Here
we encounter the difficulty, that the pullback of a reduced representation of a
meromorphic map may not be a reduced representation anymore. We will show that the
problem does not occur for "almost all slices'. Some preparations are needed.
For the technical apparatus we refer to Andreotti-Stoll [11] §1.

+ +
LEMMA 5.2. Take b ¢ R® and r ¢ R%(h). Let A be an almost thin subset of D(h).

Then A n D<r> has measure zero on D<r>.

PROOF. By definition there is a sequence {A\\}\)e of thin subsets of D(h) such

N

that A =
V

=S}

A\). For each p ¢ A\) there exists an open neighborhood U\)(P) of p in
1

D(k) and analytic subset Bv(p) of U\)(p) such that A\) n U\)(p) c B\)(p) and such that

dim B (p) < n. Hence Bv(p) n D<r> has measure zero on ID{r>. Consequently,

\YJ
A\) n Uv(p) n D<r> has measure zero on D{r>. A countable union of these neighborhoods
U\)(p) covers Av. Hence A\) n D<{r> has measure zero on D<{r> for each v ¢ M.

Therefore A n D<r> has measure zero on D<r>; q.e.d.

+
Take b ¢ R®. Let f : D(h) > P(V) be a meromorphic map. Let u : D(h) > V be a

reduced representation of f. Take p ¢ N[l,n). Then 5 =n - p e N[1l,n). Take

T ¢ @(p,n). Then T ¢ &(p,n). We have the surjective projection

M D(h) —>ID(1T,?(h)). (5.22)

For z ¢ ]D('rr;(h)) we have an injective holomorphic map

T_ : D(m_(h)) - D(h) (5.23)
such that T

T, DO () > Tr%l(z) (5.24)
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is biholomorphic. Define

R(D) = (¢ e D)) | 1;'(1p) = D(m (@)} (5.25)

5.(0 = {x e D(r=(1) | dim T;'(1p) = p - 1} (5.26)

Then Rf(r) c Sf('r). If 2 ¢ D(n;(h)) - Rf(‘r), the meromorphic map f restricts to a

meromorphic map

flt,2] = £ °T, :]D(TIT(h)) >1P(V). (5.27)

If 2z ¢ ]D(TI’%(I‘I)) - Sf('c), the reduced representation u : D(h) > V restricts to a

reduced representation mw e T, :]D(‘ITT(h)) +> V of flt1,2]. By (5.24) we have

5.(0) = {x e D(m=(h)) | dim I, 0 1='(#) > p - 1}

f

LEMMA 5.3. Sf(‘r) is almost thin in])(‘lT?(h)).

PROOF. By [1] Theorem 1.14 E = {x e I | rank, m~|I_ < p - 1} is analytic in I

and by (11 Lemma 1.30 E' = ﬂ%'(E) is almost thin. Take z ¢ Sf(T). Then

xeI_n 'rr%l(z) exists such that dimx I, n ﬂ%l(;) 2 p - 1. An open, connected

£ f

neighborhood U of x in D(h) exists such that If nus= X1 U .oo U Xr where each Xj is

a branch of If n U with x € Xj for j =1, ..., r and where Xj is locally irreducible

at Xx. A branch N of If n Tr%l(z) n U exists with ¥ € N and dimx N2p - 1. Then

N ¢ Xj for some j. By [11 Lemma 1.7 we obtain

rankx TT_'F|If < rankx ﬂ{_-IXj = dim X

k|

SdinI -dimN<n-2-(p-1=5-L1

Therefore x ¢ E and z = ﬂ;(x) e E'. Hence Sf(‘r) c E' is almost thin; q.e.d.

-1
- dimx XJ. n m (2)

+ +
THEOREM 5.4. Take t ¢ IRn(h) and g € Rn(h). Assume that p = ‘rr_?(r) = ﬂ?(q). Then

Te(r,n) = S Tf[r,z](ﬂr(r)’"r(n)m;(z)‘ (5.28)
2eD<p>
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PROOF. Let u : D(h) + V be a reduced representation of f. Take

£ ¢ D<p> - Sf(T). Then f[T,z] exists and u o T, is a reduced representation of f.

Therefore

Tf[r,z]("'t(r) T (1) = S Log||w o T,”Qp - S log||w © T;”Qp-
D(‘ITT(I.')> l)<1rT(q) >
Now\2.22) impiies

§ tge promaas = § toglialln, - § togllelle, =t qeea.
DLp> D<r> <>

If NT(q) = q‘lT_l_(t) with 0 < q < 1, then (5.14) implies

1
= de 5.29
Tf[r,z]("r(r)’qﬂt(r)) -gq Af['r,z](t“‘r(r)) t ( )
Define
d
A (e (0)) = g Aepe,gy(em () & (5.30)
2eD<p>

Then we have )

T (r,m) =\ A, _(sem_(r) SE (5.31)
f a f,T T t

provided mx(r) = p = m>(q) and 7 (1) = qm (¥) with 0 < q < 1.

