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ABSTRACT. We compute the irrotational motion of two fluids with a horizontal plane

surface of separation, under gravity. The fluids are nonviscous and incompressible,

the upper one of finite depth with a free surface; they contain a line singularity or

a point singularity. We obtain the velocity potentials for each singularity located

in the upper or the lower fluid; if the upper depth tends to infinity, known results

are recovered.
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i. INTRODUCTION.

The reader of this paper should be familiar with Laplace’s equation as applied to

fluids. For the two dimensional case studied in Sections 3 and 4, elementary complex

variable theory is needed as far as the theory of residues. For the three dimensional

case treated in Sections 5 and 6, an elementary knowledge of spherical harmonies is

assumed. In brief, you need to know typical singular solutions of Laplace’s equation,

since they dominate the potential in the neighborhood of the singularities. To moti-

vate and better understand the integral representations of the potential assumed in
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(3.1), (3.2), (4.1), (4.2), (3.i), (5.2), and (0.i), (6.2), see Thorne ([i], pp. 708,

710, 711) and Rhodes-Robinson ([2], p. 320). For a brief history of the subject, see

Thorne, p. 715.

Some recent history is as follows. Many authors have investigated different types

of singularities that can be used in the one-fluid problem. Thorne [I] and Pdodes-

Robinson [2] gave surveys of the fundamental line and point singularities submerged in

a fluid of finite or infinite depth. The two-fluid problem was discussed by Gorgui

and Kassem [3], landal [4], and Chakrabarti [5J--the effect of surface tension being

included by the last two authors as well as in [2]. References for other cases are

mentioned in the Introduction of [3].

In this paper we shall discuss the basic line and point singularities when they

are submerged in one of two fluids. The upper fluid is on finite constant depth ’h’

with a free surface (FS); the lower fluid is of infinite depth. The time harmonic

singularities are described by harmonic potential functions with period --- which satis-

fy the boundary conditions at the surface of separation (SS); in fact it is more con-

-it
venient to use complex-valued potentials e the actual potential being the real

part. The potential must also satisfy limitinF conditions in the neighborhood of the

singularity: it should behave like a typical singular harmonic function, as already

mentioned; in the far field it should represent a spreading wave. Under these require-

ments, a unique solution will be found in all cases considered.

We note that our solution can be applied to cases when bodies are present in the

fluids, whenever the two- or three-dimensional symmetry is such that the motion can be

described by a series of singularities placed within the body in suitable positions.

Whether the waves are generated by the body, or reflected by the body. does not matter.

2. STATIENT AND FORIULATION OF THE PROBLEM.

Consider the irrotational motion of two non-viscous incompressible fluids under

the action of gravity. Their SS is a horizontal plane, the lower fluid of infinite

depth, the upper of finite height ’h’. Their motion is due to an oscillating singu-

larity in one of the fluids; it is assumed to be simple harmonic with period---- so

the velocity potentials @i and 2 (of the lower and upper fluids respectively) will be

too.
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We take origin 0 in the mean SS, axis 0y pointing vertically downward into the

lower fluid and chosen so it passes through he singularity which is then located at

(0,N) or (0,-N) according as the singularity is in the lower or upper fluid respec-

tively.

Then, for all x,

V2@I 0, 0 -< y -< h

V2@2 O, y < 0

except at the singular point. Also

Sy + K@2 0 on y h 1
V@I 0 on y

y 0y
on y 0 (2.2)

and K@1
+ S (K@

2
+ on y 0 (2.3)

2 0
when K -- 2

g
s =--01 g is the acceleration due to gravity, and 01 is the lower and

02 the upper fluid density. Finally, @I and @2 must satisfy the so-called radiation

condition as Ix -oo. This condition is that the potential function represent diverging

waves at a large distance from the singularity.

3. SUBMERGED LINE SINGULARITY; UPPER FLUID OF FINITE DEPTH.

We first consider a line singularity placed at the point (O,-N) in the upper fluid

or depth ’h’. Then @2 log R as R {x2 + (y + )2}1/2 0.

