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ABSTRACT. This article considers finite quasifields having a subgroup N of either

the right or middle nucleus of Q which acts irreducibly as a group of linear trans-
formations on Q as a vector space over its kernel. It is shown that Q is a gener-

alized André system, an irregular nearfield, a Luneburg exceptional quasifield of

2
type R x p or type F x p, or one of four other possibilities having order 5, 5,

72, or 112, respectively. This result generalizes earlier work of Luneburg and
Ostrom characterizing generalized André systems, and it demonstrates the close

similarity of the Luneburg exceptional quasifields to the generalized André system.
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1. INTRODUCTION

This article is a continuation of Kallaher [l1]. Let (Q,+,*) be a finite quasi-
field of dimension d over its kernel K = GF(q), where q = pk with p a prime and
k > 1. For the rest of this article we will use Q in place of the triple (Q,+,*),
thereby suppressing the two operations + and °* whenever it is feasible; furthermore,
the symbol Q* will denote the multiplicative loop (¢ - {0},¢) of Q, and K* will have

the same relationship to the field K. If m € Q* the right multiplicative mapping

pm: Q » Q is defined as follows:
X0, = xXm for x € Q. (1.1)

The multiplicative group of Q is the group M(Q) generated by the mappings pm, where

m € Q*; that is,

meQ) = <om|m € Q*>. (1.2)
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One of the principal results in [1] is a description of the possibilities for
Q and M(Q) when M(Q) is solvable. A second principal result deals with type L
quasifields; these are quasifields Q with a non-trivial subgroup N of either the
middle nucleus M of Q or the right nucleus R of Q such that M(N) = N is normal in

M(Q). The subgroup N is called a type L subgroup.

The purpose of this article is to prove the following theorem.
THEOREM 1. Let Q be a finite type L quasifield of dimension d over its kernel
K = GF(q), where q = pk with p a prime and k > 1, and let N be a type L subgroup of
Q. Assume that d # 6 if q = 2. If M(N) acts irreducibly on Q then one of the fol-
lowing statements holds:
(i) The quasifield Q is a generalized André system, and M(Q) < FL(l,qd).
(ii) The quasifield Q is an irregular nearfield.
(iii) The quasifield Q is a Luneburg exceptional quasifield of type F * p,
where d = 2 and q = p = 7 or 11.
(iv) The quasifield Q is a Luneburg exceptional quasifield of type R * p,
where d = 2 and q = p = 19 or 29.

(v) The dimension d = 2 and q = p = 5. Furthermore, if N_. is the irregular

5
nearfield of order 25 then either M(Q) = <MN5*, 21> of order 48 or
meQ) = <m(N5), C> of order 96. Here I is the 2 by 2 identity matrix
and
1 2
C = .
3 4

(vi) The dimension d = 2 and q = p = 7. Furthermore, M(Q) = <MN7*, 21> of

order 144, where N, is the irregular nearfield of order 49.

7
(vii) The dimension d = 2 and q = p = 11. Furthermore, M(Q) = <mN11*, D> of

order 240, where N is the irregular nearfield of order 121 with

11
solvable multiplicative group and

The above theorem is a generalization of the Luneburg-Ostrom characterization
of generalized André systems. (See Theorem 9.2 and Corollary 9.3 on p. 42 of
Luneburg [2].) Their characterization involves collineation groups and their action
on each of the components of the associated translation plane, while the above char-
acterization involves only the quasifield and its multiplication. Theorem 1 also
shows that the Luneburg exceptional quasifields are very much similar to the gener-
alized André systems. This observation has not been made until now. There are
also connections between the above Theorem and recent work (as yet unpublished) by
Geoffrey Mason and T. G. Ostrom on translation planes of order p2 having an extra-

special group of collineations.
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Note also that statements (i) to (vii) are not completely disjoint. For
example, if Q is a Luneburg exceptional quasifield of type F * 7, then
mQ = <MN7*, 21>, the group of statement (vi). Similarly, a Luneburg exceptional
quasifield of type F * 11 satisfies statement (vii). These are the only overlaps.

The proof of Theorem 1 will be given by means of a sequence of Lemmas and
Theorems. Section 2 will list background material and some results on type L
quasifields and type L subgroups; these will be used in Sections 3 and 4. Section 3
will prove Theorem 1 in the case where qd - 1 has no prime g-primitive divisor, and
Section 4 will prove Theorem 1 in the case where qd - 1 has a prime gq-primitive
divisor. (See Theorems 3 and 4.)

