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ABSTRACT. Let F be a non-trivial complete non-Archimedean valued field. Some locally F-
-convex topologies, on the space Cb(X,E) of all bounded continuous functions from a zero-
-dimensional topological space X to a non-Archimedean locally F-convex space E, are

studied. The corresponding dual spaces are also investigated.
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1. INTRODUCTION.

Several authors have studied various topologies on spaces of continuous functions
with values into either a valued field or a non-Archimedean locally convex space. Some
of the papers on the subject are the [1]-[9]. The strict topology was introduced for
the first time by Buck [10] in the space C,(X,E) of all bounded continuous functions
from a locally compact space X to a locally convex space E. In recent years several other
authors have extended Buck’s results by generalizing the space X and taking E to be
either the scalar field or a locally convex space or an arbitrary topological vector
space. In [9] Prolla defined the strict topology in Cb(X,E) assuming that X is locally
compact Hausdorff zero-dimensional and E a non-Archimedean normed space over a locally
compact non-Archimedean valued field F. In [7] the author studied the strict topology
BO on Cb(X,E) assuming that X is an arbitrary topological space and E a non-Archimedean
locally F-convex space over a non-Archimedean valued field F.

In this paper we introduce and study the locally F-convex topologies B,B',Bl and Bi
on Cb(X,E) where X is zero-dimensional and E a non-Archimedean locally F-convex space.
These topologies are defined by means of the Banaschewski compactification BOX of X and
yield as corresponding dual spaces certain spaces of E'-valued measures.

2. PRELIMINARIES.
Throughout this paper, X will denote a Hausdorff zero-dimensioanl (= ultraregular)

topological space and BOX its Banaschewski compactification (see [1]). For a continuous
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function f from X to an ultraregular topological space Y for which f(X) is relatively
compact in Y, we will denote by £ the unique continuous extension of f to all of BOX.
For various notions on non-Archimedean spaces we will refer to [11]-[13].

Let F be a non-trivial complete non-Archimedean valued field and let E be a
Hausdorff non-Archimedean locally F-convex space over F. Let Cb(X,E) denote the space
of all bounded continuous E-valued functions on X and let Crc(X’E) be the subspace of
those f for which f(X) is relatively compact in E. For a subset A of X, we will denote
by )(A the F-characteristic function of A. Also, if f is a function from X to E and p

a seminorm on E, we will define || f]] and || £]|_ by
A,p p
Il fHA,p =sup{p(£(x)) : x €A}, || pr = Hf”x,p'
For an F-valued function g on X, we define

lgll, =swlleGol sxead, llell =1lelly,-

Let T be an upwards directed family of continuous non-Archimedean seminorms on E
generating its topology. The uniform topology T, ona subspace of Cb(X,E) is the locally
F-convex topology generated by the family of non-Archimedean seminorms f ~—>Hf ”p’ per.
The topology 80, which was defined in [7], is the locally F-convex topology generated
by the seminorms p(p(f) = |l of Hp where p €T and ¢ is a bounded function from X to F which
vanishes at infinity.

Let S(X) be the algebra of all clopen subsets of X. We will denote by M(X,E') (see
[6]) the space of all finitely-additive E'-valued measures m on S(X) for which the set
m(S(X)) is an equicontinuous subset of the dual space E' of E. For each m€M(X,E') there

exists p €T such that mp(X) <» where, for A €S(X).
mp(A) =sup{|m(B)s| : BCA, Be€S(X),p(s) <1}.

As it is shown in [6], we have mp(AUB) =max{mp(A),mp(B)}. We will denote by M(X,F) the
space of all bounded finitely-additive F-valued measures on S(X). If m€M(X,E'), then,
for each s €E, the set function ms :S(X) »E, (ms)(A) =m(A)s, is in M(X,F).

For a decreasing sequence (An) (resp. net (Aa))’ of clopen subsets of X, we will
write An +@ (resp. AaHZ) if ﬂAn =¢ (resp. nAa:G)' An element u of M(X,F) is called
o-additive (resp. t-additive) if for each sequence Gn v@ (resp. net Ga ¥@) of clopen
subsets of X we have lim u(Gn)=O (resp. lim u(G&)=O). A member m of M(X,E') is called
og-additive (resp. t-additive) if each ms, s €E, is o-additive (resp. t-additive). We
will denote by MU(X,E') and MT(X,E') the spaces of all o-additive and all t-additive
members of M(X,E'), respectively. For an m € M(X,F), we define |m| on S(X) by

|m|(a) =sup{|m(B)| : B€S(X), BCA}.

