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ABSTRACT. In some recent work in univalent function theory, Aharonov, Friedland,
and Brannan studied the series, ( 1 + xt)a(l - t)B = nzo An(a’B)(x)tn. Brannan
posed the problem of determining S = {(a,B):lAn(a’B)(eie)| < |An(a’8) ],

0<® <27, a>0,8>0,n=1,2,3,...}. Brannan showed that if 8 > a > 0, and

o+ B8 > 2, then («,B) € S. He also proved that (a,1) € S for a > 1. Brannan showed
that for 0 < a < 1 and B = 1, there exists a 6 such that lAég’l) éie)| > |A§z’1)(l)|

for k any integer. In this paper, we show that (a,B) € S for « > 1 and B > 1.

KEY (WORDS AND PHRASES. Hypergeometric Functions, Jacobd Polynomials, Maximum
property, and positive maximum property.
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1. INTRODUCTION.

Let D be a disk {z:|z-a| < r} where the center a is real. Let f he a function

analytic in an open neighborhood of the disk D. It is well known that the maximum
modulus of F on D is attained on the boundary {z: |z - a| = r}. If the maximum
modulus is attained at a + r and only at a + r then we say that f has the maximum

property on D. If in addition f (a + r) > O, then f has the positive maximum

property. If the disk D is not specified then it is assumed that D is the unit
disk.
Let (1 + zt)a(l - t)8 = Z Aéa’s)(z)tk and let MP = {(a,B): o > 9, B > 0 and
k=0
A ﬂa,S)( s L. .
0 z) satisfies the positive maximum property for n = 1,2,3,...}. The main

problem in this paper is to characterize the sets MP and PMP. An application

to extreme point theory is given in [2] .
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2. SOME FUNDAMENTAL RECURRENCE RELATIONS

Starting with
1+anta-o0f- 7 An(a’s)(z)tn, (2.1)
n=0

one can derive a number of recurrence relations. For example

a+z20a-o0PF- 3 An(a+7,8)(z)tn.
n=0

(-v)
T n(-zt)n, by taking the Cauchy product of this

©o
Indeed, since (1 + zt)Y = Z
n
n=0
last series and the series in (2.1) we obtain
k
© n (-Y)k(—z)
I

k a%B) o)y o T AE) oy en,

n=0 k=0 ) n=0
Hence
k
n (-y), (-2)
R O R . N OF 2.
k=0 : -
Similarly
n (Y)
ABE Gy - ) AP @, -
k=0 .

If we let Y = 1 in (2), we obtain

a0 () 4 BB () = A ST (), (2.4)

Relations (2.3) and (2.4) are significant because if (a,B) € PMP, then (o,B')e PMP

for all B' > B. Also, (a,B) € PMP implies that (o + n,B) € PMP, n = 1,2,3,°°".

(a,B)(z)

10y

3. SOME EXPLICIT FORMULAS FOR A

Taking the Cauchy product of the series

® (—a>n<—z)“

1+ zt)a = L 7t and

© (B)
(1 - t)_B = ] —2 t", we have

n=0 **
A8y = F oy By ¥
n Lo@m - o : (3.1)

k
(@) =)

Using the fact that (n

k)! = (l)n_k and (a)n_k , we obtain

= (1—a-n)k

(B)n n (-n)k(-a)k
n! k=0 (l—R-n)kk!

AISO.,B) (Z) =
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(a), (b)
Using 2Fl(a":b;z) = Lo —TE%—ETE z , we obtain
®)
A (0,B) __'n -n,-0; _
‘n (2) = ! 2 l(l-B—n 2) . (3.2)

The Jacobi polynomials are defined as

(o +1)
(a,B) _ n -n,n+oB+l 1 - 2
Pao @) = R Oy T )
Hence
Ar(lot,B)(z) _ (_)npn(-B—n,f.’>--<>t-l)(2z +1). (3.3)

Replacing k by n - k in (3.1), and following the same procedure we get

A(a’B)(Z) = ZnP (‘x-n$8—a-l)(1 + g). (3.4)
n n z
Using Pfaff's tranformation [1, p. 64
a,c- b z 9 e
2Fl( c (1 - Z) ( m‘), [ # 0, —1, 2,

(a,B)

we can write An (z) as

(B) T
A8 o) = B+ % ,E (%1E 2 (3.5)
Setting B > 1, we get
(-)M-0)
(a,1) _ a n+l, z .n+l n+l,n+l-a,
AV (@) = (k) A T R (T S (3.6)

4. SOME MAXTMALITY PROPERTIES FOR A(a B)(z)

It has been proven in 3 that (a,8) € MP for B = 1 and o > 1. We can now
strengthen that result.

THEOREM 1. <{a,B) € PMP for o > 1 and B > 1.

PROOF: It is evident from (3.2) that all coefficients of Aia'e)(z) are pos-
itive for a > n. So clearly Aéu’l)(z) will satisfy the positive maximum pro-
perty for o > n.

The theorem follows form (2.3) upon showing that Aé“’l)(l) >0 for
1 <ac<n.

Assume that 1 < a < n. Then it follows from (3.6) that if
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(=) N
ntl 1. n+l n+l,n+l-a 1
T @ F1 a3 P| <D (3.7)

then A[(l""l) 1y >o.

Note that all terms of the 2F1 in (3.7) are positive. Moreover

n+l-o 1 n+l-a

n+l,n+1-0 1 y = 2 R

12 3 < FeC T s 3

by the binomial theorem.
. -a
Hence the left side of (3.7) is less than |L—a)n+12 /(n+1)!|. Let m be an
integer such that m - 1 < a < m. Then

_ 1(=0) (3-0) * =+ (m-0-1) (m-a) *+*+ (n-a) | _
(n+1)!

(—a)n+l
(n+l)!

a(a-1)e+e° (0-mt+l) (m-a)* e+ (n-0) <
(n+1)! -

m(me-1) +++2+1e1e2+ eee(n-mfl) _ 0+l -1
(n+l)! = ( m ) <L

Consequently I(—u)n+12_a(n+1)!l < 1, and (3.7) is established. Brannan [3],
showed that (a,1) € MP for o> 1. Hence (@,1) € PMP for all o> 1, and by (2.3),
(a,B) € PMP for all @>1 and B > 1.

The author feels that the properties of Jacobi polynomials as given in (3.3)
and (3.4) will be useful in answering other questions of Brannan's regarding the

series (2.1).
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