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ABSTRACT. The Lagrange manifold (WKB) formalism enables the determination of the

asymptotic series solution of linear, non-dispersive wave equations at turning

points. The formalism is adapted to include those equations which model dispersive

waves.
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i. INTRODUCTION.

Scalar wave propagation in a spatially inhomogeneous dispersive medium is com-

monly represented by a partial differential equation of the form

vZ,(,t) f()--2(’t)- g(),(,t) 0 (I.11
t

In Equation (i.I), (r,t) is the wave function, r refers to the spatial coordinates

and t is the time. When associated with propagation in a cold plasma, f() is re-

lated to the refractive index and g() to the plasma cyclotron frequency. No gen-

eral technique exists for solving such equations exactly. Consequently, various

approximate solutions, each valid under specific assumptions, are often developed.

One such approach is the eikonal or geometric optics solution [i]. Although this

technique has long been applied to problems involving dispersive waves [2,3,4],

recent extensions [5,6] and pedagogical treatments [7,8] continue to emphasize its

importance.

The approach applies to dispersive waves when g(r) varies sufficiently slowly

to allow a scaling of coordinates ( /%,t t/l’%>>0) so Equation (I.i) may be

written as

V2(7, t) f(7) 2’p(7,t) 12g(r),(r,t) 0 (I 2)
t2

Physically, this corresponds to the regime of long distances and observation times.

A solution of the form

,(,t) exp{ilS(,t)}A(,t,l) (1.3)
where
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A(,t,%) F. Ak(, t) (i%)
-k

A_k 0 (1.4)
k;O

is assumed. S(,t) may be regarded as a phase and A(,t,%) as an amplitude. Substi-

tuting Equation (1.3) into Equation (1.2) and re-grouping by powers of i% leads to

(i%)2[ (VS)
2 + g () +

2S Si[V2S f()-- + 2VS- 2f(r)- ] +
t

-2 2
(ix)O[v2 f(r)---l}t kl=oAk(’t))(ix)-k 0. (1.5)

Following the usual convention, by introducing the wavenumber and frequency,

S
p VS m- t (1.6)

respectively, a dispersion (the eikonal) equation is obtained from the coefficient
2

of the (i%) term, namely-- f(7)2 + g() 0 (1.7)

If we regard the wavevectors as momenta, Equation (1.7) may be seen as a Hamiltonian

H ’- f()2 + g().

Then Hamilton’s Equations

d_ V H d_ V H (I.8)
dy p dy r

dt 3H d H
(1.9)

dy 3 dy t

may be used to find the trajectories (map)

r(y,o) p p(y,o) (I.i0)

t t(y,o) (y,o) (i. Ii)

where y is a ray-path parameter and a parameterized initial condition. The sign

differences between Equations (1.8) and (1.9) are due to the convention employed in

defining [2]. (We note that since the Hamiltonian is time independent, the system
d

is conservative and y 0.) Integrating along the trajectories obtains the phase

S(’,t) (pod- at) + S( ,to)
o

he pltudes can now be deter[ned fro the ceff[ctents the (iX) and ([X)
tes in gqt[on (1.5). sually these ters are re-grouped, using gquattns (1.6),
int a first order (transport) equation

[V’p + f- 3 3 2(r) + 2(-V + 2f() )] :-(v2 f(r))_I, k > i (1.13)

which obtains the ’s recursively.
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This algorithm suffices to determine asymptotic solutions at most field points.

On caustic curves, regions where the inhomogeneity of the media effects a focusing

of trajectories, the map from (y,) (r,t) becomes singular, i.e.,

(r,t)act (,i:r) 0 (1.14)

and the technique predicts unbounded field aplitudes. Such difficulties can often

be circumvented using the Lagrange anifold formaiism of Masiov [9] and Arnold [10].