Take p = 1 and identify T ¢ €(l,n) with t(1) ¢ IN[1,n]. Then

d a _C° dt
5, Ag rtmem (e -gq A e & (5.32)
T

If r = (rl,...,rn) and g = (rl,...,rT_l,qT,rT_'_l,...,rn), then

I

T
_ dt
Tf(r,u) -S Af’T(p,t) T (5.33)
qT
where g = (rl,...,r_l__l,r_[_'_l,...,rn) and
dt
AfT(n,t) = S Af[T,z](t) . (5.34)

zeD<p>
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Aprr.gy(®) = S 0T, 21%(w) - (5.35)
DLt]

Take 0 < g < r < h and define rT and g as in (4.34) and (4.35). We obtain

T

T dt
Tf(r,q) =2 g Af,r(“T't) e (5.36)
=1 q_r

=]

Take a ¢ IP(V*) and assume that f is not linearly degenerate for a. Take
p € N[1,n). Then P=n-pe N[l,n). Take T ¢ &(p,n). Then T ¢ T(p,n). Take

+ +
B eR™ and r € ]Rn(h). Take % ¢ ]D(Tr':['(h)) - Sf(’[) such that u; is restrictable to =

by t. Then
1
= e e 5.37
mf[r,z](p’a) S & lgot., al| P ¢ )
D<p> z°
+
is defined for all p « ]RP(NT(h)). Then (2.22) implies
m(r,a) = \ My g, g (T (F), @052 (5.38)

zd])(;;(r) >

6. THE LEMMA OF THE LOGARITHMIC DERIVATIVE.

Take 0 < r < R<b < +wo, Let f $ 0 be a meromorphic function on D(b). By [9]

Lemma 2.1 (see also Hayman [12], Lemma 2.3) we have

S 1og+|f'/f[Q1 < log+mf(R,0) + log+mf(R,°°) + 3 10g+nf(R,0) (6.1)
D<r>

r
R-r1

+ 3 log+nf(R,°°) + log+ 7+ 10g+ % + 1og+ + 8 log 2.

(R - 1)

+
We keep the notation of the last three sections. Take h ¢ R® and r and R in

+
RO(h). Take T € WN[1,n] and assume that

0 <r-= Tr_[(r) < nT(R) =R <b n?(r) =p = TT?(R). (6.2)
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Let f # 0 be a meromorphic function on D(h). Abbreviate

0 o w vf
Vo= Uf = f = _az . (6.3)

THEOREM 6.1. Under these assumptions we have

+ ' + + +
S log |f1_/f|Qn < log mf(R,O) + log mf(R,°°) + 3 log nv’T(p,R) (6.4)
D<r>

+3 loghn _(#,R) + log' + log' % + log' o + 16 log 2.

u, T 2

(R-1)
PROOF. For #z e D<p> - Rf(r) we have f[1,2] = f °T,- The chain rule implies

flt,z]' = f_[ °T,. Now (2.22), (4.26) and (5.38) imply

1
S 1og+| f_’._/fIQn

D<r>
D<p> ‘\D<r>

+ + +
< g log mf[_':,z:'(R,O)Qn_1 + S log mf[T,z](R’ )Qn—l + 3 S log n\)[r,z](R)Qn-l
D> <> Dip>

R
(R - 1)

r
R-r1

+ + + 1 +
+ 3 S log n]bl[_r’%](R)Qn_1 + log + log =t log + 8 log 2

D<p>

2

+ + +
< log S mf[r,zJ(R’O)Qn-l + log S mf[r,z](R’m)Qn—l + 3 log S nv[r,z](R)Qn—l
D<p> D<p> D<p>

R
(R - 1)

r
R-r

+ logt % + logt + 16 log 2

+ +
+ 3 log g nu[T,ZJ(R)Qn—l + log 2

<p>
L+ + - + +
= log mf(R,O) + log mf(R, ) + 3 log nv’T(p,R) + 3 log nu’T(p,R)

r
R-r

+
+ log + log" L+ log" + 16 log 2 g.e.d.

(R - r)2

THEOREM 6.2. If 0 < g < r, we obtain under the same assumptions

1
§ 1og"le/ela, < 8 10g"T, @) + 4 10g™n (1,00 + 4 loghmy(a ) (6.5)
o<lr>

+ 9 log +210g+%+24 log 2.

