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1. INTRODUCTION.

In the Leray-Schauder degree theory the study of the index of an isolated

fixed point of a compact mapping is a basic tool for the calculation of the degree.

A fundamental and well-known result of Leray and Schauder [I] commonly known as

the Leray-Schauder principle, is that the topological index at zero of an invertible

linear perturbation of the identity I-A in a Banach space can be expressed in terms

of multiplicity of the characteristic values of A lying in the open interval (0,1).
Krasnosel’skii [2] employed this result as a basic tool to develop his bifurcation

theory for equations of the form:

x uAx R(x,u) 0 (1.1)

in a real Banach space X, where A:X X is a linear compact mapping, R: x R X is

compact mapping, R(x,v) is of o( Ixl I) uniformly in in compact intervals and is

a bounded open neighbourhood of zero in X. Rabinowitz [3] studied the global char-

acter of the solution set of such equations and applied his results in many directions.

Because of t|e wide scope of applicability of the bifurcation theorem of :<rasnosel’skii

and Rabinowitz a tremendous research interest in this field has been evidenced
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currently (see Crandall and Rabinowitz [] and the literature cited there).

The aim of this paper is to generalize the theorems of Krasnowel’skii and Rab-

inowitz to the set valued situation, i.e., to equations of the form:

x Ax + R(x,) (1.2)

where A is above, B: x R CK(X) is a compact set valued mapping and B is of o( Ixl I)
uniformly in in compact intervals Cfor definitions see Section 2), being as above

and CK(X) being the set of all compact convex subsets of X. From our result for equa-

tions of the form (1.2) have dedu ed the same result for equations of the form:

nx pAx + R(x,) (1.3)

where L:X Z is a linear mapping, A:X Z a compact linear mapping, B: x R CK(Z)

a compact mapping and of o(I IxlI) uniformly in in compact intervals. The result for

the equation when R is single valued was first obtained by Laloux and Mawhin [5] (see

also Gaines and Mawhin [6] ). However, even when R is single valued our result is

more general than that of Laloux and Mawhin [5] (see remark 4.3).

As an application of our results, we have included a two point boundary value

problem for a generalized ordinary differential equation, although we hope that these

results will find application to problems in control theory, mathematical economics

and related problems. We have made the paper self-contained as far as is practically

possible.

2. Throughout the paper X will denote a real Banach space and CK(X) will denote the

set of all compact convex subsets of X. A set valued mapping N:Q X CK(X) is said

to be compact if N is upper semicontinuous and maps bounded subsets of Q into

elatively compact subsets of X. The degree theory which will be used here is due

to Ma [?] although all the results obtained for compact mapDins will equally hold

for more general mappings known as ultimately compact mappings by applying the degree

theory for such mappings due to Petryshyn and Fitzpatrick [8].

INDEX. Let be an open neighbourhood of a X and N: CK(X) be a compact

mapping. We assume that a N(a) and there exists eo 0 such that Bee (a) and

(I-N)-I(0) Beo (a) {a:" i.e., a is an isolated zero of I-N, where

Beo (a) { X:II-all eo

and is Identity mapping on X. This implies that for every

(0,o) 0 # (l-N)(Be(a))

where Be(a) denotes the boundary of Be(a). Thus the degree d(l-N,Be(a),0 is defined

and is independent of e (0,e o) by the excision property of the degree.

DEFINITION 2.1. Under the above assumptions the index of the fixed point a of

N is the integer d(l-N,Be(a),O) for any e (O,eo) and will be denoted by i(l-N,a).

REMARK 2.1. If N is single valued, then the index of a fixed point a of N as

defined above coincides with the Leray-Schauder index.

PROPOSITION 2.1. Let N: CK(X) be n compact-mapping such that 0 (I-N)()

and (l-N)-l(0) is a finite set, say, (al,a2,...,an}; i.e., the set of fixed points of N

is f in ite.
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Then

n
d(l-N, O) =j__Z I i (l-N,a.).