A modification of their technique has been applied to the reduced HeImhoItz equation

[li], enabling straightforward caicuIation og the fteid at caustic points whiie

retaining the framework of their formaiism [12,13]. Here we adapt this modified

technique to dispersive waves and extend the approach to more complex caustic geom-

etries than in [ii]. Some field aspects specific to electromagnetic wave propaga-

tion are also considered.

2. PRELININ,RIgS

The Lagrange manifold formalism is a mixed coordinate-momentum space approach

which leads to finite wave amplitudes on caustic curves. Applied to wave propaga-

tion modeled by the reduced Helmholtz equation, the technique involves re-parametri-

zation of the position coordinates (trajectories) in terms of the momenta (wave-

vectors). This re-parametrization is essentially a level-preserving coordinate

transformation, i.e., regular, or non-caustic, points are arried to regular points

and singular, or caustic, points are carried to singular points. For example, let

waves propagating from a point source at the origin be modeled by the reduced

Helmholtz equation

2 2 2

x2 y2
+ (1-x) 0. (2.1)

Near turning (caustic) points of the highest order, we assume an asymptotic solution

of the form

() fA(,,X)exp(iX(’- S())}d 0(X") (2.2)

where A(,,) and its derivatives are bounded, (x,y), p (px,Py), s a large

parameter and the stationary phase conditon [p(rop S(p)) 0] determines the

Lagrange manifold of asov near the turing point. The differentiation in Equation

(2.1) is carried across the integral in Equation (2.2 and the erms are re-grouped
2

by powers of i. For clariy, we retain only the (iX) term

f (px2+py2+X_l)(i%)
2 A(r,p,%)exp(i% (r-p-S(p)) }dp,

from which we obtain Maslov’s Hamiltonian

2 2
H Px + py + x i.

Then by invoking the stationary phase condition Maslov’s Hamiltonian becomes an
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eikonal on the Lagrange manifold

2 2
Px + py + x- I 0. (2.3)

Hamilton’s equations lead to the maps

2
x -t + 2t sin @ Px -t + sin 8

y 2t cos 8 py cos @

where here e is an initial propagation direction with respect to the y-axis. Invert-

ing the (t,e) (px,Py) map and substituting into the coordinate space map leads to

the Lagrange manifold and phase

2 2 S 2
1/2 S

x-- l-Px-py -x Y 2py(l-py -2PxPy p--
3/2

1 3 2 2 2)(,) r-p SCp) XPx + ypy Px + x + Pxpy + (l-py
At (t,8) (2,30o), (x,y) (-2,3.46>, the map (t,8) (x,y) becomes singular, cf.

Equation (1.14). At the corresponding values of the momenta (px,Py) (-1.5,.866),

the Hessian determinant of the phase is also zero,

o

Analogously, at points where the (t,) (x,y) map is non-singular, the Hessian deter-

minant above is non-zero. This correspondence between the Jacobian of the map and

the Hessian of the phase is central to the formalism.

In applying this technique to dispersive wave propagation, Equation (1.2), a

similar level-preserving transformation must be constructed. A disadvantage (com-

pared to the case above) in constructing this coordinate transformation arises from

the definition of . For, just as in the classical approach, where the conventional

definition of led to a sign difference in Hamilton’s space-time equations [2,3,4],

the sign differences involved in the conventional definitions of p and , Equations

(1.6), must be accounted for here. Because the explicit form of the phase is so

crucial to the formalism, one approach to accounting for this sign difference is in

the phase. Specifically, rather than assuming an asymptotic solution involving the

usual form exp{i(r-p t)}, we assume Equation (1.2) has an asymptotic solution of

the form

() fA(,,,,)exp{i (-+0T-S(,))}dd 0(-0) (2.5)

where is a function of time, namely

-t (2.6)