Let now m€M(X,E') and A€S(X), A#@. Consider the family QA of all a ={Al,...,An;
xl,...,xn}, where Al""’An is a clopen partition of A and Xy eAi. The set QA becomes
directed by defining o 20, iff the partition of A in oy is a refinement of the partition
in oy If f is an E-valued function on X and a :{Al,...,An;xl,..

n
wa(f,m) = 2 m(Ai)f(Xi)' If the 1lim wa(f,m) exists, then we say that f is m-integrable
i=1 OtGQA

.,xn} €$ZA, we define
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over A and we denote this limit by dem. For A=¢, we define dem =0. We will write

A A
simply | £dm for | £dm. It is shown in [6] that every f€C _(X,E) is m-integrable over
cr

X
each A €S(X). The function T: Crc(X’E) >F, Tm(f) =J fdm, is linear and ‘ru—continuous.
Moreover, the mapping T : M(X,E') ->(CPC(X,E),Tu)', T(m) :Tm, is linear one-to-one and
onto. Hence, we may identify M(X,E') with the dual space of (Crc(X’E)’Tu)'
Finally, we recall that a subset A of a vector space over F is called F-absolutely
convex (or simply absolutely convex) if yA+6ACA for all y, & €F with |Y|, |6] <1.
3. THE STRICT TOPOLOGIES B,B',Bl,Bi.
Before defining the topologies B’B'Bl’si’ we prove the following
LEMMA 3.1. If fl’f2 are continuous F-valued functions on X, then there exists a
continuous F-valued function f in X with |f(x) | =max{]fl(x)[,|f2(x)|} for all x €X.
PROOF. For each positive real number r, the set {s €F: |s[ =r} is open in F. Hence,
the set
A ={xex: £ (0] = 5,60 ] #0)
is open in X. Also open is the set
Ay ={xex: |£,6]#[£,(x)]}.
Define f on X by
£(x) Zfl(x) if xeAl
=fl(x)+f2(x) if xeAl.

It is easy to see that |£(x)]| :max{lfl(x)|,lf2(x)|} for all x €X. Also, f is continuous.
0" Suppose now that
fl(x) =f2(x) =0. Given € >0, there exists a neighborhood V of x such that |fi(y)| <g
for all y €V, i =1,2. If y €V, then |f(y)-f(x)| = |£f(y)| <e which proves that f is

In fact f is clearly continuous at each point of the open set AlUA

continuous at x. Thus f satisfies the requirements.

Let now Ql (respectively Q) denote the family of all F-zero (resp. compact) subsets

of BOX which are disjoint from X. For A€Q, let C, denote the family of all h €CrC(X,F)

A
such that ﬁlA =0. For each p€T, let BA p denote the locally F-convex topology on Cb(X,E)
generated by the family of non-Archimedean seminorms {pq) 1o €CA}, where pq)(f) = ||q;f||p.
The locally F-convex topology BA is defined by the family of seminorms {p(p:p er,¢ecA}.

The topology Bp (re<p. Bl p) is the locally F-convex inductive limit of the topologies
b

BA b AeQ (resp. Aenl). The locally F-convex projective limit of the topologies Bp
bl
(resp. Bl p), p €T, is denoted by B' (resp. Bi). Since p >q implies Bp;sq, we have
b
B' = U B_. Analoqously we have Bi = U 81 .
per P per °P

We define B to be the locally F-convex inductive limit of the topologies BA’ A€Q.
Thus B has as a base at zero the family of all F-absolutely convex subsets of Cb(X,E)

which are BA-neighborhoods of zero for each A €Q. Analogously, B, is the locally F-convex

1

inductive limit of the topologies Bp: AEQ.

We have the following easily established

LEMMA 3.2. 1) The topologies B,B',Bl, and Bi are Hausdorff.
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2) B! ;Bi;sl T, and B' <B ;Bl.
LEMMA 3.3. Let HE€Q and peT. If (An) is a sequence of clopen subsets of X such

that the closure Kn in BOX, of each An’ is disjoint from H and if 0 <an->°°, then the set

o
Wo(A o) = O {fec (x.B) : [ £, o <a}
n=1 n
is a B, _-neighborhood of zero.
H,p

C . =1 . <
PROOF. We may assume that An An+l for each n. Set yn }tr:; ak Then, O yn->oo and

< > — . . .
Y, £Y4p Clearly Wp(An,Yn)CWP(An,un). Let A €F, |A| >1. For each positive integer n,

m+l

there exists an integer m such that !A!m_i_yn <[] . Take )‘n =A" (if m=0, we take AO=1).