Now @i and @2 can be represented as

@i iF" fj log Rj +
0 gj log R’.j +

-0
A(k)e cos kx de (3.I)

@2 c. log Rj + oo dj log R’. + j [B(k) cosh k(h+y)+C(k)sinh k(h+y)]coskxdk (3.2)
J 0

where do 13 R2.j x
2 + (y + 2jh- )2 and R’o2j x

2 + (y + 2jh + )2, =0,_+1,+ 2

and A, B, C, fh’ gi’ cj, dj are to be found from the conditions (2.1), (2.2), and

(2.3) and also the condition that the integrals are to be convergent. The radiation

condition will be dealt with in the sequel.

The following integral representation used also in [3], page 34, will be needed
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in our calculations

-k(y + 2jh- n)
e--- log RjY -f ek(Y + 2jh )

0

cos kx dk,

cos kx dk,

e-k(y + 2jh + N)--- log a’o= iY J k(y + 2jh + )
e

cos kx dk,

cos kx dk,

so that,

- log Rjl
y=-h

G
e-k(2j i h- N)cos kx dk,

k(2j i h )
cos kx dke

y >-2jh + N

y < -2jh +

y > -(2jh + )

y < -(2jh + N)

-k(2j 1 h + )cos kx dk, j 1,2,3e
0

Y J y=-h k(2j 1 h + rl)
cos kx dk, j 0,-1,-2,-3e

0

-k(2jh- N)
cos kx dk, j 1,2,3,e--- log Rjl

0

Y y=0 foo k(2jh- )
e cos kx dk, j 0,-1,-2,-3

0

-k(2jh + N)
cos kx dk, j 0,1,2,e

log R’. 0

Y J y=O I k(2jh + )
e cos kx dk, j -1,-2,-3,...

0

Condition (2.1) gives

K cj log{x2 + (2j i h- N)
2 + IF" c_j. log{x2 + (2j + i h + N)2} 1/2

g x2 g x2+ E d. io + (2j i h + N)2j1/2+ F. d io + (2j + i h N)2j1/2
0 J i

I cos ] [e-kcj cos
-k(2j +Ih+rl)cB kx dk + (2j "I h-)kx dk- Y. e+

0 i 0 0
cos kx dk
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-k(2j I h ++E d e
1 J 0

1 k c cos kx dk 0+
0

from which we obtain

Cj+l

dj+l

-k(2j + i h n)
cos kx dk- E d e

0 -J

+ d O, j 0,1,2

+ c O, j 0,1,2,...
-j

cos kx dk

(3.3)

(3.4)

Since d
O i, we obtain

Condition (2.3) gives

c
I

-i (3.5)

I ]fj log{x2 + (2jh q)2}1/2 + gJ log{x2 + (jh + q)2}1/2 + A cos kx dk
0 0

gJ
-k(2jh + rl)rl)cos kx dk + Y. e cos kx dk- kA cos kx dk+If e

1 J 0 0

SI cj log{x2+(2jh-rl)2}1/2- 0 cJ +llg{x2+(2jh-r) 2}1/2+ d. log{x2+(2jh+n)2}1/2
I J

Z d log{x2 2
e

0 j+l
+ (2jh + N) + 0(B cosh kh + c sinh kh)cos kx d +S

i cj

1 h- -k(2jh + rl) ooy.. -k(2j i h + t])+ -kn+ c. e
-k(2jh ri)+ d. e + d. e (1 + dl)e2 1 2

+ k(B sinh kh + c cosh kh) J cos kx dk. (3.6)

from which we obtain by considering the coefficients of the different logarithmic terms

S(cj Cj+l) fj,

S(dj dj+I) gj,

S(d0- dl) go’

j 1,2,3,...

j 1,2,3 (3.7)

and then (3.6) reduces to

(k K)A + S(K cosh kh + k sinh kh)B + S(K sinh kh + k cosh kh)C

-kQ e-2kjh(cj+1 e-kn + dj+I e )] (3.8)-2S[dI e + -kr_
1

Condition (2.2) now gives

ekN e-kN e-2kjhY. (i- S)(c. + d. + Z (i + S)(cj+1i J J i
ekrl + dj+I e-kD)e-2kjh

-kN -kB+ dI(1 + S)e Cl(l S)e -k(A + B sinh kh + C cosh kh)o (3.9)