Since Equation (1.2) is time-symmetric, its form remains the same under this substi-

tution. For causality, we shall consider T < O, which corresponds to t > 0 in the

classical development above, and define the phase as

(r,,p,) r’p + T S(p,). (2.7)
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Using this device allows the straightforward construction of the required level-

preserving coordinate transformation while retaining the classical definition of

(2.8)

as well as the form of Hamilton’s equations given by Weinberg [2].
3. FORMALISM

To begin the algorithm, we first introduce T into Equation (1.2) obtaining

2 f() 2g() 0 (3.1)

and assume the asymptotic solution from above

The technique proceeds by carrying the differentiation in Equation (3.1) across the

integral in Equation (2.5) resulting in

fd-d exp{il (r-p+mT-S(,e))}{ (iI)2(.p---f(7)2+g() )A +

aA + (i)0 2_A(il) (2’VA-2f(r)h--J) (V2A-f (r)2)} 0(I ).

Maslov’s Hamiltonian is the coefficient of the (il)
2

term

H ’ f(7)2 + g(7).

(3.2)

(3.3)

Then by invoking the stationary phase condition

Vq (-v +) 0
p (3.4)

which defines the Lagrange manifold

T
P

Maslov’s Hamiltonian becomes an eikonal equation on the Lagrange manifold

p’p- f(? S)c02 + g(? S) 0
P P

cf. Equation (1.7). To obtain the phase, we first use Hamilton’s Equations

dr
d- V H dp =_ HP d r

d_XT a_U d H
dy a dy aT

noting the equivalence of Equations (3.8) and (1.9) using t r, to find the
trajectories

(3.6)

(3.7)

r r(y,o) p p(y,o) (3.9)
T (y,c) o o(y,c) (3.10)

where y is the ray-path parameter and a set of parametrized initial conditions,e.g., direction cosines. Then inverting the (,) (,) map obtains

Y Y(P,.) o (p,) (3.11)
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Next, substituting into the (,r) equations explicitly determines the Lagrange mani-

fold

(y(p,o), (p,o)) V S(p,oo) (3.12)
P

I(y(p,), a(p,)) S(-,co) (3.13)

Finally, by integrating along the trajectories in Equations (3.12) and (3.13) we ob-

rain
p,’

S(p,)

Po ’o
(r-dp + Ida) + S(Po, (3.14)

O

analogous to Equation (1.12), and thus the phase

(r,l,p,0) ’ + S(p,). (3.15)

Just as in Equation (2.4), setting the Hessian determinant of the phase to zero

32 0 (3 16)det {3(,)
)on this curve cot-determines the caustic curve in (p,)- space. Each point (c’ c

responds to a space-time (rc,tc) point which is found by explicit substitution in

the Lagrange manifold and using t T (Equation (2.6))
C C

v S(p ,
c p c c

3S--.
t T o--IPc ’ )"

The locus of these points specifies the caustic in (,t)-space.
To obtain a transport equation for the amplitudes, the Hamiltonian is Taylor ex-

panded near the Lagrange manifold._ f()2 + g() P’P f(VpS)
2 + g(VpS) + (r---VpS)-r + ( )DS (3.17)

where

ir 7rH(V(r---VpS) + 7pS, w)d3S
0

1

_--H(VpS ( s s)DT T ) + )d

0

i.e., the remainder terms in the Taylor series less factors of (- V S) and (r S
p ),

respectively. By substituting Equation (3.17) into Equation (3.2), noting

d d0 V .[A exp {il(r-p + S(p,))}]
q

3S + .V A + AV -}, (3.18)d" do exp{ il (r" PT-S (P,) ilA (r-VpS) "Dr+ilA(- -)D
q q

where D --(Dr,D), and taking the surface integral over a sufficiently large radius

that it vanishes, Equation (3.2) becomes
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dp d0 exp{iX(r’p + T S(p,e))}[- iXV A.D iXAV .D +
q q

A 2
A ZA2iX(p-V A- f(r)) + (V f(7)2)} 0(X-)"

r r T
(3.19)