3

PROOF. We can find positive numbers ej, j 1,2,...,n such that

Bej (aj) o Bek (ak) for any j,k e{l,2 ,n}

with j # k.

By the additivity and excision properties of degree we have

n n
d(I-N,,0) d(l-N,jlJ.=l Bej(aj )’0) =j=II i (I-N,aj)o

DEFINITION 2.2, Let X be a bounded open neighbourhood of the origin and

B: CK(X) 5e an upper semicontinuous set valued mapping. B is said to be of order

(I Ixl I) if

Ixl -I
sup {I lylI:y B(x)} 0 as lxll O.

REMARK 2.2. It is clear from the definition that B(O) 0 and the definition of

o(I Ixll) coincides with the usual definition of o(llxll) when B is single valued.

THEOREM 2.1. Let N A + B where A:X X is a linear compact mapping with :’er

(I-A) {0} and B: CK(X) is a compact mapping of order o( Ixl I) where X is a

bounded open neighbourhood of the origin. Then 0 is an isolated zero of (I-N) and

i(l-N,O) i(I-A,O)

where i(I-A,O) is the usual Leray-Schauder index of the fixed point 0 of A.

PROOF. Since B is of order o( Ixll) and A is linear, N(O) O.

We can easily verify that for each x

-i
(l-N)(x) (I-A)[I- (l-A) B](x) (2.1)

-I
That (I-A) exists follows from Riesz theory.

Now from the fact that B is of order o( Ix I) it follows that there exists

such that eo(O) and for each x Be0(0)
sup{llYll: Y (I-A)-IB(x)} -< 1/2 lxll.

Hence for each e (O,eo] and every (x,k) Be(0) x [0,13
we have

inf{llx-yIl:y %(I-A)-IB(x)} _> inf{[lx[I [[y[l:y %(I-A)-IB(x)}

llxll -sup {IIyII:y %(I-A)-IB(x)}

Ilxll (2.2)

(2.1) and (22) together imply that the only fixed point of N in Bo(O) is O; i.e.,

(I-N) (0) eo(O)= ’0).

By the homotopy invariance proFerty

d(I-k(I-A)-IB,Be(O), O) d(I,Be(O),O)= 1

for every e (O,eo] and [0, i]

Now from (2.1), (2.3) and the product theorem of degree we have
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for each e (0,eo]; i.e.,

.i([ -,’..,Be(0),0) d(I-A,Be(0),0)’l

i(I-N, 0) i(I-A, 0).

3 CHARACTERISTIC VALUE AND MULTIPLICITY.
-I

Let A:’" X be a linear compact mapping and r(A) {: is an eigenvalue of A}.

Each (r(A) is called a characteristic value of A.

The multiplicity of b r(A) is the integer

8() dim ker I-A]n(u),
where n() is the smallest non-negative integer n such that

A]n+lker[ I-A]n ker[ I-

Since A is compact, 8() is finite.
-i

A real number U is said to be a regular value of A if (I-A) exists and is continuous.

If R is not a characteristic value of A, x 0 is an isolated zero of I-A and

iLS(I-A,0), the Leray-Schauder index of I-A at zero will be simply denoted by i().

We write the following well-known Leray-Schauder principle as a lemma.

LEMMA 3.1. If A:X X is a compact linear mapping and Ul,2 with i 2 are not

characteristic values of A, then i( I) (-I)8i(2) where 8 is the sum of multiplicities

of the characteristic values of A lying in the interval [I,2 ].

4. BIFURCATION. Throughout the rest of the paper we will assume to be an open

bounded neighbourhood of the origin in X.

DEFINITION 4.1. Let N: CK(X) be a set valued mapping satisfying

(o) N is upper semicontinuous and compact on bounded subsets of x R;

(oo) for each R,

0 N(0,).
Thus for each R, x 0 is a solution of the equation

x e N(x,u). (4ol)

A point (0,U o) will be said to be a bifurcation point for the solution of the eq-

uation (4.1), or simply a bifurcation point of N if every neighbourhood of (0,o) con-

tains at least one solution (x,u) of the equation (4.1) with x # O. By abuse of notation

we will sometimes refer to Uo as the bifurcation point.