We will assume the reader is familiar with the subject of quasifields and the
associated translation planes as given, for example, in Kallaher [3] and Luneburg
[2]. Also, information concerning Frobenius complements will be used frequently;
this can be found in Passman [4].

2. BACKGROUND MATERIAL.

In this section we collect together material which will be referred to frequently
in proving Theorem 1. Proofs are omitted as they appear elsewhere.

THEOREM 2. Let Q be a quasifield of finite dimension d over its kernel
K = GF(q), where q = pk with p a prime and k > 1. The group M(Q) is a transitive
group of linear transformations on Q as a (right) vector space over K. Furthermore,
if M(Q) is solvable, then Q and M(Q) satisfy statements (i), (ii), (iii), (v), (vi),
or (vii) of Theorem 1, or they satisfy one of the following two statements:

(viii) The dimension d = 2 and q = 3; the quasifield Q is the non-associative
quasifield of order 9, and M(Q) = GL(2,3).
(ix) The dimension d = 4 and q = 3, and M(Q) is one of three groups having
orders 160, 320, 640, respectively.

PROOF. See Lemma 2.1 and Theorem 3.1 of Kallaher [1].

LEMMA 1. Let Q be a type L quasifield with type L subgroup N, and assume Q
has dimension d over its kernel K = GF(q), where q = pk with k > 1. The following
statements hold:

(1) WM(N) =N

(ii) The type L subgroup N is contained in both the middle nucleus and the
right nucleus of Q.

(iii) The type L subgroup N = M(N) acts fixed-point-free on Q, and
IN|[]Q* - {0}].

PROOF. See Lemma 5.1 of Kallaher [1].

One implication of statement (iii) in the last Lemma is that the type L sub-
group N is a Frobenius complement. This means that the group structure of N is
essentially determined. It is given in the next Lemma. A Z-group is a (finite)

group in which every Sylow subgroup is cyclic. Such a group is solvable.
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LEMMA 2. Let N be as in Lemma 1. One and only one of the following state-
ments holds:
(i) The group N is solvable, and N contains a normal subgroup NO such that
NO is a Z-group and N/No is a subgroup of Sy-
(ii) The group N is non-solvable, and N contains a normal subgroup Nl with
[N :Nl] < 2 such that N, = SL(2,5) X Ny with Ny Z-group of order prime
to 30.
PROOF. See Passman [4], Theorem 18.2 on p. 196 and Theorem 18.6 on p. 204.
This yields the following important information.
LEMMA 3. Let N be as in Lemma 1. If NO is the subgroup of N described in
statement (i), respectively statement (ii), of Lemma 2, then NO is normal in N.
Furthermore, if U0 is a subgroup of prime order u in NO’ then U0 is normal and

unique in N_, and hence U0 is normal in M(Q).

PROOF.0 For the first statement we need only consider the subgroup NO of state-
ment (ii) in Lemma 2. Since clearly N0 is generated by all elements of N1 whose
order is prime to 30, the subgroup NO is characteristic in N1 and hence N0 < N. The
first part of the second statement is proven in the first paragraph of the proof of
Theorem 18.2 on pp. 196-197 of Passman [4]. (In the proof it is essential that N,
is a Frobenius complement.) The second part of the second statement is proven as
follows. If u = 2 then U0 is unique in N by Theorem 18.1 on pp. 193-194 of Passman
[4]. Assume u is odd. Again by Theorem 18.1 of Passman [4] the Sylow u-subgroups

of N are cyclic. Since UO is characteristic in N, it is normal in N, for NO is

normal in N. It follows that U0 is contained in gvery Sylow u-subgroup of N; thus
Uo is the only subgroup of order u in N, and hence U0 is characteristic in N. Since
N < M(Q), it follows that Uy 2 Q).

LEMMA 4. Assume the hypothesis of Lemma 1. If the group N is cyclic then the
quasifield Q is a generalized André system.

PROOF. By Proposition 19.8 on p. 244 of Passman [4], we must have
MmQ) 5_FL(1,qd). It is well known that this implies Q is a generalized André system.
(See, for example, Kallaher [3; p. 70], or Kallaher [1l; Section 3].)