. -1 |
. < <
Since l)\n[ >yn |)\| , we have |)\n| >, Also, l)\n| _l)‘m_ll and ')\nl v, Moreover
”p("n’“n')c”p“‘n”n)'
Each An is clopen in BOX. Define h on BOX by

_,-1 . -
h(x)—)\l if xeAl

:)\_l if x €A -A , 22
n n n-1
-]
=0 if x¢ U An.
n=1l

]

Then h is continuous. In fact, h is clearly continuous on the open set B = U -A—n' Let
n=1

X, 2B and € >0. Choose n such that |An| >1/e. The set Vn =BOX-X is a neighborhood of

X Moreover, for xevn, we have Ih(x)—h(xo)l = Ih(x)] < I)\n,—l <e. So h is continuous at

Xqe Also, h =0 on H. Set ¢ =h,X. We will show that

- . |
W, ={fec (X,E) : Hcpf,l,p ;1}<:wp(An,|An|).

-1
, and x €A . If x €A, then ¢(x) =A]" and so p(£(x)) ;[All ;lxnl. If

x €A, then x €A -A__, for some k <n and so 9(x) =)\];1 which implies that p(£(x)) ;I)\k]_i_
ixn . Thus || £]]

In fact, let f €W

A ,p ;l)‘nl for all n and this completes the proof.
n,

THEOREM 3.4. BH p has a base at zero the family of all sets of the form wp(An, |>\n])
k]
where (An) is an increasing sequence of clopen subsets of X, such that the closure Kn in

BOX is disjoint from H, )\neF with hn' ;])\nﬂl and 0 < l)‘nl > o,

PROOF. Using Lemma 3.1, we get that SH has as a base at zero the family of all
b
sets of the form W ={fecC (X,E) : []hf”p;l} where h €Cy. Let now h€C, and W =W

s p,h’
Let A€F with |A| >1, ||n]|. set

A ={xex: [hG)| z|a] ")

Clearly A is clopen, A CA and KUC {x€BOX : [A(x)] 2 |x]""} and so A is disjoint

1 ana An =AML f n>2. We will show that Wle.

n+l

from H. Set Wl =wp(An,l)\n|) where )‘l =X

In fact, let fewl. We need to show that
(*) p(h(x)f(x)) <1

o -
for all x €X. Clearly (*) holds if x€(J A . If x€A , then p(£(x)) <A™t and so (%)
n=1
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B l_mﬂ and

holds since |h(x)| < !Al Finally, if xeAm-Am_ , m>1, then |h(x)| <

p(£(x)) ;|A|m—1 which implies that p(h(x)f(x))l;l. This proves that WlC W. This and the
preceding Lemma complete the proof.

THEOREM 3.5. (i) 80 <B' <B.
(ii) The topologies B,B',B]_,B:'L and T have the same bounded sets.
(iii) If X is locally compact, then SO =B' =8.

PROOF. Let W be an absolutely convex Bo-neighborhood of zero. There exist p €T and
a bounded F-valued function h on X vanishing at infinity such that Wl ={f er(X,E)
: [[hf“p;l}cw, By [7, Proposition 2.6], there exist a sequence (Kn) of compact subsets

of X and 0 <otn->°° such that wp(}(n,an)cw . Let HEQ. For each n, there exists a clopen

1
subset B_ of B_X containing K_ and disjoint from H. If A_ =B_N X, then W (A ,a ) is a
n 0 n n n p n’n
BH p-neighborhood of zero contained in W, . Thus W is a BH p—neighborhood of zero for
b bl

every H€Q and hence W is a B'-neighborhood of zero.

(ii) It follows from (i) and from Lemma 2.2, since 80 and T have the same bounded
sets (see [7, Proposition 2.11]).

(iii) If X is locally compact, then the set H =BOX-X is closed in BOX (see [1u,X1,
8.31). If V is a B-neighborhood of zero, then V is a BH—neighborhood of zero and hence

a Bo—neighborhood of zero since every member of C, vanishes at infinity. Thus Bf__BO and

H
so B = BO .
4. THE STRICT TOPOLOGIES ON Crc(x’E)'

Throughout the rest of the paper, we will consider the strict topologies on the
subspace CPC(X,E) of Cb(X,E).