Now for convergence of the integrals in the expressions for I and 2’ G(k) must be
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zero for k O, where G(k) is the expression in the left side of (3.9), so that

Y. (i S)(cj + dj) + Y(l S)(cj+1 + dj+I) cI(I S) + dI(I + S) 0
1 1

This is satisfied by choosing

(i S)cj + (I + S)cj+I 0, j 1,2,...,,

(i S)dj + (i + S)dj+1 0, j 1,2

and (i- S)c
I

(i + S)dI

1 S
From (3.4), co -dI

where
I + S

so that we obtain

c. (-i) j j-i j 1,2,...

d. (-i) j J j 1 2

(3.10)

(3.8) can be written as

(k- K)A- s(K cosh kh + k sinh kh)B + s(K sinh kh + k cosh kh)C

-2kh (ekN De-kN 12S -kN e +

1 + e
-2kh

From (3.3), we obtain

(3.11)

KB + kc
2e-Pd(ekN + De-kN)

-2kh
l+e

0 (3.12)

From (3.9), we obtain

A + B s inh kh + c cosh kh 0 (3.13)

Solving for A,B,C from (3.11), (3.12) and (3.13), we obtain

2e-kh(ekU+ De-kN)sinh kh
A -2kh

m(l + De
+( sinh kh-cosh kh) -- + (S -l)sinh kJ]) F

1
(3.14)

i [2e-kh(ek + De-kN) k
i

B
1 + le

-2kh k K
(3.15)

1 + (S I) sinh kh |C k---K A(k) J FI (3.16)

where

F
1

2SDe-k 2e-kh(’ekN + e-kN)[SDe-kJ + 1 {(K-k+Sk)sinh kh + SK cosh kh}]
1 + e-2kh K

(3.17)
(i 2S) sinh kh cosh kh

and A A(k) {k(l- S) SK}sinh kh- K cosh kh (3.18)



SINGULARITIES IN A TWO-FLUID MEDIUM 743

Now, A(k) has one simple pole at k k
0

> O, say on the real axis of k (there are also

poles k k
I

and complex poles kn n + iBn where when S 0, n kn where kn-(n-l)
as n (cf. [2])). The zeroes of the denominator of F

I
are purely imaginary. Hence

A,B,C have simple poles k k0 and k K on the positive real axis of k. In the line

integrals from 0 to we make indentation below these poles which account for the be-

haviors of the potential functions at infinity particularly as Ix oo. This will be

evident later.

Substituting the above results, we have

i S [(-I)JPj-I + (-l)JPj] log R + S (-I)J[P + Dj+l] log R’o
Z 0 ]

-kN -ky2__ e-kh(ek + e s inh kh e
0

K
1 + pe

-2kh
cos kx dk

I k
sinh kh-cosh kh)F

1
e
-ky+ k_ K ( cos kx dk

+ (S l)sinh kh( sinh kh cosh kh)F
1

0

-ky
e cos kx dk (3.19)

(-l)Jpj-I2 log R. + (-l)Jpj+l log R + (-l)Jp log R’.
0 -] i

+ (-l)Jpj
log R’ + I 2 e-kh(ek4 + pe-kn)

0 -J 0 i + pe
-2kh

cosh k(h + y) cos kx dk

f 1 k

+?0 k K
[sinh k(h + y) cosh k(h + y)]F

1
cos kx dk

k+ (S l)sinh k(h+y) cosh k(h+y)]FI
cos kx dk

0

Now, as h it is possible to obtain

-k (y+n)
2S + 2S e

91 1 + S log R
0 i+ S k M

cos hx dk

k (Y-n)
+ 1 S

log R
0

2S e

2 log R
0 i + S 1 + S

0
k M

cos kx dk

(3.20)

where M K
i+ s

s which are the results derived by Gorgui and Kassem [3]. Now to in-

vestigate the behavior of the integral for large xl, we put

2 cos kx 3iklxl +e-iklxl

Then
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Where,

1 k -ky
k -’K sinh kh- cosh kh)F

1
e cos kx dk

Ii eikl xl dk +
0

I
I

e- dk, say (3.21)