We close this section with some definitions and a few remarks that will be used
frequently. A group G of linear transformations on a vector space V is irreducible,

or acts irreducibly, if the only subspaces of V fixed by G are the trivial subspaces

V and the zero subspace 0. Otherwise, G is reducible on V.
In the finite case there is a nice number-theoretic condition that ensures
irreducibility. Assume the vector space V has dimension d over the field F = GF(q).

A g-primitive divisor of qd - 1 is a positive integer v such that v|(qd - 1) and

(v,qi - 1) =1 for all i with 1 < i < d. The number qd - 1 always has a prime
q-primitive divisor except in the two cases: (1) d = 2 and q is an odd prime where
q + 1 is a power of 2, or (2) d = 6 and q = 2. (See Theorem 6.2 on p. 27 of
Lineburg [2].) 1If |G| is divisible by a prime q-primitive divisor, then G acts
irreducibly on V. Note that under the hypothesis of Theorem 1 we have qd -1

divides |m(Q)|, and hence every q-primitive divisor of qd - 1 must divide Im(Q)l.
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LEMMA 5. Assume the hypothesis of Lemma 1. Assume further that u is a prime
q-primitive divisor of qd -1 and U is a Sylow u-subgroup of M(Q). If U £ N, then
one of the following statements holds:

(i) The group N is cyclic, [N,U] = 1, and Q is a generalized André system.

(ii) The group N is solvable, p > 2, |U[ =u=d+1-= Zi + 1 for some

integer i > 1, and 22i+1‘|N|.

PROOF. This follows from Satz 2 of Hering [5] and Lemma 4.
3. NONEXISTENCE OF q-PRIMITIVE DIVISORS.

In this section Theorem 1 is proven in the case where qd - 1 has no g-primitive
divisor. It then follows that d = 2 and q + 1 = 2% for some integer t > 2. Another
observation is: The subgroup K* induces the full group of scalar transformations in
M(Q). We will use the symbol K* to also denote this group of scalar transformations.

We start with the following Lemma.

LEMMA 6. Assume the hypothesis of Theorem 1 and assume q = p is odd and d = 2.
One of the following statements holds:

(i) The group M(Q) is solvable.

(ii) The group M(Q) contains SL(2,5) as a type L subgroup of Q.

PROOF. Assume the group M(Q) is nonsolvable. Let m= m(Q) N sL(2,p), and let
M' be the image of M in PSL(2,p). The only nonsolvable subgroups of PSL(2,p) are
PSL(2,p) and PSL(2,5). Thus, M' = PSL(2,p) or M' = PSL(2,5). Since K*, the full
group of scalar transformations, is contained in M(Q), it follows that M contains
the center of SL(2,p); hence M = SL(2,p) or M = SL(2,5).

Assume M = SL(2,p). Since K* < M(Q) it follows that SL(2,p) < M(Q) < GL(Z,p).
The group N irreducible on Q implies N £ K* and thus N/N N K* is a nontrivial normal
subgroup of M(Q)/K* < PGL(2,p). Note that PSL(2,p) < M(Q)/K* < PGL(2,p). The only
nontrivial normal subgroups of PGL(2,p) are PGL(2,p) and PSL(2,p), both of which
have elements of order p. Since p*]N|, this gives a contradiction. Thus m # SL(2,p).

It follows that M = SL(2,5). Then M(Q)/K* is a subgroup of PGL(2,p) containing
PSL(2,5) as a normal subgroup. Since the normalizer of PSL(2,5) in PGL(2,p) is
itself—Theorem 14.6 of Luneburg [2]—it follows that M(Q)/K* = PSL(2,5). Since
N £ K* it follows that N/N N K* = PSL(2,5). Thus N is nonsolvable, and Lemma 2
implies N contains SL(2,5) as a normal subgroup. In fact, SL(2,5) is characteristic
in N, and thus SL(2,5) is normal in M(Q). Hence SL(2,5) is a type L subgroup of Q.

LEMMA 7. Assume the hypotheses of Lemma 6. The quasifield Q and its multipli-
cative group M(Q) satisfies one of the statements in the conclusion of Theorem 1.