2R
R-1r
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PROOF.

Define

W, STOLL

Define €= (R + r)/2R < 1.

r= (rl,...,rT_l,@R,rT+1,...,rn).

Then r KGR < Rand OR - r = (R - 1r)/2.

T < = s = < = ~ = ~ 3 = ~ = .
Then r < r < R and nT(r) r < ‘rrT(r) OR ‘ITT(R) R and n_[(r) TTT(t) nT(R) B
Since Nv(f,q) 2 0, the First Main Theorem implies
w.(r,0) < T (r,0) + m(a,0) < Te(R,1) + n.(n,0)
+ A + +
log mf(r,O) < log Tf(R,q) + log mf(q,O) + log 2 (6.6)
+ A + +
log mf(t,w) < log Tf(R,q) + log mf(q,°°) + log 2. (6.7)
By (4.31) we have
R a (R dt
M) = N & N ED N ED = ) o L0 0 g
r OR
R - OR R-r
2 nv’T(p,OR) - n\,’T(p,@R) 7R
+ + + 2R + 2R
log nv’T(p,OR) < log Nv(R,q) + log e log (Tf(R,q) + mf(q,O)) + log - 1
or
+ + + 2R
log nv’T(p,OR) < log Tf(R,Il) + log mf(q,O) + log -1t log 2 (6.8)
log‘,-nl‘l T(p,OR) < log+Tf(R,q) + log+mf(q,°°) + log RZ_RI_ + log 2. (6.9)
Also we have ’
+___OR + _©R + R +1 6.10
logm ————— < log G- T log o -t los R ( )
©R - 1)
+R+1T + _2R +1 2R +1
= log R—_;+log R_r+log RleogR_r+log -
+__r 2R 6.11
log g-psloeg_7- ( )

Now, Theorem 6.1 for r

and r and (6.6)-(6.11) imply (6.5), q.e.d.
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+ + +
THEOREM 6.3. Take b ¢ R". Take r ¢ R°(h) and g ¢ R°(h) with 0 < g < r < b,

Take 1 <€ ¢ Rand 0 < q ¢ R such that 0 < q*h < g <r <Or <bh. Let f $0bea

' of

meromorphic function on D(h). Take T ¢ N[1,n]. Define f’t =5, Then
T

' +
\ log"|£ /]2 < 8 1og'T (Or,m) + 4 log'm (a,0) + 4 log'm.(a,®)  (6.12)
D>

20
0 -1

1

+9 log +21og+qT+24 log 2.
T

PROOF. Theorem 6.2 can be applied with r = T and R = OrT and

R = (rl,.. .,rT_l,R,r_H_l,.. .,rn) .

Then R < Or and Tf(R,q) < Tf(Gt,q). Also 2R/(R - r) = 20/(© - 1) and 1/r < l/qu.

Consequently (6.5) implies (6.12); q.e.d.

Theorem 6.3 is a preliminary version of the Lemma of the logarithmic derivative.
For r to approach h, we have to eliminate ©. If we restrict ourself to the approach
rh > b with 1 > r + 1 this could be accomplished along classical lines and would
result in the usual "exceptional intervals'. Rubel and Henson want to consider the
approach b > r >~ h, 1In order to satisfy both cases, we introduce a more general

method resulting in "exceptional sets'" of dimensions between 1 and n.

+
Take b ¢ R® and p € Z[0,n). Define § :]Rn(h) +R(0,1] by
+
8(x) = Min{l - (xj/bj) | 3=1,...,n} (6.13)

for x ¢ ]Rn(h). Let B be a real, pure p-dimensional, oriented submanifold of class Ck
+

in R” with k > 1. Denote by Hp the differential geometric measure on B. It equals
the p-dimensional Hausdorff measure. For x ¢ B, let Tx be the real tangent space and

Nx the normal space of B at x. Then we have the orthogonal decomposition

R = Tx b Nx' Let Py * Nx be the projection. The manifold B is said to be an

approach base if the following conditions are satisfied.
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(aY The manifold B has finite volume uB(B) < ™,
(b) If x ¢ B, then O < x < b, that is, B < R°(h).
+
() If xcBandt eRand x+ t(h - x) ¢ B, then t = 0.

(d) 1If p > 0, there is a number Y > O such that for each x ¢ B we have
||px(h -x) = v.

(e) If p >0, then

S log(1/8) duB < o,
B

(6.14)

(6.15)

The closure B is compact and contained in R'[h]. If b ¢ B, then h = b + (b - B) ¢ B

+
which contradicts (c). Hence h & B.

