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ABSTRACT. Integral equations with positive increasing kernels are transformed into
ones with positive decreasing kernels, and using a similar technique, more positive

increasing kernels are reduced to ones with less increasing monotonicity.
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1. INTRODUCTION.

The behavior of and the approximations to solutions of integral equations have
been studied; see, for example, Refs. 1-11. Some of these papers are on equations
with positive decreasing kernels and some study positive increasing kernels, satis-
fying a convexity condition, namely, that the logarithm of the kernel be convex in
the first case and that the logarithm of the derivative of the kernel be convex in
the second case.

In this paper, equations of the rform
£(t) = 1 -fK(t - Df(1)dT, (1.1)
0

where the kernel K(t) is positive increasing, are transformed into the form

£(t) = a(t) -J L(t - T)E(T)dT, (1.2)
where the new kernel L(t) is positive decreasing or is positive increasing with
reduced increasing monotonicity. In tne process, the logarithmic convexity condition
is preserved.

2. REDUCING INCREASING IONOTONICITY OF KERNELS

By Theorem 1.1.1 in Ref. 8, equation (1.1) is equivalent to

t
—‘t b
b(t) = e —fT.(t - Df(0)dT, (2.1)
0
wnere Y 1s any constant,
t
-yt . =Yt

Lit) = (a - y)e ! +[K'qu - e’ dt, (2.2)

Ow

and a = K(j.
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THEOREM 2.1. If (1) K(t) > O with K'(t) > O and K"(t) < 0, (2) %n K'(t) is
convex (i.e. §;>is nondecreasing) and (3) a + ﬁ-E_Zb%, where a = K(0), b = K'(0) and
¢ = K"(0), then, by an appropriate choice of vy, (1) L(t) > 0, L'(t) < 0 and (2) n L(t)
E% is nondecreasing).
PROOF. Note first that L(t) > 0 for y < a. Differentiation of (2.2) leads to

is convex (i.e.

9 - -
L'(t) = (" - ay + b)e YE ok xE, (2.3)
On the other hand,

L'(t) = K'(t) - YL(t) (2.4)
and 9
L"(t) = K"(t) - YK'(t) + Y L(t);

therefore,

02

LL" - L'" = K"L + yK'L - K'2. (2.5)

Let P(t) = L(t)L"(t) - L'z(t); we want to show that P(t) > 0, for a certain value of Y.
Substitution of (2.2) into (2.5) leads to

t
e"p(t) = v(a - VK'(t) + yK'(t) [ T K'(1)dT + (a - V)K"(L)
+ K" (t) erTK'(T)dT - e (e, (2.6)
0
Since ¢ t
TR ()dt = 2 e () - L b - X erTK"(T)dT,
Y Y Yo

(2.6) becomes
e p(t) =, ¥(a = YK'(8) + (a - YK'(£) = bK' (1)

+ /eYT[K"(t)K'(r) - K'(t)K" (1) ldT.

0
Therefore
t
Yt " " L \] "n
e P _ o oy K / YT[K"(OK' (1) - K'(D)K"(1)
K'(t) - Y(a Y) + (a Y) K'(t) b +0 e K'(t) dr. (2'7)

n
Since rd is nondecreasing, we have, for Yy < a,

Y@a-m+ - 5o

|v

Y(a-Y)+(a-Y)%-b

Y@@ =-Y)=Y(a-Y) +b-b, if (a-Y)g=-v@-Y) +b, (2.8)
= 0.

One root of the above quadratic equation is

1 c c,2
Yo =3 la-% -J(a+—b) - 4b],
wnere Y, < a if and only if
/ 2
- ¢y/(a + %) - 4b < a+ % >
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which is true since a + §-> 0. So L(t) > 0. The second part of the integrand in (2.7)

is equal to

K"(t) K'(T) - K"(T)

K'(t)
K'(O | 1 "
_ Kl (T) K (T) K (T)
=0,
so the integral is positive. 1t follows from (2.7) that P(t) > 0 and n L(t) is convex,
for y = YO.
Equation (2.5) leads to the fact that 7y “ _ay_ +b <0 and, from (2.3), L'(t) < O.

0 0

The proof is now complete.

Under certain conditions, the next class of positive increasing kernels, with
increasing rate of growth, can be reduced to the class of positive increasing kernels
with decreasing rate of growth.

