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ABSTRACT. In a paper with a similar title Herstein has considered the structure of

inprime rings which contain an element a which satisfies either [a x 0 or is in the

center of R for each x in R. We consider the structure of rings which contain an

element a which satisfies powers of certain higher commutators. The two types which

]nwe consider are (i) [[a,xl],X2] .,Xm 0 or is in the center of R for all

Xl,X2 .,x in R and (2) [a,[xl,[X2, ..,[Xm_I x ]]]n 0 for all Xl,X2 x
m m m

in R. We obtain results similar to those obtained by Herstein; however, in some

cases we must strengthen the hypotheses
n k

Also we consider a third type (3) (axm x a) 0 for all x in R and extend

results of Herstein and Giambruno.
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rings with involution, commutativity theorems.
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i. INTRODUCTION.

The definition of the center Z of a ring R has recently been generalized in

several papers. Herstein [i, Theorem 2] showed that an element a of a prime ring

inR is central if and only if [a,u 0 for all u e U where U is a nonzero two

sided ideal in R. We generalize this result in two directions. First, we show that

]n(I) if R is prime and [[a,ul],U2] .,Um 0 for all Ul,U2,...,um g U, then

a e Z. From (i) it follows easily that a semiprime ring satisfying the Lie nilpotent

identity [...[Xl,X2],... x 0 for all xI x2,...,x in R is commutative
m m

2, p. 230]. We also conclude from (i) two commutivity theorems which generalize two

well-known theorems due to Kaplansky 2, p. 219] and Herstein [3].

Second, we prove that if [a’[ul’[Ul’[U2 [Um-l’Um]’’’]]]n 0 for all

in U, then a g Z if either R is semisimple and U is essential, oru
I

u
2

u
m

R is prime with Z infinite and n fixed.

]nHerstein [i, Theorem 4] proves that if R is prime, a Z, and [a,x g Z for

all x R, then R is an order in a 4-dimensional simple algebra We show that the
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insame result holds if [...[[a,xl],X2] ,Xm Z for all Xl,X2 ,Xm e R.

In another attempt to generalize the structure of the center Z of a ring R

without nonzero nil ideas Herstein [4] proved that the subring

T {a e R: ax
n(a’x) n(a’X)ax for all x e R} Z. This theorem was generalized

by Giambruno [5], who showed that the set G {a e R: ax
m(a’x) xn(a’X)a for all

x e R} Z. In an attempt to generalize these results, we show that

G {a R: (axm(a x) xn(a x) k
a) 0 for all x in R} Z if R is semiprimitive

and 2R # 0.

Throughout this paper R is an associative ring with 1 and Z denotes the center

of R. Moreover, [a,x] ax xa and if X is a subset of R, then (X) {r e R:

rx 0 for all x e X}.

2. MAIN RESULTS. We begin this section with a lemma which will be useful in the sequel.

LEMMA i. Let R be a ring, U an ideal of R, and a e R. If [[a,ul],U2] 0
2

for all ul,u2 e U, then [a,u] 0 for all u e U.

PROOF. Let u e U. Since U is an ideal we obtain

0 [[a,au],u] =[a[a,u],u] a[[a,u],u]+ [a,u

However the first term is zero. Hence [a,u]2
0.

THEOREM i. Let R be a prime ring and U # 0 an ideal of R. If a e R is such

]u
2

]nthat for fixed positive integers m and n, [.. [[a,uI ],...,urn 0 for all

Ul,U2,...,u e U, then a e Z.
m

PROOF The proof goes by induction on m. The result is true for m i by

Herstein’s theorem [i, Theorem 2].

inAssume the result is true for k m and suppose that [[a’ul]"12]’’’’’Um 0

for all Ul’U2’’’’’Um e U. Set b [a,u ]. Then by assumption

]n[[b,u2],u3], .,Um 0

for all u2,u3,...,Um U. Hence b e Z by the induction hypothesis. By applying

Lemma i we obtain that [a,u]2 0 for all u e U. Therefore a e Z by Herstein’s

aforementioned theorem.