Then requiring

A i 2 2A.
V A-D A .D + 2p’ A 2f(r) + (Vr

A-f() ---; 0 (3.20)
q q r

in a neighborhood of the Lagrange manifold leads to a transport equation if we intro-

duce the flow

d_r 2p
dp

dy dy r
(3.21)

d__ 2f() d__ D
dy dy T

That is, Equation (3.20) is satisfied, and consequently Equation (2.5) is an asymp-

totic solution, if we allow the asymptotic series

A(,x,p,,l) Z (,r,p,0) (iX)
k;O

-k

to evolve along the transport equation

dA AV - + i 2
A 32A)--my q (Vr f(7) --2 0. (3.22)

The determination of the asymptotic series of the integrals

Ak(,T,p,) exp {il(r,,p,)}dpd

where (r,,p,) and Ak(,T,p,0) follow from Equations (3.15) and (3.22) respectively,

usually proceeds by transforming the phase to its canonical form. Off the caustic

(non-zero Hessian determinant) or if the Hessian matrix has one zero eigenvalue, this

form is

2 822 8
2

84n. (3.23)(r T 8) ,T Po,o) -+ 81o’ (to 3

If the field point is not a caustic point, n 2; the sign of each 8
i

is that of the

corresponding eigenvalue and the classical stationary phase technique applies to the

transformed integral. If the field point is a caustic point, the value of n is de-

termined from the relative degeneracy of the Hessian based on a criterion derived

from a Theorem of Thom (Appendix).

Several approaches may be used to construct the coordinate transformations that

carry the phase to its canonical form. If n 2, a Taylor expansion of the phase

followed by completing the square (alternatively, a principal axis transformation

and a re-grouplng) obtains the required form and the coordinate transformatlons.

If n > 2, a Taylor expansion of the phase followed by a principal axis transforma-

tion obtains
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3

ii
2

(ro’To’) (o’To’Po’o + 7. + 7. <i%4 +
i=l i=o

7. C
k k + higher order terms

ijk
ij ij (3.24)

where the . are eigenvalues and the stationary point has been translated to the

origin for clarity. If Equation (3.24) cannot be transformed to Equation (3.23)

using algebra alone, either of two other basic approaches may be used. One procedure

involves using the Cauchy inversion theorem to make explicit the algorithm in the

Splitting Lemma [14]. As this construction has been detailed in a similar context

[ii], we sketch instead the other procedure, a straightforward Taylor series approach

[15,16] which extends to the case where the Hessian matrix has two zero eigenvalues.

Specifically, following Gilmore [16], we let

i + Z A le 34u
8i =I--i i +++U> 2

2
i 1,2,3 (3.25)

84 4 i k. ")i/n
j=O

j4j

Then substituting the above into Equation (3.23), expanding and comparing termwise

with Equation (3 24) leads to algebraic equations for the An and k., specifying
j

the transformation.

If the Hessian matrix of (ro,ro,Po, has two zero eigenvalues, the canonical
o

form of the phase is

2
(ro,ro,8) (ro ’ro’po’eo 812 82 + U(83,84 (3.26)

where U(3,84) is the appropriate Thom umbilic specified by the criterion in the

Appendix. While an extension of the algorithm based on the Splitting Lemma may be

used to construct the coordinate transformations carrying Equation (3.24) to the

form above, the Taylor series approach is more straightforward. For brevity, we

consider only the case involvinB the elliptic umbilic. Similar treatments apply

to the hyperbolic and parabolic umbilics.

First, the phase is Taylor expanded and after a principal axis transformation

is re-grouped in the form

( o -) ’Po’ + 2
O’ (ro’ o o ii +

i=l (3.27)