FI -kyi k
I
1 ( sinh kh cosh kh) e (3.22)

For the first integral of (3.21), we consider in the complex k-plane a contour in the

first quadrant bounded by the real axis of large length XI with an indentation below

the pole k K, an arc F of radius X
1
with center at the origin and the line joining

the origin, with the point X
1

e where 0 < < Then for considering the behavior

as xl oo, we only need to consider the behavior of the term arising from the residue

at k K, because the integral along the arc becomes exponentially small as X
I

and

is -XI sin Ixlthe integral along the line 0 to X
1

e (0 < < will have a factor e

which becomes exponentially small for large xl. Hence making X
1

we find that as

I
1

eiklxl dk--2?ri Residue of II eiklxl at k K

For the second integral of (3.21), we consider in the complex k-plane a contour in the

fourth quadrant bounded by the real axis from 0 to X
1
with an indentation below the

pole k K, an arc F’ or radius XI with center at the origin and the line joining the

origin with the point X
1

e where 0 < a < Since now the singularities on the

real axis are taken to be outside the contour and following a similar argument as

above, we obtain that as Ixl

Again,

where

I
1

e-iklxl dk 0

0
A(k)

k
(S l)sinh kh( sinh kh cosh kh)F

1
e
-ky

cosh kx dk

12 eiklxl dk + 12 e-iklxl dk

i k F1 -ky
12 (S 1)sinh kh( sinh kh cosh kh) - e

(3.23)

(3.24)

For the first integral of (3.24), we choose a similar contour as was chosen for the
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intetral with II excepting that the indentation is now below k k
0

instead of K. The

n
contribution from the poles of X(k) which lie inside the contour has a factor e

where + iB is a zero of A(k) in the first quadrant so that for large Ixl we may
n n

neglect it. The line may cross some singularities of A(k). To avoid this, if it

crosses a zero of A(k), we indent the line about it so that it lies outside the region

bounded by these contours and the contribution for this indentation will also contain

a factor e which becomes exponentially small for large xl’ m + ibm being a

singularity of this type. Hence, we find that as Ix

12 eiklxl dk 2i Residue of 12 e
ik x

at k k
0

By a somewhat similar argument as was used in the second integral in (3.21), we obtain

12 e-iklxl 0 as Ix
0

Hence, we find that as xl oo, i tends to

2i
s(sinh Kh cosh kh) e-K e (eK+e-K) e-KYeiklxl
(l-2s)sinh Kh-cosh Kh

1 + e-2Kh e-Kh+sinh

k _ko
-k h k -k

o o o
o e (e + e

+ 2i(s l)sinh k h(--sinh k h cosh k h) e
o o o -2k h

o
1 +e

se + (K-k +sk )sinh k h + sK cosh k e
0 0 0

where

D [(i 2s)sinh k h cosh k h][h{ko(I s) sK}cosh k h + (i s hK)sinh k h]
o o o o

Similarly as xl- oo, 2 tends to

sinh K(h y)-coshK(+h+y) I-K e-Kh(eK+e)-K -Kh leiKlx2is ,-v-----v--7-.7-.------ ----.-, |De De snn n. cosn n
i zs)sxnn

ik+
o o e (e + e

+2i(s- l)sinh koh[sinh ko(h+y)- cosh ko(h+y)][se _2koh

o 1
(k-k + sk )snh k h + sK cosh k h ese +

o o o o

where

D [(1 2s)snh k h cosh k h][h{ko(1 s) sK}cosh k h + (1 s hK)s[nh k h]
o o o o

Thus @i and 2 satisfy the radiation condition at infinity. Now as h tends to infinit,

(3.25) and (3.26) take respectively the following forms
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-k (y+) ik xls o o
2i e e

and
k (Y-D) ik Ixls o o-2i _-r--. e e

l+s

where now k
o I s

K M, and these agree with results of Gorgui and Kassem [3].

