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ABSTRACT. Given a solution of the heat equation in an open strip, we state necessary

and sufficient conditions for the existence of a boundary function in a given weighted

Banach space. We then investigate the relationship between the smoothness of this

boundary function and the growth of the solution of the heat equation.
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io IN’[RODUCTION.

An interesting problem in classical analysis can be described as follows We are

given a sufficiently nice function on an open domain and we wish to extend it to the

boundary of the domain while preserving continuity in some sense. When this is possible,

we also wish to investigate the relationship between the smoothness of the boundary

function and the growth of the function on the domain. For example, we have the follow-

ing well known theorems in the theory of Hp spaces’

THEOREM I. ([I], p. 33) Let f be a complex valued harmonic function in the open

unit disc {z Izl i} and set

M (r,f) :=
P

If(re p d

it
max If (re

0_< t _< 2H

1 -< p (I.i)

(a) If 1 < p , then f is the Poisson integral of a function in Lp on the unit circle

if and only if

sup M (r,f) (1.2)
0<r<l P

(b) For p i, f is the Poisson integral of a complex Baire measure on the unit circle

if and only if

sup Ml(r,f) (1.3)
O<r<l

The following theorem of Hardy and Littlewood relates the smoothness of the boundary

function with the growth of the function on the disc.
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THEOREM 2. [2], p. 78) Let i-< p<=, f be analytic in the open unit disc and(l.2)hold.

(Then f is the Poisson integral of a 2H-periodic function g in LP[-N, H].) The follow-

ing are equivalent:

2H

sup f Ig( 0 + h) g(O) p dO o(t=p) (1.4)

0<lhl<-t 0

M (r,f ]) =(I r)
=-I (1.5)

P

Here, 0 i.

It is well known that caloric functions (i.e. the solutions of the heat equation)

share quite a few properties with analytic functions. (e.g [3], [4]). In 1954,

Czipszer [5] obtained an analogue of Theorem l(b) for caloric functions defined on the

strip R x (0,c) where the boundary measure is not necessarily finite itself, but a

certain weight function is integrable with respect to the measure. In my dissertation

[6], it is demonstrated how the proof of Czipszer can be modified to yield an analogue

of Theorem l(a), not just for Lp spaces but even for more general weighted rearrangement

invariant Banach spaces.

In this paper, we wish to report a somewhat more interesting part of our work in

[6], namely, an analogue of Theorem 2. Unlike the case of analytic functions, the first

order modulus of continuity does not seem to be an adequate measurement of the smoothness

of the boundary function. Introducing a second order modulus of continuity, we shall

obtain a relationship between the growth of the caloric functions and the smoothness of

its boundary values.

2. MAIN RESULTS.

Let X be a rearrangement invariant Banach function space. We assume the following:

(A) X is isometrically isomorphic to the normed dual of its associate space.

(B) If f is in X, then

lim II f(x+h) f(x) II 0 (2.1)

h+O

Both the conditions are satisfied for Lp spaces if l<p<=. In general, our theorems

will not be true for p I, . With slight modifications, it is possible to obtain the

versions valid for the space Co(R). A survey of some of the important properties of

the rearrangement invariant Banach function spaces can be found in [7 ], 8 ].

We say that a function u is caloric on S := R x (O,c) if
c

2u u
(x,t) e Sc (2.2)

For a function u caloric on S we define the following analogue of the norms M defined
c p

in (I.i):

N(u,c;t) := Nx(u,c;t) := (c t) 1/2 If w(c-t, x) u(x,t) I, O<t<c (2.3)

where

w(h,x) := exp x 2/4h) (2.4)

In [6], we proved the following analogue of Theorem l.l(a), the analog,e of

Theorem l.l(b) being given in [5].
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The following are equivalent:

(a) u is a caloric function on S and for each h e (O,c),
c

sup N(u,h;t) <=
O<t<h

(b) There exists a function f such that w(h,x)f(x)e X for each h (O,c) and

u(x,t) H(f,x,t)

where the operator H is defined by

(245)

(2.6)

H(f,xt,t) := I w(t.x-y) f(y)dy (2.7)

In (2.7) and in all the other formulae of the paper, all integrals are taken over the

whole real line unless otherwise specified.

