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ABSTRACT. The authors give sufficient conditions for all oscillatory solutions of a
sublinear forced higher order nonlinear functional differential equation to converge
to zero. They then prove a nonoscillation theorem for such equations. A few inter-
mediate results are also obtained.
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1. INTRODUCTION.

Consider the n-th order (n 2= 2) nonlinear differential equation

@)= @)Y = fe,x(0),x2(0)) (1.1)
where 1 < v < n -1, and the functions r, g : [to,w) ~ R and f : ito,m) X R2 ~ R
are continuous. We shall also require throughout that r(t) > 0 and g(t) =~ « as

t - o,
Our principal efforts here will be to obtain conditions which imply that certain

classes of solutions of equation (1.1) are nonoscillatory and sufficient conditions to
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ensure that some classes of oscillatory solutions of (1.1) tend to zero as t > . The
results obtained here for oscillatory solutions extend results previously given in

[6, 8, 10, and 13], and the nonoscillation results extend those found in [1, 5-8, 10,
and 13]. We note that the only nonoscillation theorems known for higher order ordinary
nonlinear equations are due to Chen [1], Graef [4], and Staikos and Philos [13]. 1In
the case of higher order functional equations the nonoscillation problem is considerably
more difficult than it is for ordinary equations with the only results to date being
those of Graer et al. [5-7] and Singh [10]. For a discussion of the particular diff-
icults encountered in obtaining such results for functional differential equations the

reader is referred to [8].

2. MAIN RESULTS

A solution x(t) of (1.1) will be called oscillatory if its set of zeros is
unbounded and it will be called nonoscillatory otherwise. Without further mention we
note that the results here pertain only to the continuable solutions of (1.1), and
that a number of them will be for classes of solutions of (1.1) which satisfy a growth

condition of the form
[x(t)| = 0(m(t)) as t > = (2.1)

where m : [tO,m) + R 1is positive and continuous. The asymptotic behavior of
certain solutions of functional differential equations which satisfy conditions of
type (2.1) has also been studied by other authors, for example Staikos and Sficas [14]
and Graef et al. [6, 8].

We will assume in the remainder of this paper that the function f in (1.1)

satisfies an estimate of the form
FECE,x,7) | < F(e, x|, |yD (2.2)
2
where F : [to,m) X R+ > R+ is continuous and

F(t,u,v) < F(t,u',v') for 0 su<u', 0

A
<
IA
<

It will also be convenient to use the notation

(n-v)

z(t) = r(t)x (t)

and

x(k)(t), if 0 <k <n-v-1

wk(t) =
z(k-n+v)(t)’

IA
=
A
=}

if n-v

throughout the paper. Before stating our first result we note that if x(t) 1is an
oscillatory solution of (1.1), then wk(t) also oscillates for k=1, 2, ..., n - 1.
The following lemma provides some useful expressions for wk(t); they will be used in
the remainder of this paper.

LEMMA 1. Let T, < T, < ... < Tn be such that

w_ .(T.) =0, j=1,2, ..., n. (2.3)
n_J( J) j
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Then for any ¢t > Tn we have

t si_1 sy
wn_j(t) = j ,J . .[ f(s,x(s),x(g(s)))dsdsl...dsj_1 (2.4)

t s s s
v+l v 1
wn—j(t) = j . j [l/r(sv)] j ve ‘ f(s,x(s),x(g(s)))dsdsl...dsj_1 (2.5)

for v+ 1< 3j<n.
PROOF. The conclusions of the lemma follow from (1.1) by integrating from Tj
to t successively for j = 1,2,...,n.

THEOREM 2. Suppose that (2.2) holds and

oo S
[sn_v—l/r(s)] (s—u)v_lF(u,cm(u),cm(g(u)))duds < o (2.6)
o o

for any constant c¢ > 0. If x(t) is an oscillatory solution of (1.1) satisfying
(2.1), then wk(t) >0 as t >eo for k=0,1,..., n-v -1,
PROOF. Let x(t) be an oscillatory solution of (1.1) satisfying (2.1). Then
there exists T > to and a constant c¢ > 0 so that |x(t)]| < em(t) and
|x(g(t))]| < cm(g(t)) for t = T. Choose Tj’ 1<j< n, sothat T £ T1 STy < ... < Tn

and (2.3) holds. Integrating equation (1.1) j-times for v + 1 < j < n we obtain

(2.5). Note that if t
S t S
P(u)du|ds < 'P(u)‘duds.
175 t1J Y

Hence from (2.1), (2.2), and (2.5) we have

t S S S

E .(:)I < Nt S B VIR I A
=] T )T T v T
1 1 1 1

s
.j.lF(u,cm(u),cm(g(u)))duds ...ds, (2.7)

<t, <t, then

1 2

t s t[s
< t
lJ' f P(u)duds “f |J P(u)du | ds <
t2 t t2 t1 t

1

1 j-1.
T

Condition (2.6) implies that mk(t) = wn_j(t) >0 as t+» for k=0,1,..., n - v-1.