THEOREM u4.1. Let p€Tl, HEQ and V an absolutely convex subset of Crc(X’E)' Then V
is a BH p—neighborhood of zero iff the following condition is satisfied: For each d >0

b

there exist a clopen subset A of X, whose closure A in BOX is disjoint from H, and 6 >0

such that
{fGCPC(X,B) : [|fl]p;d, [|f|]A,p;5}cv.

PROOF. Suppose that V is a BH P—neighborhood of zero. By Theorem 3.4, there exist
2 p—
an increasing sequence (An) of clopen subsets of X, with AnﬂH =¢, and XneF with
<A ] A <
o<l lve, sl
l)\k| >d if k >n. Take 6 = l)‘ll and A=An. It is clear that if fecrc(x,}:) is such that
< <6 A cv.
||f[|p=d and ||fHA,p= , then fewP(An,I hev

Conversely, assume that the condition is satisfied. Let A €F, IA[ >1. Choose an

|, such that Wp(An,l)\nl)CV. Let now d >0 and choose n such that

increasing sequence (An) of clopen sets, with Knﬂl-l =¢, and a decreasing sequence (5n)

of positive numbers such that Unﬂ )\nUCV, where

u ={fec (X,E): ||f||An’p; 6 3, U={f: llfllp;l}.
Set

— 2 n
v, =u N [O (U, +A U):I.
n=1
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We will show that V_.C V. In fact, let feVl. Then er1 and, for each n, f =gn+hn with

1
n N zg - i
gn€A U, hneUn+ . Let N be such that f €AYU. Set f and fk 8781 if k>1. We

=g
1 1781
= cen . Si = =f- c
have f fl+f2+ +fN+hN Since f1 gle U and fl f hl€U1+U2CUl+Ul Ul’ we have
£, €U NAUCV. For n>1, we have f_ =g -g _, €A"UsA"1U and so £ €APU. Also,
£ =h .-h_ €U +U .CU_ and hence £ €U MAPUCYV. Finally, h_=f-g €A urANucANu and
n-1 n n n+l n n n N N

n
N €UN+1C UN and so again hN €V. It follows that f €V since V is absolutely convex.Thus

V,CV. Let now A, €F with 0 <|A | <1, 6, and A =A™ if n>1. We will finish the proof

by showing that

s

v, = {fec_ (X,B):|lf]| <Ix rcv. .
2 n=1 rc An,p n 1
So, let £ €V_ . Since Hf” ;])\ l <6 , we have f €U,. Let m be any positive integer.
2 Al,p 1 1 1
Since f(Am+1) is relatively compact, there are xl,...,xn in Am+l such that

n
f(Aerl)CiL__)l {s : p(s-£(x,)) <1}
and so

n
Amﬂ.C L_-J Gi =G
i=1

where G ={xex : p(£(x)-£(x,)) <1}. Clearly G is clopen. Moreover, if x €G,, then
m = . = f- =

p(£(x)) ;mx{l,p(i(xi))};lﬂ m Let g = ,XG f, h=f-g. Then h =0 on Am+l

Also, Hg”p <A™ and so g€exr"U. This proves that f€V1 and so the result follows by

and so h eUm+l'
Lemma 3.3.

For p €T, let u_ denote the locally F-convex topology generated by the non-Archimedean
seminorms £+ || f“p.

THEOREM 4.2. (i) For HE€EQ, BH,p is the finest locally F-convex topology on Crc(x’E)
which agrees with BH,p on up—bounded sets.

(ii) Bp (resp. Bl,p) is the finest locally F-convex topology on Crc(X’E) which agrees
with Bp (resp. Bl,p) on up—bounded sets.

PROOF. (i) Let T be a locally F-convex topology on Crc(X’E) which agrees with BH,

on up-bounded sets and let V be an absolutely convex T-neighborhood of zero. Given d >0

there exists a BH p—neighborhood Vl of zero such that
s

v,N{fec, (X,E): Il fllp__<__ dlcv.