Define the associated approach cone by

M= {x+t(h-x)| xeBandt <R(O,1)}.

(6.16)

+
If x ¢ B, then x <hand x <x +t(h - x) <h for 0 <t < 1. Hence M < R"(h).

EXAMPLE 1. Take

n
B=3xe]Rn(h)l T x/b.=1E
+ je1 3
n
M= ix € Rp(h) | T x./b, > ls.
+ j=1

Simple calculations show that the conditions (a)-(e) are satisfied. Hence

approach base and M the associated approach cone. Observe that M u {h} is

neighborhood of h in ;é(h) u {n}.

EXAMPLE 2. Take B = {0}. Then M= {th | 0 <t < 1}.

While the geometric meaning of the conditions (a)-(d) is obvious, the
condition (e) is more difficult to analyze. For this purpose we offer the
considerations:

LEMMA 6.4. Let B be a real, pure p-dimensional, oriented submanifold

B is an

an open

following

of class
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Ck in R® with k = 1, with p 2 1 and with uB(B) < ©, For each A ¢ R(0,1] define

B() = B - R'((1 - ).
+
Assume there are constants ¢ > 0 and q > 0 such that LJB(B(A)) < e for all

A e R(0,1]. Then (6.15) is satisfied.

PROOF. Observe that B(l) = B and B()) = {x ¢ B | 8(x) < A}. For m € N we have

A(m) = B(1/m) - B(1/(m+ 1)) = {x ¢ B | 1/(m + 1) < &(x) < 1/m}
dm = UB(B(l/m)) < em ¢
a = uB(A(m)) = du1 - dm+1'

This yields the estimate

S log(1/8) duy <
B

Fs

[ee]
log(m + 1) dp, = T a_ log(m + 1)
B m
1 m=1
A
m

o]

r- r-1
1im< T d log(m + 1) - T d 1 log(m + 1))
00 \ m=1 m=1

[
=

r
1m( T d log(l + 1/m) - dr log(r + 1))

o \m=1 ™
o« o 1
<c ¥ m? log(l + 1/m) <c ¥ m <o q.e.d.
m=1 m=1

n
A map 3 :1R><]Rn->1Ris defined by y(t,x) = x + t(h - x) for t ¢ R and x ¢ R .
Obviously 3(0,x) = x and y(l,%x) = h. If 0 <s <t <1 then x < y(t,x) <h. By

definition M = y(R(0,1) x B).
LEMMA 6.5. The map g : (R - {1}) x B » R is injective.

PROOF. Assume that x and X exist in B and 1 $teRand 14t ¢ R such that

y(t,x) = y(;,;). Then t(h - x) = ¥ - x + t(h - %¥). Hence

t -t
1 -t

(h—x)=x+T—l—-E—(§-x+§(h—;)-E(h-x))=;<§.

Hence t = t and x = %; q.e.d.
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LEMMA 6.6. The map y : R(0,1) X B >~ M is a homeomorphism.

PROOF. By definition the map is surjective, hence by Lemma 6.5 the map
g : R(0,1) X B > M is bijective. Trivially the map is continuous. It remains to be
shown that y is open. Let U be an open subset of R(0,1) x B. Take (t,x) € U.

Assume that y(t,%) is not an interior point of y(U) in M. A sequence {(t\),xv) }\)EN
exists in R(0,1) X B - U such that g(tv,xv) + g(t,x) for v > @, By going to a
subsequence we can assume that t, > t and X, + % for v > ® with

(£.%) < R(0,1] x B - U. Then y(t,%) = 5(t,¥). If £ =1, then b = g(1,%) = y(t,x) cM

which is wrong. Therefore E% 1 and (E,;) = (t,%) e U which is impossible.

Therefore y(U) is open in M; q.e.d.
Let V 4 @ be an open, connected subset of RP. Let U4 ¢ be an open subset of B

and let 8 : V > U be an orientation preserving diffeomorphism of class Cl. Let

5, be the partial derivatives of g. Define w : R X V >R by w(t,u) = y(t,g(u)) for
J

t e Rand u € V. Then

mt(t,u) = h - g(u) w (t,®) = (1-0)s (). (6.17)

3 h|

mt(t,u) Amvl(t,u) A Amvp(t,u) = (1 - )P(n - g(w)) AQVI(u) Aeeng (). (6.18)
P

Th t
e vectors gvl(u), s gvp(u) span Tg(u)' By (d), we have b - g(u) ¢ Tg(n)'