REMARK. If m(t) = K, where K is a positive constant, then from Theorem 2 we
have that all bounded oscillatory solutions of (1.1) tend to zero as t > « together
with wk(t) for k=1,2,..., n-v - 1.

In view of Theorem 2 it is reasonable to ask if it is possible to obtain a similar

result but with wk(t) + 0 as t » «» for all k independent of the value of
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i.e., k = 0,1,..., n - 1. If we choose T1 < T2 < ... < Tn such that

“nrj (Tn—j+1) =0 for j=1,2,...,n and then integrate equation (1.1) from
t < Tl to Tn-j+l for j = 1,2,...,n successively we would obtain expressions for
mn_j(t) similar to (2.4) and (2.5) but having a factor of (-1)7  and variable lower

limits. If we would then replace (2.6) by

f[sn_v_l/r(s)]f (u-—s)v_lF(u,cm(u),cm(g(u)))duds < o,
s
we would have that wk(t) +~0as t »» for k =0,1,...,n - 1. This approach however

is not useful in obtaining the type of results we desire in the remainder of this
paper. Due to an error in the way the Tj's were chosen and the integrations per-
formed, several incorrect results have appeared in the literature (see the discussions
in [6] and [12]). We will discuss this point further later in the paper.
In the next theorem we will ask that the function F satisfy the following
sublinearity type condition. There exists a continuous function H : [TO’m) + R
such that
lim sup F(t,v,v)/v < H(t). (2.8)
v >
THEOREM 3. Let conditions (2.2), (2.6), and (2.8) hold with m(t) = K where K

is any positive constant. If in addition
g(t) <t (2.9)

and

®  n-v-1 s V-1
[s /r(s)] (s-u) H(u)duds < =, (2.10)
t t

0 0
then every oscillartory solution of (1.1) is bounded.
PROOF. Assume that the conclusion of the theorem does not hold. Then there is
an unbounded oscillatory solution x(t) of (1.1). Now (2.10) implies that there

exist t, >
sts 1 to so that

t

®  n-v-1 s v-1
[s /r(s)] (s=u) H(u)duds < 1/4
t2 2

for any t2 > tl, and (2.8) implies that there is a constant v > 0 such that for

vV 2V
F(t,v,v) < 2vH(t)

on [tl,m). Let t) < T < Tl < T2 < ... < Tn be such that g(t) = t1 for t > T
and (2.3) holds. Since =x(t) is oscillatory and unbounded, there exists an interval
[a,b] with Tn <a<b, x(a) = x(b) =0, |x(t); >0 on (a,b), and

M=max {|x(t)| : a <t <b} = max{|x(t)] : t,sts b} > vy-
Notice that (2.9) ensures that |x(g(t))| <M for t in [T,b]. Moreover, from (2.2)

and the properties of F we have
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|£(t,x(t),x(g(t))) ] < F(t, |x(e) ], |x(g(tN])
< F(t,M,M)

for T <t <b. Next choose ty in (a,b) so that M = |x(t3)|. Then from (2.7) it

follows that

t3 -v-1 S v-1
M= |x(t3)| i’ﬁ [sn v /r(s)?’.(s—u) F(u,M,M)duds/(n-v-1) ! (v-1)!

T1 Tl

T

IS s
< 2%1. [sn—v_l/r(s){’. (s—u)v-lH(u)duds < M/2
Ty 1

which is clearly impossible.

When equation (1.1) is sublinear we can combine Theroems 2 and 3 to obtain the
following result.

THEOREM 4. If conditions (2.2), (2.6), and (2.8)-(2.10) hold with m(t) = K
for any constant K > 0, then every oscillatory solution x(t) of (1) satisfies
mk(t) +0as t > for k=0,1,..., n - v-1.

PROOF. Let x(t) be an oscillatory solution of (1.1), then by Theorem 3 x(t)
is bounded. Thus the hypotheses of Theorem 2 are satisfied with m(t) = K for
some constant K > 0, and hence the conclusion follows from Theorem 2.

REMARK. Theorems 2-4 above generalize Theorems 1 and 2 and Corollary 3 in (6],
Theorems 1 and 3 and Corollary 2 in [8], Corollary 1 in [13], and special cases of
Lemma 3.2 and Theorem 3.1 in [10] and Theorem 1 in [13]. For a discussion of known
results of this type for second order equations, we refer the reader to references
[6, 8, 10, and 13]. 1In these papers the authors unified and generalized much of
what is known on this problem for second order equations.