ThHEOREN 2.2. If (1) K(t) > 0 with K'"(t) > 0, K"(t) > 0, and K"'(t) < 0, (2) &n K"(t)
ic convex, and (3) ac - d i<§§ (a - Vaz - 4b) with ac - d z_v3c(bc - ad ) and ac - d >
3%f¥(c2 - bd), wnere a = K(0), b = K'(0), ¢ = K"(0), and d = K"'(0), with at least one
inequality being a strict inequality, then (1) L(t) > O, L'(t) > 0, L"(t) < 0 and
(2) in L'(t) is convex.

PROOF. As before, note first that L(t) > 0 for vy < a, and L'(t) > O for YZ - aYy +
b > 0. Differentiation of (2.3) leads to

L(e) = [-Y(7 - ay +b) + cle T4 ke E (2.9)

Differentiation of (2.4) leads to

L"(t) = K"(t) - YL'(t)
and )
L"' () = K""(t) - yK"(£) + Y L'(t);
theretore, 2 2

L'L"" - L"" = K"'L" + yK"L' - K", (2.10)
Let P(t) = L'(t)L""(¢) - L"z(t). Substitution of (Z2.3) into (2.10) leads to

X t
e{tP(t) =7 (Yz - ay + b)K"(t) + YK"(t)f eYtl\'"(T)dT
0

+ o -y KT () + K"'(C)G/%;YIK"(T)dT - e R (). (2.11)
Since R L e 1 L t,T
0 o't K"(1t)dr = —jeY K" (t) - Ze - _OlaeY K" (1)dr,
(2.11) becomes o 5 Y Y ZY
e"P(t) = v (v" = ay + BIK"(t) + (v° = ay + b)K"'(t) - cK"(t)
t
+/‘eYT[K"'(t)f:"(T) - K"(£)K"' (1) ]dT.
I}
Therefore,
Yt - sy
e P(t) 2 . 2 K"' (t)
—— = p— Y - + Pnbe I, i A ~
K (t) K(Y ay + b) + (v ay +b) 5y (

+erT[K"'(t)K”('l[\”)’(';)K"(t)K"'(T)] dr. (z‘lz)
V]
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"

Since - is nondecreasing, for Y - ay +b >0,
K"'(t
YOP - @y +b) + (F - ay +B) st - e
2yt —av+ ) + (¢ -ar by o

2 2
Y&y - ay +b) - y(y -ay +b) +c-c

=0,

if Yy also satisfies

(Yz—ay+b)%=~(Y2—aY+b)+c (2.13)
or
b
¥ +(% -yl - i—d)Y + (C—d - o) =o. (2.14)

Let q(y) be the polynomial in (2.14). Note first that q(0) < 0. The roots of q'(y) =

are
_ (ac-d) * ‘/(ac—d)2 - 3c(bc-ad)
B 3c
and the inflection of q(Y) occurs at
1 fac - d
Y= 3 c -

By the second and third inequalities in assumption (3) of this theorem,
2
1l fac - d _ 1 fac-4d 3 " bd - c2 + d —acl)l (ac -d
413 c T 27 c c c 9 \ c

bc - ad )1 fac - d
3 c

: [ =D 4 (ba - cz)} + (d—'—;‘i 3c(be - ad) + e = ad)(ac - d)
9c

+

v

3c2

1 [(ac - d) + 27c2(bd - cz)]+ 0
N L 27¢2

> 0.
The fact that one of the three inequalities is strict implies that there is a zero,
say Y, of q(Y), satisfying

1 fac - d
3 c

Y, < %(a - Vaz - 4b). (2.15)

. . 2
From (2.15), it follows that YO - aYO +b >0. So L'(t) > 0. Thus, YO has the two

"
desired properties stated earlier. Since e is nondecreasing, the integral in (2.12)

0 <Y, <

and

is positive. Equation (2.12) now leads to P(t) > 0 and so %n L'(t) is convex, for y = y

0
From (2.13), YO < a, and so L(t) > 0. And from (2.13), we see that, for

Y = Yy L"(t) < 0.
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The case of a2 < 4b is examined in the following theorem.

THEOREM 2.3. If (1) K(t) > O with K'(t) > 0, K"(t) > O, and K"'(t) < 0, (2) ¢n
K"(t) is convex and (3) a2 < 4b and abc + bd - c2 > 0, then (1) L(t) > 0, L'(t) > O,
L"(t) < 0 and (2) &n L'(t) is convex.