LEMMA 4.1. Let N be as above satisfying (o) and (OO) If the interval [Ul,U23
contains no bifurcation point of N, then there exists a 0 such that, for each

[I,2 and x , m(0),

x N(x,)x Oo

PROOF, Let S {(x,) [l,2]:x N(x,)}. From the compactness of N, it

follows that S is a compact subset of X R. We suppose, if possible, that the lemma is

not true. Then for each positive integer n, there exist n [i,2 ], Xn Bl/n(0)
such that
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xn N(Xn,n) and xn @ O.

Now (Xn,n) S which is compact. Hence (xn,n) has a convergent subsequence converging

to (XO,n). Clearly x0 O and (0,O) is a bifurcation point of N in [i,I2] which con-

tradicts the hypothesis. Hence the lemma is proved.

THEOREM 4.1. Let N be as above satisfying (o) and (oo) and let I,2 R with

l < 2" Further suppose that i(j) i[l-N(’,j),O], 1,2 are defined and i(I) @

i(2). Then there exists 0 [I, sch that (0,() s a bifurcation point of N.

PROOF. As i(j), j 1,2 are defined, there e:,ist j O, 1,2 such that
-I[(I-N(,j)) (0)] B6j(O)

Suppose that the conclusion of the theorem is false. Then by the above lemma there

exists 63 0 such that for each [i,2 and x B63(0 ,n

x N(x,u x .
We set 0 min(l,62,3)" Then for each (0,60] each % e [0,I], x e B6(O)

x N(x,% I + (i-)2) => x O.

Hence it follows that for each 6 (0,60] e [0,i] and x B6(O).

x N(x,I I + (i-)2)

Therefore by Homotopy Invariance Theorem

i(l) d[l-N(-,Ul) B6(0),O]
d[l-N(-,2) B6(O),O] =i(2)

which contradicts our hypothesis. Hence the theorem is proved.

THEOREM 4.2. Let N: R CK(X) be such that

N(x,u) wAx + B(x,u),

where A:X X is a linear compact (single valued) mapping and B: R X is upper semi-

continuous and compact on bounded subsets of R with B(x,) o( Ix I) uniformly in

on compact intervals. Then for each bifurcation point (0,o) of N, o is a characteristic

value of A.

PROOF. Again we prove this theorem by contradiction. Suppose that (O,u o) is a

bifurcation point of N and o is not a characteristic value. Then Ao (l-oA) -I exists

and is continuous.

Let F: R X and G: R CK(X) be defined as follows:

and

F(x,u) (-o)AoAX

G(x,u) AoB(X,U ).

Clearly F and G are compact on bounded subsets of R. Also from the assumption

that B(x,) o( Ixl I) and the continuity of Ao it follows that AoB(X,) o( Ixl I)
uniformly in in compact intervals.

1Let 0 be such that 6 AoAII _< and 9 0 be such that whenever
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(x,) B0(O [-6,Uo+61 we have

lxl -I
sup {I IYlI:Y AoB(X,D) -<

Then for each x [Bp(0) n ] \ {0} and

infI !Aox_Yl I:y AoN#X,l

inf{l ,Ao[(l-oA)X+UoAxJ- AoAX-V l’v AoB(x,l)}

infl ix+(o-)AoAX-vlI:v
_>_ Ixll I-oI IAoAI lxll sup {I Ivll v AoB(X,)}

>_ [1- 611AoAI I- J llxll ->

Hence there exist 0 and > 0 such that for each

(x,u) {[B; (0) n ] "{O}} [Uo-,Uo+4] x N(x,u).

Sut this implies that is not a bifurcation point, which is a contradiction. Thus the

theorem is proved.

The following theorem in the single valued case is due to Krasnosel’skii [J.

THEOREM 4.3. Let N: R CK(X) be given by N(x,) Ax + B(x,) where A

and B are as in Theorem 4.2. If Uo is a characteristic value of A of odd multiplicity

5o, then (0,u o) is a bifurcation point of N.

