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ABSTRACT. In a sequentially weakly complete Banach space, if the dual
operator of a linear operator A satisfies certain conditions, then the
spectrum of any weakly almost periodic solution of the differential equation

u' = Au + f is identical with the spectrum of f except at the origin,
where f is a weakly almost periodic function.
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1.  INTRODUCTION.

Suppose X 1is a Banach space and X* is the dual space of X. Let J be the
interval - < t < ». A continuous function f : J » X s said to be strongly
almost periodic if, given ¢ > O, there is a positive real number 2 = 2 (e) such
that any interval of the real line of length & contains at least one point 1t for
which

sup | [f(t+r)-F(t)]] < e. (1.1)
ted

We say that a function f : J » X is weakly almost periodic if the scalar-
valued function <x*, f(t)> = x*f(t) is almost periodic for each x* ¢ X*.

It is known that, if X is sequentially weakly complete, f : J = X is weakly
almost periodic, and A 1is a real number, then the weak limit
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T+

) T
m(e—’l)\tf(t)) = w-1im 1 / e-i)\tf(t)dt
b (1.2)

exists in X and is different from the null element © of X for at most a count-
able set {An}::I, called the spectrum of f(t) (see Theorem 6, p. 43, Amerio-Prouse
[1]). We denote by o(f(t)) the spectrum of f(t).
2. RESULTS

OQur first result is as follows (see Theorem 9, p. 79, Amerio-Prouse [1] for the
spectrum of an Sl-almost periodic function).

THEOREM 1. Suppcse X 1is a sequentially weakly complete Banach space, A is a
densely defined linear operator with domain D(A) and range R(A) 1in X, and the
dual operator A* s densely defined in X*, with R(ix - A*) being dense in X*
for all real A = 0. Further, suppose f : J + X is a weakly almost periodic (or an
Sl-almost periodic continuous) function. If a differentiable function wu: J > D(A)
is a weakly almost periodic solution of the aifferential equation

u'(t) = Au(t) + f(t) (1.3)

on J, with u' being weakly continuous on J, then o(u(t)) \ {0} = o(f(t)) \ {0}.

PROOF OF THEOREM 1. First we note that u 1is bounded on J, since u is weakly
almost periodic. Hence, for x* ¢ X*, we have

T . (T
% /e Sy (t)dt = x*% £ [e”My(t)] (T) P fe'”‘tu(t)dt} (2.1)
[ 0

> iAx*m(e°1Atu(t)) as T+ o,

So, for x* ¢ D(A*), it follows from (1.3) that

T T
tim 3 [e M hrau(t)dt = 1im & [ e A (ARx*)u(t)dt
To T

T4 T )

T .
1im (A*x*) [-}r /e"“‘u(t)dt ]
Tre 0

(A*x*)m(e'ixtu(t))

ixx*m(e'ixtu(t)) - x*m(e'ixtf(t)). (2.2)
Consequently, we have

-ixt

xme” (1)) = (iaxt - Anx)m(e” P tu(e)). (2.3)

Now*suppose that x e o(f(t)) \ {0}. Then, since D(A*) 1is dense in X*, there
exists X] € D(A*) such that

At
0= x’{m(e (1)) = (—)\x; - A*x’l*)m(e

At
u(t)). (2.4)
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Therefore m (e'ixtu(t)) 2 0 and so A e o(u(t)) \ {0}.

Thus we have
o(f(t)) \ {0} _ o(u(t)) \ {0l. (2.5)
Now assume that A e o(u(t) \ {0}. Then, since R(ix-A*) is dense in X*, there
*
exists Xy € D(A*) such that

=ix

* * * t * t
0 = (—i:\x2 - A xz)m(e u(t)) = xzm(e f(t)). (2.6)

Therefore m(e'iAtf(t)) 20 and so X e o (f(t)) \ {0}.
Consequently, we have

o (u(t)) \ {0} o (f(t))\ {0}. (2.7)

It follows from (2.5) and (2.7) that o(u(t)) \ {0} = ¢ (f(t)) \ {0}, which com-
pletes the proof of the theorem.

REMARK 1. The conclusion of Theorem 1 remains valid if D(A*) 1is total and
R{(ir - A*) s total for all real A = 0, instead of dense in X*.

We indicate the proof of the following result.

THEOREM 2. In a sequentially weakly complete Banach space X, suppose A is a
densely defined linear operator, the dual operator A* is densely defined in X*,
with R(A2 + A*) being dense in X* for all real A =0, and f : J -+ X is a weakly
almost periodic (or an S1 -almost periodic continuous) function. If a twice differen-
tiable function u : J » D(A) 1is a weakly almost periodic solution of the differen-
tial equation

u"(t) = Au(t) + f(t) (3.1)
on J, with u" being weakly continuous and u' bounded on J, then
o(u(t)) \ {0} = o(f(t)) \ {0}.

PROOF. For x* ¢ D(A*), we have

T . . . T,
T /e““x*u"(t)dt = (3 e M (e)] g + %l/e'utu'(t)dt}
0 Q0
L. -iat A -iat T 42 T-ixt
=x* (g le w'(t)l o+ ;le  ult)] - To e u(t)dt)
+ 2%me My (1) as T o e, (3.2)
Hence it follows from (3.1) that
)
tim 3+ [ e P hemu(t)dt = (Aexs)m(e” M u(t))
Tso ' @
= a%emle” M) - xrm(e (L), (3.3)
Thus we have
- x*m(e'ixtf(t)) = (WG 4 A*x*)m(e'ixtu(t)). (2.4)

Now the rest of the proof parallels that of Theorem 1.
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REMARK 2. The conclusion of Theorem 2 also remains valid if D(A*) is total and
R(A2 + A*) is total for all real A = 0, instead of dense in X*.

REMARK 3. If X is a Hilbert space and A is a nonnegative self-adjoint
operator, then the hypotheses on A in Theorem 2 are verified (see Corollary 2, p. 208,
Yosida [2]) and so Theorem 2 is a generalization of a result of Zaidman [3].

NOTE. As a conseguence of our Theorem 1, we have the following result:

THEOREM 3. In a Hilbert space H, suppose A is a self-adjoint operator and
f:J+H is a weakly almost periodic (or an Sl-almost periodic continuous) function.
1f a differentiable function u : J » D(A) is a weakly almost periodic solution of
the differential equation

u'(t) = Au(t) + f(t)
on J, with u' being weakly continuous on J, then

a(u(t)) \ {0} = o(f(t)) \ {0}.

PROOF. By Example 4, p. 210, Yosida [2], R(ix - A) = H for all real = O.
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