PROOF. Assume M(Q) is solvable. We can then apply Theorem 2. Statement (ix)
of Theorem 2 cannot hold since d = 2. Statement (viii) is also not possible since
the quasifield of that statement has a trivial right nucleus and a trivial middle
nucleus. Hence, if M(Q) is solvable one of the statements (i), (ii), (iii), (v),
(vi), or (vii) of Theorem 1 holds.

Assume M(Q) contains SL(2,5) as a type L subgroup of Q. Statement (ii) of

Theorem 5.1 in Kallaher [1] implies that Q is a Luneburg exceptional quasifield of
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type R *# p with p = 11, 19, 29, or 59. A Luneburg exceptional quasifield of type

R * p with p = 11 or p = 59 is the irregular nearfield of that order. (In the case
p = 11 it is the irregular nearfield with Q* nonsolvable.) Thus either statement
(ii) or statement (iv) of Theorem 1 holds.

The following is the object of this section.

THEOREM 3. Assume the hypothesis of Theorem 1. If qd - 1 does not have a
prime q-primitive divisor, then the conclusion of Theorem 1 holds.

PROOF. Since d # 6 if q = 2 the hypothesis about the nonexistence of gq-primitive
divisors implies d = 2 and q = p, an odd prime, with p + 1 a power of 2. Thus the
Theorem follows from Lemmas 6 and 7.

4. EXISTENCE OF gq-PRIMITIVE DIVISORS

In this section we prove Theorem 1 in the case where qd - 1 has a (prime)
q-primitive divisor u.

LEMMA 8. Assume the hypothesis of Theorem 1, and let N0 be the subgroup of N
described in statement (i), respectively statement (ii), of Lemma 2. If there exists
a prime q-primitive divisor u of gq-primitive divisor u of qd - 1 such that u||N0|,
then Q is a generalized André system.

PROOF. Let U, be a subgroup of order u in N By Lemma 3 the group U, is

0 0° 0
normal in M(Q). Since u is a g-primitive divisor of qd - 1 the group U0 is irreduc-
ible on Q as a vector space over K. Thus U, is itself a cyclic irreducible type L

0
subgroup of Q. By Lemma 4 the quasifield Q is a generalized André system.

LEMMA 9. Assume the hypothesis of Theorem 1. If there exists a prime q-primi-
tive divisor u of qd - 1 such that u‘|N|, then one of the following statements holds:
(i) The quasifield Q is a generalized André system.
(ii) The quasifield Q is a Luneburg exceptional quasifield of type F * p,
where d = 2 and q = p = 5, 11, or 23.
(iii) The quasifield Q is a Luneburg exceptional quasifield of type R * p,
where d = 2 and q = p = 11, 19, 29, or 59.
PROOF. 1If u divides the order of the subgroup NO of N then Lemma 8 implies
statement (i) holds. Hence we may assume u*|N0l. It follows that either u = 3 or
u =5 by Lemma 2. We now break the proof into two cases: (1) The group N is
solvable, and (2) the group N is nonsolvable.
Assume N is solvable. By Lemma 2 the prime u = 3. Since q2 = 1(mod 3) for all
q not divisible by 3, it follows that d = 2. By statement (i) of Lemma 2 a Sylow
3-subgroup U of N is cyclic of order 3. If U is normal in N then U is characteristic
in N, and hence U is normal in fi(Q). Then U is itself an irreducible cyclic type L
subgroup of Q, and thus by Lemma 4 statement (i) of the present Lemma holds. Assume
U is not normal, i.e., assume N has more than one Sylow 3-subgroup. Let Nl be the
(normral) subgroup of N generated by the Sylow 3-subgroups of N.
Recall that M(Q) < GL(2,q), and let M be the subgroup induced in PGL(2,q) by

M(Q). Since M(Q) is transitive on Q* the group M acts transitively on the set of



QUASIFIELDS WITH IRREDUCIBLE NUCLEI 325

points of the projective line over K* = GF(q). Thus (q + l)liﬁ . The group N
induces in M a normal subgroup N. Since N is solvable and contains more than one
Sylow 3-subgroup, by Theorem 14.1 of Lineburg [2] the group N contains a subgroup
A A4 and [ﬁ':ZH < 2. (Here the fact that p*]N] is used.) Since A is generated
by its Sylow 3-subgroups it is characteristic in N, and thus A is normal in {l.