We note that the boundary function f itself is not necessarily in X. Because of

the presence of the weight functions w(h,x), we need to modify the expression for the

usual second order modulus of continuity to measure the smoothness of f. In [9 ], Freud

introduced a certain modification which was found to be completely satisfactory for the

study of weighted polynomial approximation of such functions. This new modulus is

defined as follows. Let h O. With F(x) := w(h,x)f(x), put

2(h,f,6) := sup llF(x+2t) -2F(x+t) + F(x) II
+ 6 sup If F6(x) [f(x+t) F(x) ]If + =I I(x)F()II (2.8)

where

6(x) := min {6-1, (l+x2) 1/2} (2.9)

Then the modulus of smoothness of f is given by

2(h,f,6) := inf 2(h,f(x) a bx, 6) (2.10)
a,beR

This modulus measures not just the smoothness of f but also the growth of f near .
In [i0] we proved

THEOREM 2. Let h O, O, w(h,x)f(x)eX. Then there exist constants Cl, c
2 depending

upon h and X alone such that

ClK(h,f,6) -< oq2(h,f,6) -< c2K(h,f,6) (2.11)

where the K-functional K(h,f,6) is given by

K(h,f,6) := inf {IIw(h,X)fl(x)II + 621[w(h,x)f(x)ll} (2.121

the inf being taken over all fl and f2 such that f fl + f2’ w(h’x)fl(x)eX’ and f2 is

a twice iterated integral of a function fp e X.

We can now state our main theorem.

THEOREM 3. Let c O, 0 <- i.

(a) Suppose for each h e(O,c), w(h,x)f(x)eX and

2(h’f’6) o(6=) (2.13)

Define u by (2.6). Then u is a caloric function on S satisfying (2.5) and further

6u
N(-, h; t) o(t =/2 i) for each h (O,c) and e(0,h) (2 ]4)
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(b) Let u be a caloric function satisfying (2.5) and (2.14) for each h e (O,c) Then

there exists a function f such that for every h e (0,c), w(h,x)f(x)eX and further,
(2.6) and (2.13) hold.

3. PROOFS.

We adopt the following notation. A B means that there exists a constant c

independent of the obvious variables such that A -< cB. AB means that A B and

B A. Thus, in Theorem 2.2,

K(h,f,6) 2 (h,f,6)

If s O, l(s) will denote the indicator function of X; thus,

l(s) := sup f(st)

(3.1)

It is known [7] that

I(s) -< max (l,s -I) (3.3)

Further for convenience, we shall often write w
h

instead of w(h,’).
PROOF OF THEOREM 2.3

(a) We shall prove that 0 h h I c, then

N(u h t) << t-l2(hl, f; -) (3 4)

We use Theorem 2.2. Let f g + f2 where whge X, f2 is a twice iterated integral of

with e X. Thena locally integrable function f2 whf2
u(x,t) v(x,t) + u2(x,t (3.5)

were v(x,t) :=H(g,x,t) u2(x,t) := H(f2, x,t). Note that

8u2 2u2 H(ft x, t) (3 6)

Hence, in view of the easily verified identity

(3.7)

(3.8)

Thus,

8u2 -I
tN (-- h t) <<II whf211 -< t II w f" IIhI 2

Part (a) will be proved if we now show that

N(--{Sv h,t) t-Ill w
hl flll

(3.9)

(3.10)
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Let O<t<h<hl<C. From

ex 4t
g(y)dy

we get

t 4t z

I ex[’I (Y- -t x)2

- exp y) g(y)dy

]+ 2 (h-t).ty(y_h h-’--h x) + y2

+ (hzt 4h

We shall estimate each term in (3.11) separately.

Y ’i-{ exp - y h-- x

R

wh(Y)g(y)dy

-< (h--t);Y2 exp (- h-t Y2) dY IIwhgll
R

3

<<\-fFI II Whlg

h I_h-t(If y(y x) xp

R

wh(y)g(y)dy [I

4- y dy y2g(y)wh(y) ll
R

(3.11)

(3.12)

(3.13)

(3.14)
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[[ exp 4- (y- ht x2 wh(Y)g(y)dyll
R

h-t I[
\h-t] lWh g I[-< I exp 4- y dy whg

i

R

Inequality (3.10) follows from (3.11), (3.12), (3.13), (3.14) and (3.15). This

completes the proof of part (a).

(b) Choose d small enough so that we can choose 0<hl<h 2d c.

I[exp (x
2n+l

d)
n=0 2n

=Z ox -n=O d/2n1

+1 d/2n
N x2 u (x t)[ dt [l<Z IId/2n exp

n=0

x ) u<< I d
n=0 t --2n+l 2

n

N a/2

n=0 2na/2

(3.15)

(3.16)

Thus,

lxp (- (, 2-) u(x,d o(d

and the series

exp I u, (x,d)+n= (x, d___._)_2n+l
u(x, vd)

in X to say exp( x2/4hl)f(x).converges

A standard argument then shows that

w
t
(x-y) f (y)dy

(3.17)

(3.18)

(3.19)

for all 0<t<h
I and hence for all (x t) in S Since a subsequence of (3 18) can beC"

chosen to converge almost everywhere, fs not dependent upon hI as it might appear to

be. Further, from (3.17)

a/2
lWhl(X)[f(x) u(x,d) ]I l<<d

A1so,

2 x 2 ilw (x)-x u(x,d) I[-<l lexp
4(h-d) x u(x,d) II<< d

a/2
hI

(3.20)

(3.21)

The proof of part (b) is now complete in view of (3.20), (3.21) and Theorem 2.2.
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