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ABSTRACT. A train of surface waves is normally incident on a half immersed circular

cylinder in a fluid of finite depth. Assu,ing the linearized theory of fluid under

gravity an integral equation for the scattered velocity potential on the half immersed

surface of the cylinder is obtained. It has not been found possible to solve this in

closed form even for infinite depth of fluid. Our purpose is to obtain the asymptotic

effect of finite depth "h" on the transmission and reflection coefficients when the

depth is large. It is shown that the corrections to be added to the infinite depth
results of these coefficients can be expressed as algebraic series in powers of a/h

starting with (a/h) 2 where "a" is the radius of the circular cylinder. It is also

shown that the coefficients of (a/h) 2 in these corrections do not vanish

identically.
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1. INTRODUCTION.

This paper deals with the reflection and transmission of surface waves normally
incident on an infinitely long cylinder with circular cross section of radius "a"
and horizontal generators, half immersed in an ideal fluid of infinite horizontal

extent but finite constant depth "h." The two-dimensional linearized theory of an
ideal fluid under gravity is assumed to hold in the fluid region. The motion of fluid
can then be taken as irrotational and can be described by velocity potential. The
existence and uniqueness of solution for a partly immersed obstacle was discussed by
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John [I] in fluid of both infinite and finite depth, although a closed form solutior

is apparently not obtainable.

Dean and Ursell [2] investigated the interaction of a fixed half innersed

circular cylinder with a train of surface waves in a fluid of inflnite depth. They

expressed the potential in the fluid region as a sum of wave source petentials and

multiple singularities at the center of the circle with unknown coefficients and

finally obtained an infinite set of linear algebraic equations involving the unknown

coefficients. This infinite set was then solved numerically for particular values of

wave number, and the reflection and transmission coefficients were then computed

numerically. The present problem is a generalization of the above where the depth of

fluid is taken into account. By the use of Green’s integral theorem the velocity

potential at any point in the fluid reglon can be made to depend upon the scattered

potential on the half-immersed surface of the cylinder. This potential can be shown

to satisfy an integral equation of the second kind by another use of Green’s theorem.

We recall that in the plane vertical barrier problems in fluid of infinite depth, by

the use of Green’s theorem and applying boundary condition on the barrier, a singular

integral equation of the first kind in the difference of potential across the barrier

could be obtained and this could be solved in a closed form (see Goswami [3]). Then

for finite depth of fluid a perturbation technique could be applied so as to obtain

correction to the reflection and transmission coefficients for finite depth over their

infinite depth values in the cases when the barrier is in the form of a submerged

fixed vertical barrler (see Goswami [4]) and a submerged fixed vertical plate (see

Goswami [5]). Mei and Black [6] considered scattering of surface waves by rectangular

obstacles fixed at the bottom or at the free surface in a fluid of finite depth and

applied variational techniques to obtain the reflection and transmission coefficierts

numerically. From their results it is not apparently possible to obtain the effect of

finite depth. Macaskill [7] ecently considered scattering of surface waves by a

vertical barrier of arbitrary permeability in a fluid of finite depth. By the use of

Green’s theorem he reduced the problem to a set of integral equations which are then

solved numerically by using a special decomposition of the finite depth source

potential.

For obstacles of types other than vertical barriers, the corresponding problem is

rather complicated. Eve the apparently simple case of a half immersed circular

cylinder in fluid of infinite depth can no longer be solved in closed forms, although

asymptotic methods are available for both long and short waves. For short waves in a

fluid of infinite depth Ursell [8] used an integral equation approach. In this case

there is only one parameter to consider, viz. Ka where K is the infinite depth

wave number and "a" is the radius of the cylinder. But in the finite depth case
there are two independent parameters out of Ka, Kh, a/h instead of only one in the
infinite depth case. In the present paper we take Ka to be moderate and consider h
to be large so that Kh is large and a/h is small. If we want to deal with cases
where K is very large or K is very small, then the present method will perhaps
fail. Under this assumption, it is found that the finite depth corrections of trans-
mission and reflection coeSficients over their infinite depth values can be expressed
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as algebralc series in a/h starting with (a/h) 2. It is also shown that the coeffi-

cients of (a/h) 2 in these series do not vanish identically. #, similar conclusion

was arrived at by Goswami ([4], [5]) when the obstacle is in the form of a submerged

vertical barrier and plate in fluid of finite depth. However, ro numerical result is

presented here.