By Theorem 4.1, there exist a clopen set A in X, whose closure in BOX is disjoint from

H, and 6 >0 such that
{fec (X,E): ”f]lp;d, HfIIA’péé}Cvl.
Thus
{fec, (X,E): HfHPS__d, ||f||A,p;6}CV.
This, by the preceding Theorem, implies that V is a BH p—-neighborhood of zero. Thus
£
TZ<B

H,p’
(ii) It follows easily from (i).
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5. DUAL SPACES FOR THE STRICT TOPOLOGIES.

Since each of the topologies 3’6"‘31’31 is coarser than T and since (by [61)
(Crc(X,E),‘ru)' =M(X,E'), it follows that the dual space of CPC(X,E) under any one of the
topologies B,B',Bl,si is a subspace of M(X,E').

THEOREM 5.1. (i) (CrC(X,E),B)'CMT(X,E').

(ii) (CPC(X :E),Bl)'CMO(X,E').

PROOF. (i) Let m €M(X,E') be in the dual space of (CPC(X,E),B) and let s €E. Given

fean] <)

is a B-neighborhood of zero. Let now (Aa) be a net of clopen subsets of X with Aa vg.

€ >0, the set

W :{f €CPC(X,E) :

The closure Ba of Aa in BOX is clopen and B, +Q€eQ. Since W is a B -neighborhood of zero,

Q

there exist h GCQ and p €T such that

wo={fec (X,E): thllp;l}cw.
Choose 6 >0 such that 6-p(s) £1 and set
B =1{x GBOX : |A(x) | <8},
Since BOX—B is compact,there exists a

£ ewl and so

0 with Ba CB. Let now a2a . If f= 'XAGS, then

0

[m(a )s] = dem

<E€.

This proves that lim m(Aa)s =0 for every s €E and so meMT(X,E').
(ii) The proof is analogous to that of (i).
1 =
THEOREM 5.2. (C_ (X,F),8,)" =M _(X,F).
PROOF. By the preceding Theorem, it suffices to show that if meMo(X,F), then the

mapping fHdem is Bl-continuous on Crc(X’F)' So, let meMc(X,F) and set

<1}

There exists a decreasing sequence (Bn) of clopen sets in BOX with Q = ﬂBn.

W={f€C (X,F) : dem
rc

Let Q GQl.
Let A_ =BnﬂX. Since A v@, we have [m[(An) +0 (see [6, Theorem 3.2]). Let now d >0 and
choose A,u in F with |A|2d, [u|-|m[(X) <1, w#0. Choose n such that Iml(An) < |)\f-l and
take A :X—An. Clearly A is clopen and its closure in BOX is contained in BOX-Bn and so

it is disjoint from Q. Let now fecm(x,}“) with [|[f!]<d and ]|fi|A <|ul. Then

”fdm ;[AI-[m[(An)_f:l and ”fdm
A A

”fdm <max {” fdm{, ufdm '} <1

A
which proves that f €W. By Theorem 4.1. W is a B

<|ul|m[ca) <1.

Hence

n

-neighborhood of zero. Since this is

Q

true for all Q€Q. and since W is absolutely convex, it follows that W is a Bl-neighbor'hood

1
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of zero and so me(CPC(X,F),Bl)' .

DEFINITION 5.3. Let HCM(X,E). Then, H is called:

(i) uniformly c-additive iff the following condition is satisfied: If (An) is a
sequence of clopen sets with A v ¢, then m(An) +0 uniformly for mé€H.

(ii) uniformly t-additive iff the following condition is satisfied: If (Aa) is a
net of clopen subsets of X with A, ¥¢@, then m(Aa) +0 uniformly for m€H.

THEOREM 5.4. Let HCM(X,F). Then:

(i) H is uniformly t-additive iff |m|(Aa) +0 uniformly for m€H whenever Aa vg.

(ii) H is uniformly o-additive iff for each sequence (An) of clopen subsets of X
with An Y@, we have im|(An) -0 uniformly for m€H.