4. WAVE SOURCE SUBMERGED IN LOWER FLUID.

In this case, there is a logarithmic type singularity at the point (O,N).

Now 01 and 02 can be represented as

01 cj log R + d log 5’ + A(k)e-ky cos kx dk
0 J 0 j 0

(4.1)

log Rj + iZ fj log Rj’ + -17" gj log 5’ + JO
[B(k)cosh k(h,+ y) + C(k)sinh k(h + y)]cos kx dk (4.2)

where C i. Condition (2.1) gives
o

f + g_ 0
o i

fl 0

fj+l + g-j 0,

and

j 1,2

g’+13 + f 0, j 1,2
-3

(4.3)

-k(2j i h + N)-k(2j i h- N) -k(2j + i + N) + Z g_KB + Z f. e Z f e e
1 J 0 -J 1

Condition (2.3) gives

-k(2j + i h- n)7. g_j e
i

+kC=0 (4.4)

d Sf -i
o o

cj S(fj fj+l) j 1,2 (4.5)

and

dj S(gj gj+l )’ j 1,2

(k K)A + S(K cosh kh + k sinh kh)B + S(K sinh kh + k cosh kh)C

-kn 2e-kN -k(2jh- N) -k(2jh + n)2Sf e 2S I f e 2S I e
o 1 j+l I gj+l (4.6)

Condition (2.2) gives
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-kh -k(2jh- r) e-kk(A + B sinh kh + C cosh kh) -e + S IF" (fj fj+l)e + (Sf i)

-k(2jh + n) -k(2jh- N) + f e+ S I (gj gj )e . f e
i +i I J o

-k(2jh- N)-k(2jh + N) -k(2jh + N) f e (4 7)I e -Z gj e
1 gj+l i i j+l

Now for convergence at k-- 0, we obtain

F.[(S- l)fj (S + l)fj+I] + F.[(S- l)gj (S + l)gj+l] + (S + l)f 2 0 (4.8)
I i o

This is satisfied by choosing

(S- l)fj (S + l)fj+I 0,

(s- 1)gj (s + 1)gj+I 0,

2f
o I+S

i S
From (4.5), d - where

o I+S

From (4.3), (4.5) and (4.9), we obtain

j 1,2,

j 1,2 (4.9)

2 (_l)jj
gj I+S

2 jj+lf-j 1 S
(-1)

j 1,2,

j 1,2

j 1,2

j 1,2,
(4.10)

C. 0

d
4S j j

i_ $2
(-I)J

(4.4) can be written as

j 1,2

j 1,2

2 -k(h + ) 2e-2kh -k(h + N) k(h N) ]e e

J 0KB + kC
i + S

e + -2kh [ i + S i S
i +e

(4.11)

(4.6) can be written as

(k K)A + S(K cosh kh + k sinh kh)B + S(K sinh kh + k cosh kh)C

(4.7) gives

-kN-2e
2 -k(2h + B)

4S e
-2kh

(i- S)(I + e
(4.12)

A + B sinh kh + C cosh kh 0. (4.13)
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Solving for A,B,C from (4.11), (4.12) and (4.13), we obtain

A ( s inh kh- co sh kh)
k- K

(S l)sinh kh ] sinh kh
A(k) J GI K

k(h n)2e-k(h + N)
2e

-2kh
e+

-2kh i S1+S
l+e

-k(h + ) ]e
i + S

(4.14)

k [k_K (S- l)sinh kh] 2e-k(h+n)
B =- GI+K(I + S)

+ 2De-2kh [ k(h-) -k(h+)Ie e

K.l+e-2kh) i S I + S

1
C=

k- K
(S i) sinh kh ]

A( ] G

where,

G
I -2e 1 + 2S

I+S

-2kh
e

-2kh
1 +e

-2kh
e
k (h-n) -k (h+D)2 -k (h+N) 2 e e

e / Il+e-2kh 1- S 1 + S

(k) being given previously.