2. FORMU’ ATION OF THE PROBLEM.

We will use rectangular Cartesian coordinates with origin OF the undisturbed free

surface and at the center of the circular cylinder of radius "a," the y-axis verti-

cally downwards, the z-axis horizontal along the generators of the cylinder and the

x-axis perpendicular to the yz-plane. Let "h" be the depth of water below the free

surface. Let a train of surface waves from positive infinity (x direction) be made

incident normally on the cylinder. The motion of the fluid is irrotational and can be

described by a velocity potential given by Re {(x,y)e-it} where o is the angular

frequency, the incoming wave being described by Re {inc (x,y)e-iO}, since the

motion is two-dimensional and independent of z. The time independent complex valued

potential function (x,y) satisfies the Laplace’s equation throughout the fluid

region, i.e.,

2 2
( + o o y h Ixl < r a (2 I)
x2 -where r2 x2 + y2. The inearized boundarvv condition o11 the undisturbed free

surface s

?--+ K o, y o, Ixl a, (2.2)
where K o2/g, g being the acceleration due to gravity. On the bottom of the

fluid, the normal component of velocity is zero, so that

y o, y h. (2.3)
Also since the cylinder is at rest, there is no flow across the surface, so that

Dr o on r a, y > o. (2.4)
At great distance from the cylinder, the incident wave train produces a transmitted

wave train moving in the negative x-direction for x and a reflected wave train

moving in the positive x direction for x + . These conditions can be mathemati-

cally expressed as

(x,y) inc(X,y) + Rinc(-X,y) as x + (2.5)
and (x,y) T inc(X,y) as x (2.6)

where R and T are respectively the reflection and transmission coefficients which

are to be determined.

The incident field is given by

cosh ko(h-y) -ikox
inc (x’Y) cosh k h e

o
where ko is the positive root of the transcendental equation

K k tanh koh.o
We note that, for large h,

k K (I + 2e-2 kh),
o

so that k and K differ by an exponentially small quantity for large h.

(2.7)

(2.8)

(2.9)
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Let us write

(x,y) (x,y) + inc (x,y), (2.10)
so that @(x,y) is the scattered potential and it satisfies (2.1), (2.2), (2.3)
together with

(x,y) > -= v(0), say, 0 e (2 II)< a - (x,y) > < ate- inc
where the angular bracket denotes the value at r a, and x r cose, y r sine.

Condltions (2.5) and (2.6) respectively reduce to

(x,y) R inc (-x,y) as x + (2.12)
(x,y) (T-1)inc (x,y) as x (2.13)

which show that (x,y) behaves as an outgoing wave as Ixl (R).

3. INTEGRAL EQUATION FOR (x,y) ON THE CYLINDER.

Let G(x,y; E, n) be the Green’s function satisfying the Laplace equation

2 2

(-- + --)G 0 except at (C, n), 0 y < h, Ixl <- (3.1)

with the conditions
@G
B-- + K G O, y O, Ixl < (3.2)

and

By O, y h, Ixl < (3.3)

G In p as p {(x-) 2 + (y-n)} O, (3.4)

G a multiple of cosh ko(h-y) ikolX-E
coCh k h e as lx-i .

o
(3.5)

Condition (3.5) is the radiation condition at infinity. Then G is given by (see
Thorne [9])

-kh
G (x,y; , n) in-r-2 sinh kn sinh ky +

o

cosh k (h-y) cosh k (h )) Xkh (3 6)k sinh kh K cosh kn cos k E) dkcosh

where O’ a {(x-) 2 + (y + n)2}, and the contour of integration is indented below the
simple pole at k k to ensure the radiation condition (3 5) at infinity For as

Ix El , it can be shown that

cosh k (h-y) cosh k (h-n) ik Ix-ElG (x, y; , n) /-2 iF(koh o o e o (3.7)
cosh2 k ho

2 cosh 2 k howhere F(koh) -koh sinh 2 koh
+ 0 (khe-kh for large h. (3.8)

Applying Green’s integral theorem to O(x,y) and G(x,y; a cosa, a sina) in the
fluid region with small indentation at the point (a ccs, a sin) on the circle
r a, we obtain

f f- () + (0) a - G (r, ; a, ) do v(e) G(r, o; a, ) do (3.9)
o o
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where G (r, e; a, ) G (x,y; a cos, a sin) In[{(x a cos) 2