PROOF. (i) The condition is clearly sufficient. Conversely, assume that H is
uniformly T-additive and let A, ¥ @. Suppose, by way of contradiction, that there exists

€ >0 such that sup ImI(Aa) >e for all a. Let o be fixed and choose m€H with
meH
|m|(Aa ) >e. There exists B, €S(X) contained in A, such that }m(Bo)i >¢. Since
0 0
Aaﬂ(X—Bo) ¥ ¢, there exists o such that Im(Aa ﬂ(X-BO))l <e. Let B :BOUAa . Then,
1

>a
1 0 1
CA, . Moreover, since |m(BO)| > ¢ and [m(AOt ﬂ(X—BO))I <e and since m(Bl) =

1
A CB
o

1
1 0
= m(BO)+m(Aa n(X—BO)), we have Im(Bl)l = lm(BO)l >¢e. Thus, for each o there exist oy >a,
1
m €H and clopen set B with A, CBCAa and |m(B)| >e. Let D denote the set of all BeS(X)

1

with the following property: There are 050y, 0y 200, and m €H such that Aa CBCAa and

1 2
[m(B)| >e. For each a there exists (by the first part of the proof) B €D with BCAQ.
Thus m B =¢. Also, let B ,B, €D. There are ao,,a,,0_,0 with A. CB_NA_  and

BED 1°72 1272273y o 1 e,

A CB,CA . Let a>a., i=1,2,3,4 and choose B€D with BCA . Then BCB,NB,. Thus D
Oy 2 o, =1 o 1 2
is directed downwards to the empty set. Since, for each B €D there exists m€H with

>
1=

Im(B)| >€, it follows that H is not uniformly t-additive and this contradiction completes
the proof of (i).
(ii) Suppose that there exists a sequence (An) of clopen subsets of X and € >0 such

that sup |m|(An) >¢ for each n. We will show that for each n there exist k >n, m€H
meEH

and AkC BCAn with |m(B)| >e. In fact, there exist m€H and B CAn with |m(BO)| > €. Since

0
Akn(X-BO) ¥@, there exists k >n with [m(Anﬂ(X—BO))I <e. Now it suffices to take
B =AkU BO' We get now inductively a sequence of indices 1 =ny <n,<..., a sequence (Bi)

of clopen sets and a sequence (m.) in H such that A CB.CA and [m.(B.)I >¢. Since
i n,,, 1omy it7i
Bi ¢, H is not uniformly o-additive. It is clear now that the result of (ii) follows.

COROLLARY 5.5. Let m€M(X,F). Then m is t-additive iff }m|(Aa) +0 whenever Au va.

THEOREM 5.6. Let HCM(X,F). Then:

(i) H is an equicontinuous subset of the dual space of (Crc(X’F)’B) iff H is norm-
-bounded (i.e. sup |m|(X) <») and uniformly t-additive.

(ii) H is agegquicontinuous subset of the dual space of (Crc(X’F)’Bl) iff H is norm

bounded and uniformly oc-additive.
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PROOF. (i) Suppose that H B-equicontinuous. Then the polar HO of H in Crc(X’F) is
a B-neighborhood of zero and hence a tu—neighborhood of zero. Thus there exists A #0 in

F such that
Weirec (L) ¢ |[£]] <prer’

If now Aes(x), then A X, €W and so Im(A)I A" for all meH. It follows that
lm;(X) I)\l for all m€H and so H is norm—bounded Let now A vg. If B -Ka is the
closure of A in B X, then B ¥Q €. Since H is a B- nelghborhood of zero, there exists

h €CQ such that

0
Wo={fec (X,F): |Infll < 11cH.
Let € >0 and choose p #0 in F with |u| <e. The set
G={x€BOX: Iﬁ(x)];lu“

is clopen and contains Q. Since B ¥Q, there exists a, such that Ba CG. If a;ao, then

0

0
u_l-')(,A €W, and so [l Im(A )| £1 for all meH. Thus |m(A Y| <]ul <€ for a1l meHn
a

and all a;ao. This proves that H is uniformly t-additive.

Conversely, suppose that H is norm-bounded and uniformly t-additive. Let d >0.Choose
A€F with i)\l 2d and a non-zero Y €F such that |Y|-|m|(X) <1 for all m€H. Let Q€.
There exists a decreasing net (B ) of clopen sets in B X with nBa =Q. If A -B nx,
then A, ¥ ¢. By hypothesis and by Theorem 5.4 there exists o such that |m|(A ) < I)\l !
for all m€H. Let D =X~ Aa' Then D is clopen and its closure in B X is disjoint from Q.