(4.16)

i [(K- k + Sk)sinh kh + SK cosh kh]

/(l-2S)sinh kh-cosh kh (4.17)

Thus using the above results, we obtain

log R + S- ,i log R + 4S (-l)Jj log R
o S+I o

i_ S
2 1 J

+ 1 k -ky

0
k- K

sinh kh- cosh kh)G
1

e cos kx dk

i k -ky+ #Ak (S l)sinh kh( sinh kh cosh kh)G
1

e
0

cos kx dk

-2kh k(h-n)
sinh kh 2e-k(h+rl) 2e e

J0 + s + -2k i- S
l+e

-k (h+n)
e e-kYcos kx dk
I+S

(4.18)

2
log + 2 (-l)Jj+l log Rj + 2 (-l)JJ log R.’2 I + S Ro 1 + S I i S

k GI I i+ [sinh k(h + y) - cosh k(h + y)] cos kx dk +
0 0

A(k)
(S l)sinh kh

[sinh k(h + y) cosh k(h + y)] G
I

cos kx dk +

e e
cosh k(h + y) cos kx dkI- S I+S

Now as h we obtain

oo -k(y + )
i log R

1 S
log Ro’ 2

0
e

o I+S I+S k-M
cos kx dk

-2kh
2e

K(l+e-2kh)

(4.19)
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k(y n)
2

log R + 2 e

@2 I+S I+S k-M
cos kx dk

which are the results derived by Gorgui and Kassem [3].

Proceeding similarly as in the previous case we see that the above potentials

have the following forms as Ix

2i(sinh Kh cosh Kh) e-K(l +
I+S

e-K(h+)
+ e-2Kh ( eK(h-)

1 + S l+e-2kq 1 S

k [ -k
o [ o

2i(l-S)sinh k h( - sinh k h-cosh k h) e (I +
o o o

o o o o I+S
+

(ek(h ) e-koh(h + ) )l]e-koy eikolx,I/ D
I-S I+S

(4.20)

-2Kh
+ S(sinh Kh + cosh Kh)

l+e

] e-KYe /(2S-1)sinh Kh + cosh Kh
I+S

-2k h
o

2S e 1
I+S l+e-2koh

+

-2kohe

-- S(sinh Kh + cosh Kh)

e-2koh
l+le-2koh

l+e-2koh

where D [(i 2S)sinh k h cosh k h][h ko(l S) SK cosh k h + (i-S-hK)sinh k h]
o o o o

and

gi{sinh K(h + y) cosh K(h + y)} 2S e

(i 2S)sinh Kh- cosh Kh -2e-K i + I+S l+e-2Kh
I 2 -K(h + N) 2e

-2Kh / eK(h N) e-K(h + q)

1 + S
e +

-2Kh 1 S 1 + S
l+e

+ ri(S-1)sinh k h{sinh k (h+y)- o
o o --if- cosh k (h+y)} -2e-krl(l+ 2S

o 1+S

i ! 2 -ko(h + ) 2e-2kh{(K- k + Sk )sinh k h + SK cosh k h} i- e
_2koho o o o

l+e

(ek(h )

1 S

ek(h + )

) ] eikIxll/ DI + S
(4.21)

where D [(I-2S)sinh k h cosh k h][h ko(l-S)- SK cosh k h + (i S hK)sinh k hi.o o o o

Now, as h tends to infinity, (4.20) and (4.21) take respectively the following forms:

and

2i -M(y + N) iMlxe e
I+S

S M(y N) iM x
2i e e

I+S

5. SUBMERGED POINT SINGULARITIES UPPER FLUID OF FINITE DEPTH.
P (cos 8)
n

r
2 2 1/2

as R + (y + ) 0, n 0,1,2 n where rHere, 2 ,n+l o
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is the distance from the y axis, and e tan-l( r
). We assumey-