3
<303 + <21324 2 3+ <1234 + <034 + hl(3,4) + h2(i,2,3,4)

where hl(3,4) consists of higher order terms in 3 and 4 alone and h2(I,2,3,4)
consists of the remaining terms. To carry the cubic terms in Equation (3.27) to the

form of the elliptic umbilic

2 3
UE(Y3’Y4) 3 Y4 Y4 (3.28)

first a linear transformation is introduced

Yi i i 1,2



DISPERSIVE WAVES AND CAUSTICS I01

Y3 ii 012

"(4 L021 022_

into Equation (3.27). Comparing the cubic terms in Y3 and Y4 which result with

Equation (3.28) determines the Oij and puts Equation (3.27) into the form

2

i2+ 2 3+.In(rL,T ,)=(r r 00o)+ 1%iy Y4-Y4 (Y3’Y4)+2(YI "(2 Y3’Y4 (3 29)
o ’Po’ 3

i--i

where hI
and 2 are the transformed hI

and h2, respectively. To remove the higher

order terms, and thus obtain the canonical form (Equation (3.26)), we proceed as

above and insert the transformations

B Y + Ai a n U i 1,2
i i a+.q+6+>2 aYl Y2 Y3 Y4

i m n. y. + 7. B Y3 "(4 i 3 4
i i re+n>2 mn

(3.30)

into Equation (3.26). Then expanding and making a term-by-term comparison with

Equation (3.29) leads to equations for the coefficients in Equation (3.30) and thus

specifies the transformations carrying the phase to its canonical form [16]. Similar

treatments apply to cases involving the other umbilics.

After the appropriate coordinate transformation, the resulting integral at any

field point (L,To) is of the form

(, T)-- fdK exp {iX (o,To, S-)}(zo,- To,-, X) (3 .31)

where

(Px,P,Pz,)(.r-o, To,g,) A(o To’F(-) ’(g) )
(1, S2, 3 4

and the phase is one of

(rL’To’) )(o’To’PL’ao +/- 812+-822+/-832+/-4n

where U(83,84) is an umbilic. If the phase is of the form in Equation (3.23) with

n=2, the classical stationary phase technique applies directly. If the phase is of

the form in Equation (3.23) with n>2, Equation (3.31) is regrouped into

exp(i%(o,To,PL,0o) fd4exp{+_i%4n}fdBld2d3 _+12_+22 2exp{iX( -+S
3 ))(ro,T ,8 X).

0

The classical stationary phase technique applies to the multiple integral. Each term

in the classical expansion is multiplied by the integral over B4 to which a modified

stationary phase technique applies [ii], resulting in the full expansion of the inte-

gral in Equation (3.31).

If the phase in Equation (3.31) is of the form in Equation (3.26), analogous to
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the procedure above, the integral is re-grouping into

2+8 2)}(-o To ,X).exp{iX(o,To,pL,o)}fd83d84exp{iXU(3,84)}fdBld82exp{iX(+-81- 2

The classical stationary phase technique applies to the integration over i and 82
Each term in this expansion is multiplied by the integral over 3 and 84 to which a

modified stationary phase technique applies [17,18], resulting in the full expansion.

4. EXAMPLE

Although the formalism is relatively straightforward, we choose an example in

(x,y,t) space to reduce the cumbersome algebra. To enable easier comparison with

the example illustrating the algorithm that applies to non-dispersive waves [ii], we

consider a related example with normalized units. Specifically, we consider waves

propagating from a point source located at the origin (x,y) (0 ,0) at time t 0

in a medium described by Equation (i.i) with f() i and g() y-k2. After the

coordinate scaling described above and introducing T -t from Equation (2.6), the

equation we consider is

V2 2 + X2(y_k2) O.
T2

(4.1)

We assume an asymptotic solution of the form

(,T) fdd0 exp {iX(r’p4<0T-S(,))}A(,T,p,,X) O(X (4.2)

with A(,T,p,,X) i at the emitter. Proceeding through the algorithm, we obtain the

Hamiltonian
2

k
2

H .- + y (4.3)

and using Hamilton’s Equations we find the maps

x 2pysin0 Px sinO

y -y2+2pycos0 py -y+Jcos0

In these equations y is the ray path parameter, 0 is taken with respect to the posi-

tive (vertical) y axis, is the initial frequency and # (2+k2)i/2 from Equation

(3.6). Combining these maps leads to the Lagrange manifold

2+k2 2 2 a S
Y -Px -Py (4.4)aPy
x 2Px(2+k2-px2) 1/2 S

2PxPy p-- (4.5)