PROOF. Since A is compact, o is an isolated characteristic value of A. Hence

there exists 0 such that o is the only characteristic value of A in [Uo-e,o+e].
Thus from Lemma 3. we have

i(o-e i[l-(o-e)A,0] (-I)8O i[l-(o+e)A,O]
(-I)8O i(o+e).

Hence from the above equality and Theorem 2.1 we have

i[I-N(.,o-e),O] (_l)SO i[I-N(-,o+e),O].

Now since 8o is odd, we have

i[l-N(’,o-e),O] i[l-N(’,o+e),O].

Hence by Theorem 4.1 there exists a bifurcation point (0,) of N with [Uo-e,o+e].
But since o is the only characteristic value in [Uc-e,Uo+e], Theorem 4.2 implies that

Uo" Thus we have proved that (O,u o) is a bifurcation point of N.

We note that all Theorems proved above hold with the same proof if we replace

by X.

Let E denote the space X R or R where is a bounded open neighbourhood of

the origin in X.

The following global version in the single valued case is due to Rabinowitz [].

THEOREM 4.4 Let N:E CK(X) be such that N(x,u) uAx+B(x,) where A and B are as

in Theorem 4.2 with R being replaced by E. Let Uo be a characteristic value of A of

odd multiplicity. Let S denote the closure of all nontrivial solutions of (4.1). Then

S contains a component C (i.e., a maximal closed an@ connected subset) which contains

(O,u o) and either is unbounded or contains (O,u) where u is a characteristic value of A
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and # o"
The proof of this theorem is exactly similar to that given by Rabinowitz [8J

(also see Crandall and Rabinowitz [4] for the single valued case. However we in-

clude the proof for the sake of completeness We will need the following two lemmas.

LEMMA 42. (Whyburn (1958)). Let K be a compact metric space and A and B two

disjoint closed subsets of K. Then either there is a subcontinuum (i.e., a closed and

connected subset)of K meeting both A and B, or there exist disjoint compact subsets

KA A and KB B such that K KA u KB.

LEMMA 4.3. Under the hypothesis of Theorem 4.4 assume that there exists no

subcontinuum C of S u {(0,o)} such that either (i) C is unbounded, or (ii) C contains

(0,) with o # r(L). Then there exists a bounded open set in E such that

(0,o) e, e n S

and

e n ({o} R) {0} (Bo-,o+6)
for some positive .

PROOF. The proof is similar to that of Lemma 1.2. Let Co be the component of

(0,o) in S u {(0,o)}. Then Co is bounded,by (i). Hence by the upper semicontinuity

and compactness of N, Co is a compact. Let U be a -neighbourhood of Co. Now from

the fact that for r(L)by Theorem 2.1,(0,%) is an isolated solution of (4.1) and

from (ii) it follows that for 0 < < eo sufficiently small U contains no solution (0,)

with I-oI > 6. Now since S is locally compact, it follows that K U S is compact

in the relative topology induced from E. Also Co U . Let K Co and K2

(U) S. There is no subcontinuum meeting K and K2 for otherwise Co will not be a

component. Hence by Lemma 4.2 there exist compact subsets A K] and B K
2

such that

K A u B. Let be an e-neighbourhood of A where e is less than the distance between A

and B. We can easily see that 0 fulfills the demand of the lemma.

PROOF OF THEOREM 4.4. Let C be the component of (0,o) in S {0,o)}. Assume
O

that the theorem is false. Then by Lemma 4.3 there is a bounded open set 0 such that