+ (y a sine2}/{(x a cos) 2 + (y + a sin)2}], and the
angular brackets denote the values at r a. Equation (3.9) provides an integral
equation for (0) on the contour of the immersed portion of the cylinder. In
deriving (3.9) we have made use of the fact that

(r cose a coso) 2 + (r sine a sin) 2

o
< a -In 2 2 de "

(r cose a cos) + (r sine + a
The potential function (, n) at a geeral point (, n) of the fluid region can
be obtained by applying Green’s theorem in the fluid region to (x,y) and
G(x,y; F., r), excluding the point (, n), and is given by

2 (4, n) ,(E)) a -{ G (x,y; , n) do

v(0) G (x,y; n) de (3 I0)0

Let the quantities with. a superscript denote their infinite depth values. Then

p e-k(y+)G (x,y; , n) In--T-2,, k K cos k (x 4) dk (3.11)
o

inc (x,y) e-Ky iKx. (3.12)

Let
D+ (x,y)G G + GD Oinc Oinc Oinc

We note that ,D (x,y) is exponentially small for large h Also from (3 16) andinc
(3.11), GD (x,y; 4, n) can readily be shcn to be equal to

-2 e (Ksin ky k cosh kjl)(K sinh kn k cosh kn)
o k k ’)(k s inh kh K dosh k) cos k (x ) dk (3.13)

where the contour is indented below the poles at k K and k k For infiniteo
depth the integral equation (3.9) reduces to

- (a) + =(0) a G (r, 0; a, m) do
o

/ v’(e) G (a, e; a, ) de, 0 < .
o

(3.14)

Let

Ce) =(o) + @DCe), vCe) v(e) + vD(e)
where obviously VD(e) is exponentially small for large h, and

( Ka cose Ka sine iov e) < a-- inc(X,y) Ka e- (3.15)
From (3.9) using (3.14) and neglecting exponentially small quantities for large h, we
obtain the integral equation for D(0) as

- D() +
oa CD(O) {< a -- G (r, 0; a, )> + < aT GD (r, 0; a, ) >} de
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J v=(e) < 6D (r e; a ) de
0

o (e) < a -f GD (r, 0; a, ) > do, 0 < (3.16)

where now o) is supposed to be known being obtained as the solution of the

integral equation (3.14).
4. REFLECTION AND TRANSMISSION COEFFICIENTS.

Using (3.7) in (3.10) we obtai as ,
(C, TI) F(koh) inc(-C, n) o [(e) ako cosh {ko(h a sinE)) ie}

-ik a cose
0

v(e) cosh ko(h a sine)] _e
cosh k h dE),

0

so that by (2.i2) the reflection coefficient R s given by,

R (koh) o [0(() ak
0

cosh (ko(h- a snt)

-ik a cos
o

-i v(E)) cosh ko(h a sinE))] e
cosh k h

dE). (4.1)
0

Again, similarly using (3.7) in (3.10) we obtain as

0(, n) -F(koh) @inc(, n) [0(o) k
0

cosh {ko(h a sino) +iO}

ikoa coso
+ iv(O) cosh ko(h a sino)] e

cosh k h do
o

so that by (2.13), we obtain the transmission coefficient T as

T F(koh o [(0) ak cosh {ko(h a sino) + io}

ik a coso
0

+ iv(O) cosh ko(h a sinO)] ecosh koh do. (4.2)

Making h in (4.1) we obtain

R aK / [(e) e-Ka(sinO + coso)] e-Ka(sino + coso) ie do (4 3)0

Neglecting exponentially small quantities for large h we obtain

R- R a K
o *D (E); e-Ka(sine + coso) io de. (4.4)

Similarly from (4.2)

I io -Ka(sinE)- coso -iO] e-T I- aK [(e) e -e Ka(sine- cos)de (4.5)

and neglecting exponentially small quantities

f’ Ka(sinO- cose) + iedo (4.6)T T a K o D (e) e-
Thus the depth correction to the reflection and transmission coefficients over

their infinite depth values are approximately given by (4.4) and (4.6) respectively
for large h. It wi]] be shown that these are algebraically small for large h and,
in fact, can be expressed as algebraic series in a/h starting with (a/h) 2. The
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quantity CD(O) in (4.4) and (4.6) satisfies the integral equation (3.16). Now
< GD

> and < a- GD (r, o; a, ) > in the right side of (3.16) can be

expressed as a series in terms of a/h for large h starting with (a/h) 2 assuming

Ka to be fixed. This suggests that CD(O) has also a similar type of expansion for

large h. Thus the expressions (4.4) ar, d (4.6) are algebraically small for large h.