PRUOF. Since a2 < 4b, Y2 - ay + b > 0 for all Y and so L'(t) > 0. Let q(Y)

be the same polynomial as before; then
q(a) = ab + E% -c

> 0.
So q(Y) has a zero, say YO’ satisfying 0 < Y0< a. The rest of the proof for the
convexity of fn L'(t) is similar to that in Theorem 2.2.

Since Yo < a, we have L(t) > 0; at y =Y (2.13) shows that L'"(t) < O.

O’
Some examples of kernels satisfying the conditions in Theorem 2.2 and Theorem 2.3
1 1
3 2" 5 3t
are, respectively, K(t) = ot + e + 1 and K(t) = Et + e + 1.

The next class of positive increasing kernels can be reduced accordingly.

THEOREM 2.4. If (1) K(t) > O with K'(t) > 0, K"(t) > 0, K""(t) > 0, and K (t)
< 0, (2) n K"'(t) is convex and (3) 32 < 3b, —ab +c > 0, and (ab - c)(a + g) +d <0,
where a = K(0), b = K'(0), ¢ = K"(0), d = K"'(0), and e = K*)(0), then (1) L(t) > O,
L'(t) > 0, L"(t) > 0, L""(t) < 0 and (2) &n L"(t) is convex.

PROOF. As before, L(t) > 0 for Y < a and L'(t) > 0 for Yz - ay +b > 0. L"(t)

(4)

> 0 for -Y3 + aY2 - by + ¢ >0, Differentiation of (2.9) leads to

LMT(E) = [=v(=y> + ay? - by + ) + dle 'E 4 k(P weVE, (2.16)
Proceeding as before, we can show that L"(t) > 0 and fn L"(t) is convex. The

equations corresponding to (2.10) and (2.12) are

L“L(4) - Lll'2 = K(4)L'. + YKII'LII - K"'Z
and
- ()
EHT%é§2-= Y('Y3 + ayz - by +c¢) + (—y3 + aYZ - by + ¢) %wr?§§l -d
t (4) " " (4)
+feYT K (0K 'g.? = S(I1 SN PR (2.17)
o ©

The sum of the first three terms in (2.17) is nonnegative if

‘Y3 + aYZ -by+c>0

and ('Y3 + ayz - by + c)% = —y(-y3 + aYz - by +c¢) +d (2.18)
or Vr -yt -2+ By @-8 =o. (2.19)
d d d d
Let C(y) = - y3 + aYZ - by + ¢ and q(y) be the polynomial in (2.19). Since a2 -3 <0,
C(y) is nonincreasing. Now the fact that C(0) > 0 and C(a) = -ab + ¢ > 0 leads to

C(y) > 0 for 0 < y < a. As for q, q(J0) > 0 and

q(a) = (ab - ¢)(a + %) + d
< 0.

Therefore q(y) has a zero at Yo satisfying 0 < vy, < a. So, fory =y L"(t) > 0.

0 0’
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Since

2
a

t -
3.

> 0,

and

where a_ = K(0), a = K'(0),...,a

L'(e) > 0,00,y > 0, L™ (¢) <0 and (2) tn L
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@

K" 1
At y = Yoo L(t) > 0, and from (2.16) and (2.18), L"'(t) < 0. Finally, since

is nondecreasing, it follows again that P(t) > O and &n L"(t) is convex.

< 4b, y2 - ay +b >0 for all y and so L'(t) > O.

7
An example kernel satisfying all the conditions in this theorem is K(t) = E-tz +

et + 3,
DISCUSSION. It is clear that, in general, if (1) K(t) > 0, K'(t) > 0,...,K(n)(t)
D) () < 0, () 2n k™

PO) =a;- v 20,

K (t) is convex and (3) there exists y = YO satisfying

Py(y) = -vyP,(y) +a, >0,

|v

v

Pa(y) = 'YPZ(Y) +a, >0,

PO ==y ) +a >0,

Pn(Y) = -YPn_l(Y) ta 0

“na _
an( =P 0, 3.1

%n
_ K(n+l)

(0), then at y = Yoo (1) L(t) > 0,
(n-1)

0 n+l

(t) is convex. Note that Yy

must be positive in order for (3.1) to be satisfied, and so requires that ai > 0,

i=

10.

11.

0,1,2,..,n - 1.
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