I A(k) e J (kr) dk
0

o

P (cos e) r

2
n + J {B(k)cosh k(h + y) + C(k)slnh k(h + y)}J (kr)dk.
R ,n+l 0

o
o

We use the following integral representations

P

R
cos, i e-k (yn i___ k

n + ) J (kr)dk,n+l n o
0

o

(-i)
n I k(y + )

n’ kn e J (kr)dk,
0

o

(5.1)

(5.2)

(5.3)

From conditions (2.1), (2.2) and (2.3), we obtain

KB + kc
t._l)n+l kn(k + K)_k(h ) (5 4)

n!

k
n

-kBA + B sinh kh + C cosh kh e (5.5)

and

S
k
n e-k(k- K)A+s(K cosh kh+k sinh kh)B +s(K sinh kh+k cosh kh)C (k-K) (5.6)

Solving for A, B, C we obtain
n

h
Wkn -k (-i) e-k(h- )sinh k +
k IK +( sinh kh cosh kh)A . + (k + K)

K
W
I+- (S l)sinh kh( sinh kh cosh kh)

B (-i)
n kn(k + K) e-k(h ) k E 1 inh kh-]n’. K g + (S-l

K w1
where

(5.7)

k
n

(-1)
n

-k (h-)
n- [(S-l)(k-K)e-k +--- {(K-k+Sk)sinh kh + SK cosh kh}(k + K)e ]

Wl (i 2S) sinh kh- cosh kh
(5.8)

and A is the same expression used in 3, so that we obtain

i . + (k + K)sinh kh e e-kYJ (kr) dk
0 o

W1 k -ky+
k K

sinh kh cosh kh) e J (kr) dk
o

k -ky+ (S l)sinh kh( sinh kh cosh kh) e Jo(kr) dk (5.9)

and,
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PR (cos18 i
n+l

2
n (-i) kn(k + K) e-k(h )

,n+- +
0

n! K
O

cosh k(h + y)J (kr)dk
O

+ sinh k(h + y) cosh k(h + J (kr)dk
0k-K Y o

l)sinh kh inh k(h + y) cosh k(h + y J (kr)dk
O

(5.1o)

Now, as h tends to infinity, i and 2 take respectively the following forms:

2SM o. kn -k(y + n)
n’.(l + S) 0

e Jo(kr)dk
and

where M K

(5.11)

R
,n+l

+ +
(i + S)(k M)

e Jo(kr)dk (5.12)

o

l+S
i S

which are the result,s lerived by Gorgui and Issem [3]. Now put-

ting 2J (kr) H (i)(kr) + H (2)(kr) and rotating the contour in the integral invol-
O O O

ving Ho(1)(kr) in the first quadrant and in the integrals involving Ho(2)(kr) in the

fourth quadrant, we can reduce the integrals into suitable forms from which it is seen

that as r oo, i and 2 respectively take the following forms:

n eK(q h- y) H (1)(kr)
2hiS (-i,) Kn+l. o

n! (2S l)slnh Kh + cosh Kh
n

k -k qko o o+{i n-q-- (S l)sinh koh( -- sinh koh cosh koh)S l)(k K) e

-k (h-rl I -kYHo (1)+ (’-.l)n {(K-k +Sk )sinh k h + SK cosh k h}(ko+K)e e (kor) /D (5.13)K o o o o o

where D [(l-2S)sinh k h cosh k h][h{k (i-S)-SK}cosh k h + (i S hK)sinh k h]
O O O O o

and

2i (-l).n K
n+l [sinh Kh + cosh Kh][sinh K(h+y) cosh K(h+y)]e-K(h-)Ho(-l)(kr)

n! (i 2S)sinh Kh- cosh Kh
n

k k
o o -ko+ {i (S l)sinh k h[sinh ko(h + y) -- cosh k (h + y)] [(S l)(k K)e

O O

+ (-I)
n

K’ {(K-k +Sk )sinh k h + SK cosh k h}](ko+K)e-k(h )H
O O O O O

(1)
(kor) }/D (5.14)

where D [(l-2S)sinh k h cosh k h][h{ko(l-S) SK}cosh k h + (i S hK)sinh k h]o
O O O O