That the first terms in the expansion of (4.4) and (4.6) are nonvanishing will be

shown later. These are done in the next sections.

5. ASYMPTOTIC EXP,NSION FOR LARGE h.

By (3.13)

e-kh_Ksinh( kj-k cosh ky)(Ksih kn -k cosh knGD (x,y;
o k(K-k)(Kcosh kh k sinh kh) cosk(x ) dk.

(5.1)
In view of (3.16), we confine our attention to IYl <- a, Inl -; a, Ixl _<. a, IE. _< a.

The integrand ip. (5.1) (excepting the term cos k(x F,;) is of the order
-2 kh 2e e which is obviously expenentiallv small when k* here
sufficiently large, and it is still exponentially small when we replace

by the crude bound cos 2ka. Thus we can expand the factors in

(Ksinh k), -k cosh ky)(K sinh kn k cosh kn) cos k (x ) (5 2)k (K- k)
by the pover series expansion in k. Also write

-kh -kh me e
Kcosh kh ksinh kh Kcosh k taF,hm kh

m=o

_I _mK (I tanh kh) r. tanhm kh.
m=o

In (5.2), put k Ku, then (5.2) becomes

(Ksinh uKy K u cosh uK},)(K sinh uKn K u cosh Kun) cos u(Kx K)
uK2 (I-u)

S u s f (Ky, Kn, Klx- I), say,
s:l s

where fl (Ky’ K,, K Ix {I) (KY l)(Kn I),
and other f’s s can be found.

Thus the integrand in (5.1) cap. be expanded as

-kh m s
e

kh (m*--o (-) tanhmkh)(sZ=l (-) fs (Ky, Kn, K Ix C I)).Kcosh

jr -u
u)( u xe z u mtanh m s

Hence GD (x,y; {, n) -2 Kcosh uo m=o (Kh)m s=l (Kh) s

du
fs (Ky, Kn, K Ix I))

where

K s fs (KY Kn K Ix KI) msm:o s=I (Kh)m+s
e um+s tanhm u du.ms cosh u

2I f (Ka sine Ka sins Kalcos e cosl) (_)2 2Col
(Kh)2 (Ka)2(Ka sine l)(Ka sin -I)

Thus the first term in the expansion of GD(a cose, a sinE); a cos, a sin) is
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and the first term in the expansion of a- GD (r cose, r sine; a cosc{, a sinc{) is

2oI
(Kh)

< a-F fl (Ky, Ka sine, Klx a cosI)

2Ka %1
(Kh)

(Ka sinc{ I) sine ()2 2oI (Ka sin-1) sine,

where / 2e-u u du x /24.% o cc;sh u

These suggest an asymptotic expansion of D(8) Ior large "h" as

CD (B)- 3)(Kh)2 D () + (Kh)3 (B) + (5.3)

when D() satisfies

vD (a) +
oI CD (e) a G1 (r cose, r sine; a cosa, a sin) de

2 ol (Ka sina I r v (e)(Ka sine I) Ka () sir, e} dO (5 4)

where () in the right side is known in principle. Thus to a first approximation

R2 f Ka (sin + cos) io d(R- R) ’D (e) e-
o

and (5.5)

_R 2-A-.._ ’D
Ka (sine cose) + io(T- I)1 c./" ()) e- do.

We will now show that the integrals In (5.4) do not vanish identically. These

integrals can be regarded as functions of Ka Fegular for all values of Ka. As
these integrals no longer involve h, we can waive the restriction to Ka originally

imposed and instead we assume Ka to be small in the discussion of the following

section.