Co O, 0 n S

and

0 n ({o} R) {0} (o-,o+)

for some 6 0. Let e% {x X:(x,%) 6}. Now for satisfying 0 < I-oI 6,(0,)

is an isolated solution of (4.1) (by construction of O and Theorem 2.1). Hence there

exists 0(%) > 0 such that (00,%) is the only solution of (4.1) in (%) {%}. For

o + 6 we choose 0(A) 0(o+6) and for < Do-6 we choose 0(o-6). By choosing

0(o+/-6) sufficiently small, we can assume that (%) % for satisfying

Thus for # o there is no solution of (4.1)in I0%-0(%)I {} and

therefore d(l-N(’,%), 0%-0(%),0) is well defined or each % o" By homotopy in-

variance d(l-N(’,%),%-O(%),0) constant for all o" However (4.1) hss no sol-

tion in %-0(%)" Hence for % o we have

(A) d(l-(-,), O-p(),O) O.
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imilarly (A) holds for I <-o"

for ll-oi 6 Let

Then from

(B)

Moreover, by homotopy invariance we have

d(l-N(’,l), 01, 0) constant

’u 6 < o - o + 6.

O BO() u (0 Bp(G))

and by additivity of degree we have

d(I-N(’,), 0 ,0) d(I-N(-,),Bo(),O) + d(I-N(-,), 0(),0)
d(l-N(,), Bp(),O) by (A).

Similarly, we can show that

d(l-N(,), 0,0) d(I-N(.,),Bp(),0).
Hence by using (B) we obtain

(C) d(I-N(-,_), Bp(u) 0)= d(I-N(,), Bp() ,0).

We now define the homotopy

N(x,X,t) IAx + tB(x,X), 0 <- t -< I.

As B(x,l) is of o( Ixl I), we can choose p() sufficiently small to obtain

0 (I-) (x,,t)

for any

Thus by homotopy invariance

(x,t) e Bo() LO,I]

d(l-N(’,), Bp(), O)= d(l-(’,,t), Bp(),O)
d(l-(-,,O), Bp(),O) d(l-A, Bp(),O)o

By repeating the same argument for and using (C) we obtain

d(I-__A, Bp(),O) d(I-A, Bp(),O)

i(I-A,0) i(I-A,0)

which is a contradiction in view of the fact that o is a characteristic value of odd

multiplicity and in view of Lemma 3.1. Thus the theorem is proved.

REMARK 4.1. Results similar to Theorems 1.16, 1.25, 1.27, 1.40 in Rabinowitz

[] can also be proved in the set valued case. We have omitted these as their proofs

are only repetition of the arguments given by Rabinowitz.

Let X and Z be real Banach spaces. Let us now consider the equation

Lx IAx + B(x,l) N(x,) (4.2)
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where L:X Z is a continuous linear mapping, A:X Z is a compact linear mapping and

B: R CK(Z) is a set valued mapping which is upper semicontinuous and is compact on

bounded subset of R. We also assume that 0 E B(0,k) for all % E R.

A point (0,o) is said to be a bifurcation point of the equation (4.2) if every

neighbourhood of (0, o) contains at least one solution (x,) of (4.2) with x O.

THEORE 4.5. Let L,A and B be as above. Let B(x,k) be o(IlxlI) uniformly in

% in compact intervals; that is,

!1II - ullyll: y B(x,X) 0 a Ilxll o

uniformly in in compact intervals. Assume that there exists R such that (L-A) -1

exists and is continuous. Let (Po-) be a characteristic value of the compact operator

Ao (L-A)-IA
of odd multiplicity Bo. Then Po is a bifurcation point of the equation (4.2).

PROOF. Let us consider the equation

x kAox + (L-A)-IB(x,+) (x,). (4.3)

Now (x,p) is a solution of (4.2) if and only if (x,u-) is a solution of (4.3). Indeed,

Lx e N(x,) pAx + B(x,p) <=>

Lx FAx c (p-)Ax + B(x,-+) <-

x (-)(L-A)-IAx + (e-A)-iB(x,_+)
x (p-)Aox + (e-A)-iB(x,-+)

(x,p-). (4.4)

Noting that (L-A) -I B(x,+) is of o(I Ixl I) uniformly in % in compact in-
tervals, by applying Theorem 4.3 we conclude that o- is a bifurcation point of (4.3).
Hence it follows from (4.4) that Po is a bifurcation point of (4.2).