Therefore

(B-sm) A (W A...rg (1) 1F0. (6.19)
1 P

In fact, if x = g(u), then

(B - 8(m) A gvl(u) S WO
Ax) = P (6.20)
|19v1(u) Aeoag (]
p

depends only on x and not on the parameterization g. Hence A : B >~ R is globally

defined.
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LEMMA 6.7. If x ¢ B, then "
0 <y < A(x) = ”px(h -0l < |lafl. (6.21)
PROOF. We have h - x = (b 3
Pl - %) + T a8, (u). Hence
j=1 k|
| = %) A =
gvl(u) ALio A gvp(u) I| = ”px(h - x| ”gvl(u) Ao A (u) Il
P
or A(x) = Ilpx(h - x)||. By (6.14) we have A(x) > y. Also
2 n
8" = flog® =017 <l - x> = £ @ - x)? < 7 62 = |
=1 3 J j=1 J

which implies A(x) < ||k||, q.e.d.

By (6.18) and (6.19) the map y : R(0,1) x B > R" is smooth. In conjunction with
Lemma 6.6 we have proved:

THEOREM 6.8. M is an embedded, oriented, differentiable manifold of pure

dimension p + 1 and of class C1 such that y : R(0,1) x B - M is an orientation

preserving diffeomorphism of class Cl.

Let My and uB be the differential geometric measures on M and B respectively.

In the situation (6.17)-(6.20) we have

du, = ||z

5 Aeo ABy | av, A ... A dv

v1 p 1

dy

(1 -0P)j@ -3 a gvl Aeio A gvp” dt A dv A L..oA dvp.

Hence globally
du, = (1 - t)PA(x) dt A 1T (6.22)

Now, Lemma 6.7 implies

Y [t
—— uB(B) < uM(M) <

0 < uB(B) < @, (6.23)

p+1

Here we are able to give another example where the conditions (a)-(d) imply

condition (e).
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+
PROPOSITION 6.9. Take b ¢ R®. Let A be a pure (n - 1)-dimensional, oriented

submanifold of class Ck in R* with k > 1. Assume that B = A n mﬂ(h) is relative
+
compact in A. Then uB(B) < «, Assume that there exists a number Y > 0 such that

(6.14) holds. Then (6.15) is satisfied. If also condition (c) holds, then B is an

approach base.

PROOF. Define Bj ={xeB | 8(x) =1 - (xj/bj)} for j =1, ..., n. Then

B = B1 U oo U Bn' Each 53 is a compact subset of A. Take a ¢ Eg with aj =b

Then there exists an orientation preserving diffeomorphism g : V + U of class Cl

where U is an open neighborhood of & in A and where V is an open neighborhood

of 0 in Rp—l and where 8(0) = a. Let V be the gradient. Abbreviate

]
3

ls. A ... a3 Il >0
V1 Vn-1

Vg.

i-1
G, = (-1)* det (Vg ,...,% ir1o oV

i-1’
Then (6.20) reads

(A °g)G

n
I_Z (bi - gi)GiI'
i=1

v

Assume that ng(O) = 0. Since A(x) Y >0 for all ¥ ¢ B, we have A(a) 2 y > 0 by

continuity. Also ng(O) = 0 implies Gi(O) = 0 for all i + j. Therefore
0 < A(a)G(0) = (b, - g.(0))G,.(0) = (b, - a,)G,(0) = 0.
(a)G(0) (J gJ())J() (J JJ)

This contradiction shows that ng(O) % 0. Therefore d(bj - xj) + 0 at a.
Consequently 1og(bj - xj) is locally integrable at a ¢ 55 if aj = bj. If aj 4 bj’
then aj < bj and log(bj - xj) is trivially locally integrable at a. Since E& is

compact, log(bj - Xj) is integrable over B,. Therefore

b.
log E——j}::— duB < oo
h| h

S log(1/8) dauy < T
B =1

q.e.d.

A S

If E is a measurable subset of M, then the set

Ex={t€]R(0,1)|x+t(h-x) ¢ E}
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is measurable for almost all x ¢ B. Let g : E >R be integrable over E.

theorem implies

S g du, = g ( ? g(t,0)(1 - )P dt) A(x) dpg(x).
E xeB \E(x)

Define

diy, (1) A(x) du,(x)
AM(E)=S = 1=S g 1dtc - 1°
8 - rP* ¢ - B - x||P*

re<E xeB \E(x)

Then 0 < [&(E) < o,

LEMMA 6.10. Define Y, = Min{|[[h - x|| | x ¢ B}. Then y, > 0. Define

- P - -p-1
v, = /vy Y, = yllB[7F7

Let E be a measurable set on M. Then

Y2 g ( S 1d-t c) dug(x) < A (B) <, S ( S 1d-t t) dig (%) -

xeB \E(x) xeB \E(x)

PROOF. Recall that 0 < y < A(x) < ||b - x]| < ||b]|. Hence

Y, = Y . 4(x) - < 1 S<l>p=Y1
BIP fa - <P e - <P \Yo

which with (6.25) implies (6.26); q.e.d.