As a consequence of Theorem i, we get the following two corollaries which generalize

for prime rings two well-known theorems due to Kaplansky [2 p. 219] and Herstein [3].

COROLLARY i. Let R be a prime ring and U # 0 an ideal of R. If for every

a R there exists three natural numbers k(a), m(a), and n(a) such that

]n(a) 0[.. [[ak(a) uI] u2],. Um(a)
where Ul,U2,...,Um(a) e U, then R is commutative.

PROOF. Evident.

COROLLARY 2. Let R be a prime ring and U # 0 and ideal of R. If for every

() with integera R there exists two natural numbers re(a), n(a) and a polynomial Pa
coefficients such that

2 ]n(a) 0[...[[(a a Pa(a),ul] u2] Um(a)
where Ul,U2,...,Um(a) U, then R is commutative.
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PROOF. Evident.

Also as a corollary we obtain a result from 2, p. 230].

COROLLARY 3. If R is a semiprime ring satisfying the Lie nilpotent identity

[...[xl,x2],...,xn] 0, then R is commutative.

PROOF. Ev iden t.

The next theorem generalizes a theorem of Herstein [i, Theorem 3].

THEOREM 2. Let R be a prime ring with center Z and let a e R, a Z be

]nsuch that [...[[a,ul],U2] Um e Z for all Ul,U2,...,urn e U where U # 0 is

an ideal of R. Then R is an order in a 4-dimensional simple algebra.

PROOF. If [...[a,ul],U2],...,Um_I] e Z for all Ul,U2 urn_I e U, then

a Z by Theorem 2. Hence there exists Vl,V2,...,Vm_I U such that

b [...[[a,vl],V2] Vm_lJ Z.

inHowever by hypothesis [b,u e Z for all u e U. Ergo, R is an order in a
m m

4-dimensional simple algebra by Herstein [i, Theorem 3].

We now generalize Herstein’s Theorem 2 in [i] in another direction. Let U # 0

be an ideal of R, a e R, m fixed in Z+. If

[a,[ul,[U2 [Um_I u ]]in 0
m

for all Ul’U2’’’’’Um e U (Condition A) then we shall prove that a e Z in the

following two cases:

(i) R is semiprimitive and U is an ideal such that (U) 0 (Theorem 3), or

(ii) R is prime, U is an ideal, Z is infinite, and n is fixed. (Theorem 4).

First we prove a lemma:

LEMMA 2. Let R be a primitive ring, U # 0 an ideal of R, and a R satis-

fying condition (A). Then a e Z.

PROOF. (a) If R is a division ring, then [al[Xl,[X2,... [Xm_I x .J]] 0
m

for all xI x2,.., x R. Hence a Z by a result of Smiley [6
m

(b) If R is primitive, then it has a faithful irreducible R-module V

which is also faithful and irreductible as a U-module. By the Density theorem U acts

densely on V as a vector space over a division ring D. If dimDV i, then R D

and the result follows from (a). So let dimDV i.

Suppose that there exists a nonzero victor v e V such that v and va are

linearly independent over D. Since U acts densely on V there exists Ul,U2 e U

such that vuI v, (va)uI v, vu
2 0, and (va)u

2 va. Thus

v[a,[ul,[Ul,[Ul,...,[Ul,U2]...]]] v

and so v[a,[ul,[Ul,. .,[Ul,U2] ]]]n v. But, by the hypothesis, the expression on

the left is zero, which gives that v 0, contrary to our assumption. Thus for every

v e V, va %(v)v, where %(v) e D. It follows easily from this that, in fact, (v)

does not depend on v, hence va %v for all v e V. So, if x e R, then (vx)a %vx

and (va)x =’(%v)x %(vx). Hence v(xa ax) 0 for all v e V. Since R acts

faithfully on V we have ax xa 0 for all x e R, and so a e 7.