6. APPROXIMATE VALUES FOR (e).
In the above we have stated that (e) is known in principle which is in fact

the solution of the integral equation (3.14). As it is almost impossible to solve

analytically this integral equation for any Ka, without any loss of generality we

will assume that Ka is small, and then obtain an approximate value of (0). Using

this we will show that the integrals in (5.4) do not vanish for small Ka, and hence

these do not identically vanish for any Ka.
Following Ursell [8], we can show that

G (acose, a sine, a cos, a sins) In sln.__T__T
sin

a-e
< e-K(y+n)

2

e+ K (y+n)+ 2[{(y + In 2ka i) + In sin T e- cosK (x )

sin K(x- C) > +
m= 1 m! (2Ka sin cosm
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and

G -K(y+n)< a (r cose, r sine; a cos4, a sin) > < e cosK (x ) +

0+2 K(y+n)2[{( + In 2Ka xi) + In sin T} a - e- cosK (x 4)

-K(y+n)
sin k(x C)-< a}-e

(i + + +
m+ (-I)m-I )< a (Kp) cos m > (6 2)

m=l m! -f
4-8

where a cos, n a sin, < , < p 2a sin , and the angulor

brackets denote the values for r a.

The integral equation (3.14) can now be rewritten as

7 () + /M(e, ) (e) de L(u, Ka) A(Ka) e-kn

o
cosKC

B(Ka) e-k sin KK >, o < 7, (6.3)
where

e+4 -k(y+n) K( ) <M(e, ) 2[In sin < a e cos x a e-
2 Br r

K(y+n)
sin K(x- K)>

+ (_l)m_
(i + + + B )mm

aT (Kp cos m >] (6 4)
m= m!

Ka(sine + cose) ieg (L(a,Ka) Ka e- a cose, sine; a cosa, a sina) de. (6.5)
o

fBA , (e) < e-KY cos
sin Kx > + 2( + In 2Ka 7i) 0 (e)

o o

-ky cos< aT e sin Kx dO. (6.6)

Neglecting terms of order O((Ka) 2 In Ka) we see that

M(e, ) Ka M (e, ) + 0 (Ka) 2

where

M (e, ) -2 In sin T sine -( e) cose + (sine + sin) (6.7)
so that M1 (e, ) is bounded for all values of e, in (0, 7). Also

k () Ka L I (4) + O((Ka) 2 In Ka)
where L () 4(y + In 2Ka 7i) 2 In 2 2 + 2 In sin

i cos. (6.8)2 cos In tan f
Thus L () is bounded for all values of in (0, 7). For the time being we

assume that A(Ka) and B(Ka) are known. We now apply the following theorem due to

Ursell [8] to the integral equation (6.3).

Theorem If (i) q() is bounded in (0, )

(ii) I o17 Ik(O, )IdO -< m I, 0 7,

then the integral equation

P(e) o
I L(0, ) p (0) de q (e), 0 ,
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may be solved by iteration, and

P() q() + S qs
S=1

where

ql () oin L (e., ) q (e) de, qs () of" L(e, ) qs-1 (e) de, s > I.

The applicability of the theorem to the integral equation (6.3) is assured by the fact

tY, at by virtue of (6.7), the condition (ii) is satisfied for small Ka, anl by virtue

of (6.8), the condition (i) is satisfied for small Ka; A(Ka) and B(Ka) are

assumed to be such that the whole of the right side of (6.3) satisfies the condition

(i) of the theorem.

Now the integral equation (6.3) can symbolically be written as
1 M) Kn -Kn

-11(I () L() A e- cos K > B < e sinK >

so that

M)-I I -I -Kn
-11 () (I T L -A(I -TM) < e cos K >

I M)-I < Kn-B(! T e- sinK{ > (6.9)

where denotes the identity operator. Neglecting terms of the order of

0 ((Ka) 2) 0 ((Ka)21n Ka), we see that

the first tern in (6.9) Ka L I ()
the second term in (6 9) 1-Ka sin + 1. Ka (2 + 2 In 2 21n sin + 2 cos In tan )
the third term in (6.9) Ka cos.