For 0 < r < s < 1 define

Mlr,s] = yg(R[r,s] x B) M(r,s) = y(R(r,s) x B)

M(r,s] = y(R(r,s] x B) Mlr,s) = y(R[r,s) x B).

661

Fubini's

(6.24)

(6.25)

(6.26)

Then M = M(0,1) and M u {b} = M(0,1]. 1If £ < R(0,1) for j ¢ N and if t, > 1 for
b

j > >, then {M(tj’”}je]N is a base of open neighborhoods of b in M u {h}. 1If

0 <rs<s <1, then (6.26) implies

1 -

l -r
YZUB(B) log L

r
S < AM(M[r,sJ) < YluB(B) log 7

/\M(M[r,l)) = © /\M(M(O,s]) < oo,

(6.27)

(6.28)



662 W. STOLL

LEMMA 6.11. Define
Q= {y(t,x) | x eBand 0 <t <1-8x}. (6.29)

Then/\M(Q) <o, If x €eB, if 1 - 6(x) <t <1 and if r = B(t,x), then r ¢ M - Q and

o - £}l < 8G)|lp - x]|. (6.30)

PROOF. According to (6.26) we have
1-8(%) dt Q
— = < o,
o sy §5 0 T a0 - e o
xeB B
Also r = x + t(h - x) ¢ M- Q if and only if 0 < 1 - 8(x) <t < 1. If so, then
b -r=(l-t)(h - x) where (1 - t) < 8(x). Hence
b - =l = (1= o) lb - x|| <6G|b - x| qe.d.
Let g : M >R and h : M >R be functions. We say that g(r) < h(r) for most r in
M and write g(r) S h(r) on M if there exists a measurable subset E of M with AM(E) <

such that g(r) < h(r) for all r ¢ M - E.
LEMMA 6.12. Let g, h, k and £ be real valued functions on M. Then

hand h S kon M, then g 5 k on M.

eIA

(a) 1f g
(b) If g ShandO 5 konM, then gk 5 hk on M.

hand k $%on M, then g +k $h + 2.

oA

(¢c) 1f g
(d) If t; - R(0,1) and g(r) < h(r) for all r ¢ Mty,1), then g(r) < h(r).
(e) If g(r) > for r > h yith r « M and if a ¢ R and 0 < € < R then a % eg(r).

(f) 1f g(r) $ h(r), then lim inf g(r) < lim sup h(r).
M>roh M>r-h

PROOF. (a) to (e) are trivial. 1In the case (f), there exists a measurable

set E in M with AM(E) < ®» guch that g(r) < h(r) for all r ¢ M - E. Take a sequence
{t.}, with 0 < t, < 1 such that t, + 1 for j » ®. By (6.28), r, < M(t,,1) - E
jjeN 3 3 i y ( ), 5 € [ i )

exists. Then tj > h for j » « and g(rj) < h(r,). Therefore

3

lim inf g(r) < lim inf g(r.,) < lim inf h(r,) < lim sup h(r) q.e.d.
Mor-h jow J jooo i Mor-h
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+
LEMMA 6.13. Let g : R"(k) ~ R be an increasing function. Define

+
supl{g(r) | r ¢ R*(B)} < ». Then

w
]

g(r) >~ S for r + h with r € M.

PROOF. The function g(rh) of r ¢ R(0,1) increases. Therefore g(rh) + s for

r - ©. Obviously s < S. Take T < S. A point r, with 0 < ry < b exists such that

0

T < g(to). A number r, € R(0,1) exists such that £y < roh. Then

0

T < g(ro) < g(roh) < s. Hence S < s. We find that s = S and g(rh) ~ S forr > 1

if 0 < r < 1.

Again take T < S. A number Ty = rO(T) ¢ R(0,1) exists such that g(roh) > T,

Take r € M[ro,l). Then r = x + t(b - %) with T, <t <1 and x € B. Therefore

r=(1-t)x+th 2th?2 roh which implies T < g(roh) < g(r) < S for all r ¢ M[ro,l).

Hence g(r) >~ S for r > h if r € M; q.e.d.
In order to eliminate O we need the following well-known Lemma.