Now as h tends to infinity, (5.13) and (5.14) take respectively the following forms:

2SK
(S i) (M K)2 -M(y + n) (i)

e H (Mr)
O
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i M
n

2SK n’ (I S)(M- K)
2

e
M(y D)H (1)(Mr)

O

6. MULTIPOLE SUBMERGED IN LOWER FLUID.
P (cos e)
nHere, qb

1 n+l
R
0

-i re tan
y_

We as sume

as R [r
2 + (y N)2]1/2 0, n 1,2 where

O

R(cs @)

i -ky+ A(k)e J (kr) dk
n+l n o

0

We use

92 I [B(k)cosh k(h + y) + C(k)sinh k(h + y)]J (kr)dk.
0 o

P (cos ) rn i
k
n -k(y )

n+l n-- e J (kr)dk, y >
R 0

o
O

.(_!)n oo k
n k(y

n J
e J (kr)dk, y <

0
o

Proceeding much as in the previous case, we obtain

P (cos ) oo )n
91_

n + (-i
k
n

e-kn J (kr)dk
R

n+l
0 n o

0

v k -ky+
k K sinh kh cosh kh)e J (kr)dk

O

+ (S l)sinh kh( sinh kh cosh kh)e-kyJ (kr)dk
0 o

and

92 ’- K
k

[sinh k(h + y) - cosh k(h + y)]Jo(kr)dk

where,

v k+ (S l)sinh kh[sinh k(h- y) cosh k(h + y) ]Jo (kr)dk

V
2 (-I) nK kne-kN

n![(l 2S)sinh kh cosh kh]

and A(k) is the same expression used previously.

Now, as h tends to infinity, 91 and 2 take respectively the following forms:

P (cos ) oon (-i)
n

2M (y+)

R
n+l

+-- 0 {i +n’. (i + S)(k M)
}kne-k Jo(kr)dk

O

and,

(6.1)

(6.2)

(6.4)

(6.5)

(6.6)

(6.7)
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2 (-I) nM I kn k (y-N)
n’.(l + S) 0 k M

e Jo(kr)dk (6.8)

I+S
where M K

i S
which ar_e the results derived by Gorgui and Kassem [3].

Proceeding much as ir the previous case, we find that as r oo, i and 2 respect-

ively take the following forms:

2i
(-I) K

n+l
(sinh cosh Kh)e

-K(y+) Ho(1)(kr)
n! (i 2S)sinh Kh- cosh Kh

2 i
(-l)n k

--sinh k h cosh k h) H (kor)n’ (S l)Kk
n

sinh k h(
o eko(Y+N) (i)

o o K o o o+
[(l-2S)sinh koh-Cosh koh][h{ko(l- S)- SK}cosh koh+(l -S-hK)sinh koh]

(6.9)

and

2i
(-l)n

K
n+l sinh K(y + y) cosh K(h + y)

H (i)
n! (i 2S)sinh Kh cosh Kh o

(Kr)

+{2i (-l)n k

n’ (S-I)Kk nsinh k h[sinh k (h+y)- o -koH (i)
o o o -cosh ko(h+y)]e o (kor)}/D (6.10)

where D [(l-2S)sinh k h-cosh k h][h{ko(l-S )- SK}cosh k h +(l-S-hK)sinh k h]o o o o

Now, as h- ,(6.9) and (6.10) take respectively the following forms:

iKM
n (-l)n M eM(Y + ) (i)

Sn
i) H (Mr)

o

and

(-i) n M M(y- n) (i)iKMn
S(I S)n’. - l)e No (Mr).

7. CONCLUS ION.

Integral representation of the potential function in a two layered fluid medium

where the upper layer is of finite depth with a free surface and lower layer is of in-

finite depth have been obtained. The different results reduce to the known results of

Gorgui and Kassem [3] when the FS in the upper layer is taken to infinity (i.e., h-).

We note that these authors thought there was no difficulty except longer equations and

a bulkier result in adding the surface tension term in their problem, closely related

to ours.
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