Thus- (a) Ka L () A{I Ka sin + I Ka (2 + 21n2 21n sin a + 2 cosa In tan )}
B Ka cos + 0((Ka) 2, (Ka) 2 In Ka). (6.10)

Now the equations for the determination of A and B are obtained by using (6.9) in

(6.6). These equations are

M)-I Kn KyA[- + {(I - e- cosK > < e- cosKx > do
o

Kn KY
+ 2(Y + In 2Ka 11i) {(I --M) < e- cosK > < a- e- cosKx > dO]

o

1 Kn+B[ {(I -M)- < e- sinKg >} < e-Ky cosKx > de
o

11

M)-I Kn Ky+ 2(y + In 2Ka i) {(I < e- sinK >} < a-- e- cosKx > do]
o

11 -I{(I --M)
o

L()} < e-Ky cosKx > do

and

-I ) -Ky+ 2(x + In 2Ka 11i) {(I -TM) L()} < aT e cosKx > de, (6.11)
o
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M)- Kn -KyA[ {(I e- cosK. >} < e s inKx > dO
o

x
M)-I Kn+ 2(y + In 2Ke i) {(I - < e-

o

B KycosK >} a-iT e- s inKx de]

/’ -I e-Kr, Ky+B[- + (I T M) < sinK >} e- sinKx de
o

+ 2(y + In 2Ka i) (I M)-I Kn -Ky-- < e- sinK >} < aT e sinKx do
o

-I{(I --M)
o

L()} e-Ky sinKx > do

a Ky+ 2(y + In 2Ka i) {(I -_1 M)-I L{)} < aT e- sinKx > do (6.12)
o

where in the terms in all the second brackets is to be replaced by B.

From (6.11) we obtain

A {-4 Ka (I + y + In Ka i) + 0 ((Ka)21n Ka, (Ka)2)} + B {0 ((Ka)2)}
Ka {4 (y + In Ka i)} + 0 ((Ka) 2)

so that

+ 0 (Ka In Ka) (6 13)A(Ka) A

where A + y + In Ka i
We note that it is sufficient to determine A(Ka) up to this order. In (6.12), the

coefficent of A is 0 ((Ka) 3) and the coefficient of B is

{-I + (K-)2 + (Ka) 2 (y + In 2 Ka i) + 0 ((Ka) 3 In Ka)}

while the right side of (6.12) is
2i,-(Ka) {,I + 2(y + In 2Ka i)} + 0 ((Ka) 3 In Ka).

Hence B(Ka) 0 ((Ka) 2) and we neglect it compared to A.
Thus

- , ) a L 1 (a) o[1 / a{-sna + 2 (1 + ln2 In sna

a 2+ cosc In tan g)t] / 0 ((Ka) In a) (6.14)

where A is given by (6 13). Hence (a) is approximated for small Ka.o

We next consider the integral equation (5.3) for D (a)"
This can be rewritten as

-*D () + ,D(O) M(O, ) dO LD( AD(Ka <e-Kn cosK >

o

BD(Ka) < e-Kn sinK > (6.15)

where

Ka (sinO + cosO) iO (Ka sinO- 1) dO (6.16)LD -2Ka Col (Ka sin c 1)[i e-
o

(R) (e) sinO do],
o
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ADB /7 (0) < e-Ky cos Kx > dO +
sin

D o

We note that

B Ky cos Kx > do2( + In 2Ka in) *D (o) < a- e- sino

4 u KaolLD + Y + In Ka ,i
+ 0 ((Ka) 2 In Ka).

(6.17)

(6.18)

Proceeding as in the case of we obtain

AD ADO / 0 (Ka In Ka)

where

and

D O((Ka)2 In Ka)

A DO ol

(I + y + In Ka i) 2
(6.19)

4ol Ka

-D I + y + In Ka i

O(Ka In Ka)ADO I + + y + In Ka i (6.20)

Hence

Ka (sine + cosO) -io do- 2KaKa oI CD e-

Thus for small Ka,

ol + O((Ka)21n Ka).
(I + y + In Ka i)2

R)I
2i Ka

(R-
(Kh 2

oI
(I + Y + In Ka i

+ O((Ka)2 In Ka)] (6.21)

2i Ka
(T T(R))I

(Kh) 2 [ ol O((Ka) 2+ In Ka)]
(I + y + In Ka i2

Thus for small Ka, the coefficients (R R)I (T-T)I of (a/h) 2
in the expan-

sion of R R and T T respectively are not zero, and hence these do not vanish
identically.
7. CONCLUSION.

The depth effect on the reflection and transmission coefficients for the case of
a normally incident wave on a half inmersed circular cylinder is not toc small to be
neglected. If however, the depth is assumed to be large (but not infinite), then
within the framework of our above analysis, the depth corrections to these
coefficients over their infinite depth values, can be expressed as algebraic series in
powers of a/h commencing with (a/h) 2.
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