LEMMA 6.14. (Hayman [12 Lemma 2.4 p. 38) Take ty € R[0,1). Let

T :lR[to,l) + R be a continuous, increasing function. Assume that there is a

positive number ¢ > 0 such that T(t) 2 c for all t ¢ IR[to,l). Define

E = {r_ cRlty,1) | T(t + (—leT—'Gt)lE) > zT(c)}. (6.31)

Then E is open in ]R[to,l) with S (1/1 - t) dt < 2.
E

PROPOSITION 6.15. Define Q by (6.29). Let T : M >R be a continuous,
increasing function. Assume that there are constants c¢ > 0 and s ¢ R(0,1) such that

T(r) = ¢ for r ¢ M(s,1). Define T0 = Max(c,T) as a function on M. A continuous

function g : M +R" is defined by

(1 - t)c’ x)

nr) = y(t + eTO(r)

(6.32)

for all r ¢ M where (t,x) ¢ R(0,1) x B is uniquely determined by r = y(t,x). Then

+
r <p(r) <h for r ¢ M and p(r) ¢ ]Rn(h). Let O(r) be the largest number such that
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O(r)r < p(r) for r ¢ M. Then O(r) > 1.

W. STOLL

Define c, = log(8||h“2

0

1
20(r)
log =75 < log T(r) + 2 log ————
o -1 s - =l
for all r € M[s,1) - Q. In particular
1
20(r) <
log =~—— % log T(r) + 2 log
(€] -
-1 [E
on M. Define Y, = Min{[|b - x|| | x ¢ B} > 0 and

Y3 = “B(B)Y5p<2 + log 7 : s)'

Then there exists an open subset E of M with AM(E) <y

3

T(p(r)) < 2T(r) for all r « M - E.

In particular T(g(r)) $ 2T(r) on

PROOF. Trivially T

M.

r = y(t,x) with 0 <t <1 and x ¢« B. Hence

0<t<

v+ eT(r)

(1 -1t

0 2

<1

0 <r=y(t,x) < p(r) < y(t,x) < h.

/cs). Then

< @ guch that

0 is continuous and T, =2 ¢ on M. Take r ¢ M.

Then

(6.33)

(6.34)

(6.35)

(6.36)

+
Consequently, O(r) > 1 and p(r) € EP(h). Take r € M(s,1). Then r = x + t(bh - x)

with x ¢ B and s <t < 1. Also

(1

]

p(r) = x + (t +
For each j ¢ N[1,n] we have

0(r)r,
J

with equality for at least one j.

- t)c
eT(r) ) & -

(1 -t
<r, + ——Eiz;y—-

Since r,
J

_ (1 - ¢t)e
X) =r + ——EEI;S——
(bj - xj)

> 0 we obtain

(h - %.
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(1 -t)e b. - x,
o(r) = 1 + =228 yyy A1 (6.37)
eT(r) 1<j<n rj
We have b - r = (1 - t)(h - x). Hence |[[b - r|| = (1 - t)[|b - x|| and
& - =] b, - x,
o(r) = 1 + S~ Min -1— (6.38)

B - x|| eT(r) Isjsn 55

where r, = x, + t(b, - x,) 2= b. - x.). H
3 3 ( 5 J) s( 5 xJ) ence

O(r) <1+ -L-setl
se se

4
< se ° (6.39)

Also r, = (1 - t)x, +tb, < (1 - t)b, + tb, = b.. Hence
3 3 J ] 3J J

b. - x, b. X,
Min —4+—3L > min —J—b—3= 8(x)

1<jsn T 1<js<n 3
e - =l s (6.40)
O(r) 21 +~]I;°:—;T[ oT(1) (x). .

Now assume that r ¢ M[s,1) - Q. Then 1 > t 2 1 - 8(x) by (6.29). Consequently

lls -l

§(x) I -t-=

\2

s - x|

Since [|b - x|| < [[&]|, we obtain

Is - = o - el
> .
oo wl? O T @

O(r) 21 + (6.41)

Now (6.39) and (6.41) imply

8llnl|? (o)
<

L < 200
o) -1 sc ”h - r”2
or
20(r) ! Blls
0 < log 5(ry -1 < log T(r) + 2 log ———— + log

e~ =] sc

for all r e M[s,1) - Q, which proves (6.33). Now (6.28) and Lemma 6.11 prove (6.34).
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The open set E is defined by E = {r ¢ M | T(#(r)) > 2T(r)} u M[0,s). Then
T(p(r)) < 2T(r) for all r ¢ M - E. For ¥ ¢ B and t ¢ R(0,1) define
T, (t) = T(g(t,%)). Define

E(x) = {t e Rls,l) | Tx(t + %ﬁ%) > ZTx(t)} uRLO,s).
x

According to Lemma 6.14 we have

dt
S 1-1 < 2 + log
E(x)
Therefore Lemma 6.10 implies

1 -5s°

1-5s

[\M(E) < uB(B)Yap<2 + log >= Yq < q.e.d.