2 1/2 S
r 2py-2e(0a2+k2-px a-- (4.6)

and the phase

1 3 2 2 2

_
2)3/2(,T p,) r’p + r + y + py( k + (2+k2-px (4 7)Px -o

Equating the Hessian determinant of the phase to zero determines the equation of the

caustic in (p,)- space, cf. Equation (3.16)
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(2py24<02-Px
2 2 1/2

PY
2 2_px2 2)-1/2 2

k
2)(2+k2-px + ()(2+k2-px + py(3Px2-32-py 0

(4.8)
Those real (p,) satisfying Equation (4.8) project the caustic onto configuration

space through the Lagrange manifold. For definiteness, let 3 and k 4, thus

5. Then one such (p,) set is (px,Py,) .33, -3.9, 3.), leading to (x,y,r)

(55.4, -8.96, -38.4) and hence the space time point (x,y,t) (55.4, -8.96, 38.4).

For this (p,) set we find from the maps above (y,@,) (6.4, 60 3.). We note

that at this (y,@,Q)

det .(y ,))
0

confirming the level-correspondence between the parametrizations at the field point.

From the algorithm in the Appendix, we find n=3. For computational simplicity, we

expand the phase only to third order in Equation (3.24) and, after some algebra, ob-

tain the coordinate transformation

(6.38-. 02(.1-1.08(.3-1.99(*2
21/2(.1+66(*3 (6.38-.02(.1-1.08(.3-1.99(*2

-1/2

82=(13.65+1.88(.2+4.77(*3-3.25(*1 1/2(.2+1.45(*32 (13.65+1.88(*2+4.77(*3 -1/2

3={-(.33 (. 52+. 436(*
1
(6.38-. 02(.2-1.08c3-i. 99(.2)-1-2.1(,3 (13.65+1.88,2+4.77(*3-3.25(*1)-I} 1/3

which carries (r,,p,e) at (55.4, -8.96, -38.4, 4.33,-3.9, 3.) to

2 822 3(55.4,-8.96,-38.4,81,82,83) 110.4 + 81 + 8
3

Under this coordinate transformation the field at (x,y,t) (55.4, -8.96, 38.4) is

represented by

2_8 2+833(55.4,-8.96,-38.4) f d8 A(55.4,-8.96,-38.4,8,X)exp{i(l10.4+81 2
)} (4.9)

The first two terms in the asymptotic series of Equation (4.9) are

-4/3
(55.4,-8.96,-38.4) .46

-5/3
Ii

Iexp{ i% (ii0.4n) }F ()cos (n/6) +

exp{ il (ii0.4) }F (2/3) sin(/3).

5. VECTOR FIELDS

The same algorithm applies to vector (electric or magnetic) field propagation.

Using the electric field, , as an example, the vector field equation analogous to

Equation (1.2) is

2V2(,r) f(r)---- %2g()g 0 (5.1)

where (r,r) is a column vector. Analogous to Equation (2.5) we assume an asymptotic

solution of the form

(7,) (7,,p,,)exp{i%(r-p+I-S(,))}dpd0 0(% (5.2)
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whe re

-k
E(or,r,p,,X) Ek(,r,p,,l)(il)

k=O

Proceeding through the algorithm, we find a transport equation results if we require

in a neighborhood of the Lagrange manifold that

3E 1 2
-(V -D)E+DV -E+2p(V-E)-2f(r)3- +--IV -f() O, (5. :)

q q " T

where the symbols follow from the scalar field treatment. Then introducing the flow

dr 2" dp -dy dy r

d’r do-2f() Dr,dy dy

leads to the transport equation

(V -D)E + .EC[V E f() O. (5.4)dy q

As with the field away from the caustic [7], the zeroth-order approximation to

the time-averaged Poynting vector (power density) on the caustic

Re(--x)= [o?i/2Eo2’
where and are the permittivity and permeability, respectively, of vacuum pro-