Next we will give conditions which guarantee that certain classes of solutions
of (1.1) are nonoscillatory. In so doing the connection between convergence to zero
of oscillatory solutions and nonoscillation will become apparent. For this purpose
we will need the existence of continuous functions G : [To,w) X Ri - R+ and

h : [to,w) -+ R such that

G(t,u,v) < G(t,u',v') for 0 €u<u', 0<v<v', (2.11)
|£(t,x,y) - h(t)] < G(t,|x]|,|y|) for x, y ¢ R, (2.12)
® n-v-1 s -1
J [s /r(s)]f (s—u)v [h(u) |duds < , (2.13)
%o ‘o
and
” n-v-1 s v-1
f sV /r(s)]J' (s-u) " "G(u,cm(u),cm(g(u)))duds < (2.14)
o ‘o

for all c¢ > 0.
THEOREM 5. Let (2.11) - (2.14) hold. Then all solutions of (1.1) that satisfy

(2.1) are nonoscillatory provided there exists a constant k > 0 such that either
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t
lim inff [h(s) - G(s,k,k)1ds > O (2.15)
t > T
or
t
lim sup'f Th(s) + G(s,k,k)1ds <O (2.16)
t > T

for all large T.
PROOF. Let x(t) be an oscillatory solution of (1.1) satisfying (2.1) . Then

from (2.11) and (2.12) we see that (2.2) holds with F(t,u,v) = |h(t)| + G(t,u,v).
This, in addition to (2.13) and (2.14), shows that all the hypotheses of Theorem 2
are satisfied and hence x(t) >0 as t > «. Therefore there exists t > LO so
that |x(t)| < k and |x(g(t))] < k for t 2 t- Now choose T > t, so that

(M = @mx () -

h(t) - G(t,k,k) < wn(t) < h(t) + G(t,k,k)

0. From equation (1.1) and condition (2.12) we have

for t 2 T. Integrating we obtain

t t
[h(s) - G(s,k,k)1ds < » . (t) <| [h(s) + G(s,k,k) Ids.
T n-1 T

If either (2.15) or (2.16) holds, then wn_l(t) eventually has fixed sign which
contradicts the assumption that x(t) 1is oscillatory.

The final theorem in this paper gives sufficient conditions for all solutions of
(1.1) to be nonoscillatory.

THEOREM 6. Suppose that conditions (2.9) and (2.11) - (2.13) hold, G is sub-

linear in the sense of condition (2.8), i.e. there exists HG H [to,«) - R
such that 1lim sup G(t,v,v)/v < HG(t),
vV > ®
“ n-v-1 s v-1
s /r(s)] (s-u) HG(u)duds < o (2.17)
‘o %o

and condition (2.14) holds with m(t) = K for any constant K > 0. If either (2.15)
or (2.16) holds, then all solutions of equation (1.1) are nonoscillatory.

PROOF. Assume that (1.1) has an oscillatory solution x(t). Clearly conditions
(2.2) and (2.8) are satisfied with F(t,u,v) = G(t,u,v) + |h(t)| and
H(t) = H,(t) + |[h(t)|. Furthermore (2.13) and (2.17) imply that (2.10) holds;

(2.13) and (2.14) holding with m(t) = K shows that (2.6) is satisfied. Tt then
follows from Theorem 4 that x(t) - 0 as t > . The remainder of the proof follows
by proceeding as in the proof of Theorem 5 to again obtain a contradiction.

REMARK. Theorem 5 generalizes Theorem 5 in [6] and Theorem 4 in [8)] while
Theorem 6 generalizes Theorems 4 and 6 in [5], Theorem 4 in [6], Theorem 3 in [71,
Theorem 5 in [8], Corollary 4 in [13], and special cases of Theorems 3,4,7, and
8 in [1] and Theorem 3.5 in [101].

As was mentioned earlier several incorrect results on the convergence to zero of
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oscillatory solutions of higher order ordinary and functional equations have appeared
in the literature. This has in turn invalidated the nonoscillation criteria in
these papers as well. 1In this regard we refer the reader to the discussions in [6]
and [12] as well as the papers [2, 3, 9, and 11]. The only correct nonoscillation
criteria for higher order equations to date appear in {1, 4-7, 10, and 13].

In order to illustrate Theorem 6 we will interpret this theorem for the forced

higher order generalized Emden-Fowler type equation
)™V 104 qobx(e(t))) = a(®) (2.18)

where gq, a : [t;,») > Rand b : R >R are continuous and r, g, and v are as before.
For equation (2.18) we ask that g(t) < t, b(x) is nondecreasing,

lim sup |b(x)|/x < =,

X > o

. - n-v-1 s v-1
[s /r(s) 1 (s-u) ]a(u)]duds < oo,
t
0

to

® ron=-u-1 s v-1
s /x(s)] (s-u) |q(u)|duds < =,

and for some k > 0

t
lim inff fa(s) - k|q(s)|1lds > O (2.19)
t > o T

for all large T. Then all solutions of (2.18) are nonoscillatory. Obviously (2.19)

could be replaced by a condition analogous to (2.16).

As an example we consider the equation
[t“x(n—v)](v) + (1/eHx" (") = 1/t5, t =1 (2.20)
where 0 < o <1 and vy 1is the ratio of odd positive integers with

0O<y<l,a+¢>n,a>n-1 and B 2 ¢. Here (2.19) and all the other conditions

listed above hold so by Theorem 6 all solutions of (2.20) are nonoscillatory. None

of the nonoscillation criteria in [1, 4-7, 10, or 13] apply to this equation even when
o = 1.
In conclusion we note that although Theorem 5 does cover the case of super-

. . Y . . . .
linear equations (e.g. b(x) = x', y > 1) there are no known nonoscillation criteria

for superlinear functional differential equations even in the case n = 2.
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