LEMMA 6.16. Let f be a non-constant meromorphic function on D(h). Then
Tf(rh,sh) >0 if 0 < s <r < 1.

PROOF. If f has a point of indeterminacy at O, then lf(O) > 0 and (5.17)
implies that Tf(rh,sh) > lf(O) log r/s > 0. Hence we can assume that f is
holomorphic at 0. If Tf(rh,sh) = 0 for some pair 0 < s < r <1, identity (5.14)
implies Af(th) =0 for s <t < r. Then (5.5) and (5.13) show that Af[z](t) = 0 for

almost all z ¢ D<h> and s < t < r. Hence f[2] is constant on D(t) and therefore on

D(1) for almost all z e D<h>. By continuity f[2] is comstant for all = ¢ D<h>. Let
£(z) = T Py(x)
A=0

be the development into homogeneous polynomials at 0. Then
- A
f(zz) = L Py (2)z
A=0

for all %z ¢ © and z € € sufficiently small. Because £(zz) is constant for z ¢ D<bD

and z ¢ D(1) we have PAlID<h> =0 if A > 0. Hence f = P0 is constant.

Contradiction! gq.e.d.

LEMMA 6.17. Let f be a non-constant meromorphic function on D(h). Take

+
g ¢ R%(h) and q > 0 with qh < g. Then there exist numbers ¢ > 0 and s ¢ R(0,1) such

that r > g and T(r,q) > c for all r ¢ M(s,1).
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PROOF. A number q € R(q,1) exists such that g < qoh < b. Take s eIR(qo,l).
By Lemma 6.16, c = Tf(sh,qoh) > 0. Take r € M(s,1). Then

r=x+t(h - x)

(1 - t)x + th with x ¢ B ands <t < 1. Hence r > sh > qoh >
and

T(r,q) = T(sh,n) > T(sh,qgh) = c >0 q.e.d.
Now, the Lemma of the logarithmic derivative follows easily, which constitutes

the main result of this paper.

+ +
THEOREM 6.18. Take b ¢ R and b I3 IRn(h) . Let f be a non-constant meromorphic

function on D(h). Let M be an approach cone. Take T ¢ N[1,n]. Then

1
S log+'%£-—/ f,Qn $ 17 log'T (r,m) + 19 log" ——— (6.42)
T

D> 1L

for r € M.

PROOF. Take q > O with qh < g. Then c¢c > 0 and s € R(0,1) exist such that

r >q and T(r,q) = ¢ for all r ¢ M[s,1). For T(r,q) definep : M > R" by (6.32) and

O(r) as the largest number such that
r <O0(r)r <p(r) <h forr e M.

Then (6.34) and (6.36) hold for T(r) = T(r,g). Also we have (6.12). Let c, be

3
positive constants. Take § < r < h. Then
+ ' + 20(r)
S log Ifr/flﬁn < 8 log Tf(O(r)r,q) + 9 log 8o -1 +ey
D<r>
+, 20(r)
< 8 log Tf(p(t),q) + 9 log T -1 + ¢
N 1
$ 8 log (ZTf(t,q)) + 9 log Tf(t,r[) + 18 log — + <,
I - £
< + + 1
S 17 log Tf(t,q) + 19 log ——
lle -«

where the constant is swallowed by log(l/||k - r||) (see Lemma 6.12e) q.e.d.

Now, it is possible to derive the defect relation along the lines of Vitter [ 5 ]

and Stoll [ 6 1].
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Naturally, Theorem 6.18 extends immediately to any differentiable operator

n
)
D= A, —
. oz,
J=1sz

where the Aj are bounded continuous functions. If we want Df/f to be meromorphic,
we have to take Aj as bounded holomorphic functions on D(h). We even could take Aj
unbounded, if we add a correction term on the right~hand side in (6.42). If the Aj
are bounded holomorphic functions on D(h), then Df/f is meromorphic. We have

[ 2 +
me/f(r,m) = S log /1 + |DE/f] Q < g log |[>f/f|Qn + log 2

<> <>

1
me/f(r,w) $ 17 1og+Tf(t,q) + 19n log+ Ii———_—T[
h-r

if the constant ¢y in the proof includes n log 2 and n log C where C is an upper

bound of the Aj.
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