If now f€C_ (X,F) is such that |[f|j<d and ]|f||D <lul, then, for all m€H, we have

” £ dm ;l)\f-lmI(Aa) <1, jfdm

Ay D

£1. It follows that

<luj-Iml(D) 21

and so

Jffdm
trec (%0 : [[£]l<a, |[£]l, <lulcw’

By Theorem 4.1, Hois a B.-neighborhood of zero for all Q €Q and so HO is a B-neighborhood

of zero which implies thgt H is B-equicontinuous.
(ii) The proof is analogous to that of (i).
Using the preceding Theorem and Theorem 5.1. we get the following
THEOREM 5.7. (CPC(X,F),B)' =MT(X,F).
THEOREM 5.8. Let HCM(X,E') and p €T. The following are equivalent:
(i) H is an equicontinuous subset of the dual space of (Crc(X’E)’sp)'

(ii) a) sup m_(X) <o,
m€eH
b) If Aa v¢, then mp(Aa) +0 uniformly for m€H.

(iii) The set Hp ={ms : m€H,p(s) >1} is norm bounded and uniformly t-additive.
(iv) Hp is an equicontinuous subset of the dual space of (Crc(X’F)’B)'
PROOF. (i==>1i) Since BP ;up, H is up-equicontinuous and from this follows that

sup m_(X) <o, Let now A+ and let B =A be the closure of A in B.X. Then B +Q €Q.
meH a a [¢) a 0 a
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There exists h GCQ such that

- . 0
Wo={fec (X,E): ||hf||p; 1}CH" .

Let € >0 and choose A #0 in F with |A| <e. There exists a, such that

A, Clxex: [h(x)| <[]},
0

Let now a 2o, and B €S(X) with BCAa. If p(s) 21, then )\_l-XAS is in wl and so
lm(A)sI ;])\l <e for all m€H. It follows that mp(Aa) <e for all m€H and all aza;.

(ii = 1i) It follows by an argument analogous to the one used in the proof of
Theorem 5.8.

By Theorem 5.8, (iii) is equivalent to (iv). Finally, it is easy to see that (ii)
is equivalent to (iii).

The proof of the following Theorem is analogous to the one of the preceding Theorem.

THEOREM 5.9. Let HCM(X,E') and p €. The following are equivalent:

(1) H is an equicontinuous subset of the dual space of (Crc(X’E)’Bl,p)'

(ii) a) sup m_(X) <,
meEH
b) If (An) is a sequence in S(X) with A v @, then mp(An) >0 uniformly for

m€EH.
(iii) The set Hp ={ms : m€H,p(S) <1} is norm-bounded and uniformly oc-additive.
(iv) I-IP is an equicontinuous subset of the dual space of (Crc(X’F)’Bl)'
For p €T, let M:; p(X’E') (resp. M‘; p(X,E')) be the set of those m€EM (X,E') =
k] 3
= {p eM(X,E") :up(X) <w} for which for each sequence (An) (resp. net (A )) of clopen
i ¥ . ¥ . .
sets with An @ (resp Aa @) we have mp(An) +0 (resp mp(Aa) >0). Let

MGED = U oM GED, mioGED) = UM (GED.
per °9P per ToP
By Theorem 5.8 and 5.9, we have the following
1y =M ' 1yr = M!? 1
THEOREM 5.10. (C_ (X,E),B")' =M (X,E') and (C_ (X,E),B])" =M (X,E").
THEOREM 5.11. Suppose that F is spherically complete and that E is a non-Archimedean
normed space over F. Then:

(1) If (f ) is a sequence in C_ (X,E) such that an(x) || + 0 for all x eX, then

g
(i1) If (f) is a net in C o (X,E) such that Ilfa(x) Il +0 for all x€X, then fa—8>0.
PROOF. (i) Let p=]|- H be the non-Archimedean norm of E and let W be a Bl—closed
absolutely convex Bl—neighborhood of zero. The polar H =wo of W, in the dual space of
(CPC(X’E)’Bl)’ is Bl-equicontinuous. Let o €F, |OL| >1. By [13, Theorems 4.14 and 4.15],
we have HOCa-W. Choose y,6 #0 in F such that |y| ;Hle, lvs| ;]al_l and |6|-mp(X);|a|-l
for all m€eH. Let

An:{xex:llfn(x)llilal}.

Then, A +¢ and so, by Theorem 5.3, there exists n, such that mp(An) <|8| for all meH

0
and all n>ng. Let now n2ng. For all m€H, we have
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' -1
” fnclmI ;|y|~mP(An); o
A

and o
![ £ dm| <|8]'m (%)< o] L.
J n P
X-Arl
Thus, Ja fn dm| <1 for all m€H which implies that afn €H0Caw and so fn eW.
(ii) The proof is analogous to that of (i).
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