148 J. W. FISHER AND M. H. FAHMY

THEOREM 3. If R is a semiprimitive ring, U 0 an ideal of R with (U) O,

and a eR which satisfies condition A, then a e Z.

PROOF. Since E(U) 0, U is an essential ideal of R. Hence it can easily be

shown that n{P: P primitive ideal such that P U} O. Hence R is the subdirect

product of R/P where P U. It follows from Lemma 2 that a is in the center of

each R/P. Therefore a Z.

THEOREM 4. Let R be prime with Z infinite, U # 0 on ideal of R, and

a R which satisfies condition A, then a e Z.

PROOF. Let C be the extended centroid of R [7 ]. Then C Z and because

Z is infinite condition A carries over to the prime ring S RC and its ideal

V UC. If a # Z then R satisfies a nontrivial generalized polynomial identity

[a’[ulx’[u2x’’’’’rUm-lX’UmX]’’’]]]n 0 for Ul,U2 Um e R. Hence S RC is

primitive by Martindale’s theorem. Since V UC is an ideal of S which satisfies

condition A, we have that a e Z(S) by Lemma 2. Hence a e Z.

Question I: In Theorem 4 is the hypothesis that Z be infinite necessary? Note

that in Theorem 1 it was not necessary.

We finish our paper with a partial generalization of the results in [5] and [4].

Let a be an element of the ring R such that for all u e U, a nonzero ideal of R,

we have

(aum(U) n(u) k(u)
a) 0 (Condition B)

and let {a e R: (axm(x) xn(X)a)k(x) 0 for all x in R}. It is clear that

-G mT =Z.

THEOREM 5. If R is a ring satisfying condition (B) with 2R # O, then either

(i) R is semiprimitive with E(U) 0 or

(2) R is prime with infinite center with fixed integers m, n, and k.

Then a e Z.

PROOF. By using the same technique of proof as that in Theorems 3 and 4, it is

enough to prove the result in the primitive case.

Let V and D be as in the proof of Lemma 2. If dimDV I, i.e., R is a

x
m(x) xn(X)a O. Hence by a result ofdivision ring, we get that for all x e R, a

2
Giambruno [8] a e Z. Thus let dimDV I. If 0 v e V, then the vectors {v,va,va
are linearly dependent. Indeed, if they were linearly independent, then by the density

theorem, there is u e U such that vu v, (va)u v, and (va2)u O.
n (u)

a
k (u)Thus we get v(aum(u) u v if k(u) is even and equals v va if

K(u) is odd. But (aum(u) un(U)a)k(u) 0 so we get a contradiction in both cases.
2Assume that {v,va} are linearly independent, then va %v + va where

%, e D. If % @ 0, then by the density theorem there is w U such that vw v
n(w) k(w) s

vand (va)w 0. So v(awm(w) -w a) +% where s s(k). Contradiction.
2However, if % 0, i.e., va va, then there is y U such that vy v

and (va)y av where 0 # e D, a (because 2R 0 implies D # 2). Thus

v(aym(y) yn (Y) a) k (Y) v y(va) 0 where 0 B B(k) D and y y(k) e D.

Contradiction. Therefore {v,va} are linearly dependent. The same argument as used in

the proof of Lemma 2 shows that a Z. This completes the proof.

RE,LARKS: i) It is of interest to study all the above theorems for rings with
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involution "*" by applying the same conditions on the set of symmetric elements

inFor example, it is natural to ask: If [a,sl,...,s e Z for all Sl,S2,...,s S
n n

and a Z, then what about R? It was shown by Fahmy [9] and Giambruno [8], that if

in[Sl,S2,.. s
n

e Z, thn dimzR <_ 16.

2) A second direction in which one may try to extend the above theorems is to

generalize the cohypercenter introduced by Chacron in 0], i.e., to study the set
2 in(x){a R: [a,x x p(x) 0 for all x in R} where p(x) is a polynomial with

integral coefficients.
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