By Theorems 14.4 and 14.5 of Liineburg [2] the index [M:A] < 2. Thus
(q + 1)|24, which in turn implies q = 2, 3, 5, 11, or 23. Since 12l(q2 - 1), it
follows that q = 5, 11, or 23. By Corollary 3.4 of Luneburg [2] the group N has a
unique involution which is in Z(N). The group N1 is a pre-image of the group A
since N1 is generated by the Sylow 3-subgroups of N. It follows that Nl = SL(2,3).
The group N1 is characteristic in N and thus N1 is a type L subgroup of Q. By state-
ment (i) of Theorem 5.1 in Kallaher [1] statement (ii) of the present Lemma holds.

Assume now that the group N is nonsolvable. Then u = 3 or u =5. If u=3
then as before d = 2. Assume u = 5; then either d = 2 or d = 4 since qé = 1(mod 5)
for all q not divisible by 5. We want to prove d = 2. Thus we may assume 3 is not
a q-primitive divisor of qd - 1. Assume there exists a prime q-primitive divisor
v > 5. If vi|N| then v||N0I and Lemma 8 implies Q is a generalized André system.
But then M(Q) is solvable, contradicting the assumption that N is nonsolvable. If
V$IN| then Lemma 5 implies N is solvable, again a contradiction. Thus 5 is the only
prime q-primitive divisor of qd - 1. Furthermore, Lemma 5 implies 5||(qd - 1.
Assume d = 4. Since 5 is the only prime q-primitive divisor of q - 1, it follows
that q2 +1= 2t * 5 for some t > 1. On the other hand, by Lemma 2 we have
120](q4 - 1). Thus q is odd and q > 3. But then q2 + 1 = 2(mod 4). Hence q2 +1-=

2+5 = 10; this implies q = 3, a contradiction. Thus d = 2.

We have shown that d 2 when N is nonsolvable. Statement (ii) of Lemma 2
applies and shows that N contains SL(2,5) as a characteristic subgroup of N. It
follows that SL(2,5) is a type L subgroup of Q. Statement (ii) of Theorem 5.1 in
Kallaher [1] then implies statement (iii) of the present Lemma holds. This proves
Lemma 9.

Consider statements (ii) or (iii) of the conclusion of Lemma 9. A Luneburg
expectional quasifield of type F * p, where p = 5 or 23, is the irregular nearfield
of that order. Similarly, a Luneburg exceptional quasifield of type R * p, where
p = 11 or 59, is an irregular nearfield. Thus the conclusion of Lemma 9 could read
as follows: Statements (i), (ii), (iii), or (iv) of Theorem 1 holds.

LEMMA 10. Assume the hypothesis of Theorem 1, and assume qd ~ 1 has a prime
q-primitive divisor u. 1If u*IN] then the quasifield Q and its multiplicative group
M(Q) satisfies one of the statements in the conclusion of Theorem 1.

PROOF. If [Nl is divisible by a prime q-primitive divisor of qd - 1, then
Lemma 9 and the comments after it prove the present Lemma. Thus we may assume no prime
q-primitive divisor of qd - 1 divides ]N|. Lemma 5 then applies; it says that for

d

every prime q-primitive divisor of q - 1 either statement (i) or statement (ii)
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holds. We may assume statement (ii) of Lemma 5 holds for every prime q-primitive
divisor of qd - 1. It follows that u is the only prime q-primitive divisor of

qd -1 and uH(qd - 1). Furthermore, u=d + 1 = 2i + 1 for some integer i > 1,
and 221+1||Nl.
statement (b) of Theorem 3.9 in Hering [6] it follows that either d = 4, q = 2,

Using the notation of Hering [6] we have ¢%(q) =u=d+ 1. By

ord=4,q=3,0ord=2, q-=p.
If d
bilities it follows that 27 |(q - 1), a contradiction. Thus d = 2 and q = p. The

4 then ZS‘INI. Since |N|I(qd - 1), in each of the first two possi-

present Lemma then follows from Lemma 7. (If q = 2, d = 2 then Q must be GF(4),
which is a generalized André system.)
Lemmas 9 and 10 give the following result.

THEOREM 4. Assume the hypothesis of Theorem 1. If qd

- 1 has a prime

q-primitive divisor then the conclusion of Theorem 1 holds.

This Theorem together with Theorem 3 proves Theorem 1.
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