O O

ceeds from the zeroth-order term of Equation (5.3), i.e.,

E

-(Vq.D)Eo-D(Vq. Eo)+2p(V. Eo)-2f(r)----- 0. (5.5)

Scalar multiplication of Equation (5.5) by E * and similarly multiplying the complex
O

conjugate of (5.5)

3E
* * * 0-(Vq’D)E -D(Vq-E )+2p(V-mo )-2f(r)-- 0 (5.6)

by E and introducing the flow above leads to
O

2
dE

o 2E 2(V .) 0 (5.7)dy o q

E 2(y) Eo2(y=O)exp{ 2f(? .)dy}. (5.8)
o q

A similar consideration leads to a transport equation for the polarization

E= o
* 1/2

(Eo’Eo
(5.9)

First, following Felsen and Marcuvitz [7], we differentiate Equation (5.9) to obtain

dE E dEdP i o o o
dy E dy 2 dy

o E
O

(5.10)
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Then combining Equation (5.7) with the first term of Equation (5.5) and noting that

the remaining three terms
DE dE

_(Vq.o)+2(V .o)_2f (r)
o o

q T dy
leads to

dE

+: o (5.zz)

Dividing Equation (5.11) by E and comparing with Equation (5.10) obtains the inter-
O

esting result that on the flow defined above

dP

the polarization is a constant, extending the off-caustic result of Felsen and

Marcuvitz.

While this development has been concerned with dispersive waves, a parallel de-

velopment obtains analogous results in the non-dlspersive case.

APPENDIX

Consider the phase function (r,T,p,) such that

(Vp + )(rL,To,pL,mo 0

and the Hessian of the phase at (o’To’PL’o) has at least two non-zero eigenvalues.

If the Hessian has no zero elgenvalues the canonical form for the phase is

$( To,) - To,pL 8 2+ 22+_ 2+ 2
o’ (to’ ’mo 1 -8 83 -84

where the signs of the 8
i
are determined by the corresponding eigenvalues. If the

Hessian has one zero eigenvalue the canonical form for the phase is

$(" ,T ’) (’" T 0o) 8 2+ 2+8 32+84no o’ o’Po i-82
To determine the value of n we form

F() ( ,To,p + e , + ue
O p O

where (ep,e) are the components of the eigenvector corresponding to the zero eigen-

value. The exponent of the first non-vanishing term in the Taylor series determines

the value of n. The sign of 84 is the sign of the Taylor coefficient.

If the Hessian has two zero eigenvalues, the canonical form for the phase is

812+-( r g) ,( r ,po,o) +- S22 + U(33 S4)0 0 0

where U(83,84) is a Thorn umbilic. To specify the particular umbillc, the phase is

first expanded and regrouped as in Equation (3.29). The appropriate umbillc is de-

termined by considering the homogeneous cubic

3 2
<303 + <21.334 + <1234 + 0343
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3
If <30 # 0, equating the cubic terms to zero and dividing by 4 obtains

3 2
<30u + <21u + <12u + <03 0

where u 3/4 (If <30 and <03 0, interchanging 3 and 4 yields an analogous

cubic.) The cubic may have four possible root combinations, each corresponding to a

specific canonical form [19].

(a) three real equal roots (fold)

(b) three real unequal roots 3-83842 (elliptic umbilic)

(c) three real roots
(two equal) 83284+844 (parabolic umbilic)

(d) one real root, one complex
2833+8483 (hyperbolic umbilic).

(or 833+843
If <30 <03 0 and both <21’ <12 0, the corresponding form is the parabolic

umbilic. If 30 <03 0 and one of <21 or <12 0, there is no corresponding canon-

ical form. (The case corresponding to three real equal roots represents an atypical

symmetry and is not considered here.) If the Hessian matrix of the phase has more

than two zero eigenvalues, this algorithm does not apply.
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