REMARK 4.2 The corresponding global version of Theorem 4.5 also holds.
REtARK 4.3. It is clear that in Theorem 4.5 instead of assuming A and B(x,)

to be compact it would suffice to assume Ao (L-A)-lA and (L-A)-lB to be compact. If
we do this, then even when B is single valued our Theorem will be more general than that
proved in Laloux and Mawhin [5] in the sense that we are not assuming L to be a Fredholm
mapping of index zero. Note that all the conditions in Theorem 4.5 have also been assumed
implicitly by Laloux and Mawhin.

5. APPLICATION. Let CK(X) be as defined in Section 2. Let

F:[O,] R Rn Rn -CK(Rn)

be upper semicontinuous and q LI[0,] (abbreviated as LI) be such that

sup{ lulI:u F(t,%,y,z), some % R, y,z Rn} <_ q(t)

t c [0,].

We consider the two point boundary value problem

(5.1)
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(t) y(t) + F(t,X,y(t),(t)), a.e. t [0,] (5.2)

y(0) 0 y() (5.3)

where a solution y:[O,] Rn satisfies is absolutely continuous on [0,] and y sat-

sfies (5.2).(5.3).

We assume that for t [0,], k e R, y,z Rn

sup{[lull:u F(t,k,y,z,)} 0 (5.4)

uniformly for t [0,] and % bounded, as lYll + lzll O. For y,z e (C[O,])n
(abbreviated as (C)n) let

B(y,z,%) {f:f:[O,] Rnmeasura|le, f(t) e F(t,%,y(t), z(t))};

when z t we abbreviate this to B(y,%). For

R,y,z (C)n

let

H(t) F(t,l,y(t),z(t))

then

H:[0,] CK(Rn)

is upper semicontinuous as a composition of an upper semicontinuous function with a con-

tinuous function and hence

{(t,u,(t)) [0,] Rn u(t) e H(t) t [0,]}

is closed and hence measurable. Thus the set B(y,z,%) is non empty by the results stated

in Rockafeller [9] Also B is convex valued as F is convex valued. Since f B(y,z,%),

f is measurable and

llf(t) ll -< q(t) t e[O,]

so f (el)n.
Let

G:[O,] [0,] R

be given by

G(x, t)

(r-x) t
0 <- t -<x -<

x(-t)
0 x t <

and let K: (LI) n X be given by

K(x) fG(x,t)(t) dt
o

where

(t) (l(t),...,n(t)),i LI, i <_ i <- n,
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and

For S (LI)n let

X (CI[o,])n.

KS {K S}.

For y X let

Thus

N(y,X) (v + KB(y,l).

N(y,%) CK(X)

and finding a solution to problems (5.2), (5.3) is equivalent to finding a solution to

y e N(y,l) %Ky + KB(y,%).

Now

KB(y,%) CK(X) and KB X R CK(X)

is upper semicontinuous. This can be seen as follows. As B is convex valued and K is

linear KB is convex valued. Since f B(y,X) implies f (LI)n and

lf(t)ll -< q(t) t/ t [0,], II (’:)(t)l llf(t) ll -< q(t),

a.e. t [0,] so KB(y,X) is equicontinuous in X. If fi B(y,X) and Kf i g in X then

[[fi(t)[] -< q(t)

so fi - f weakly in (el)n. Thus there exists hi (el p, hi convex combinations of the

fj such that hi f in (LI)n Thus hi B(y,) and hjK f a e t [0 ] some sub-

sequence hi Thus as F is upper semicontinuous f B(y,X) and

g Kf KB(y,X)

is closed and hence compact. A similar argument using the upper semicontinuity of F with

respect to (X,y,z) shows KB X R CK(X) is upper semicontinuous. Now K:X X is

completely continuous with eigenvalues

i I

n 1,2,3,... all of multiplicity one.

From (5.4) we see that for R and y X

sup {] ]u]]:u_. KB(Y,) ) 0

as y 0 in X; here ][u[l and [[Y[I are the X norms of u and y respectively. Thus the

conditions of Theorem 4.2 are satisfied and the points (0,n2) are bifurcation points and

the problem (5o2), (53) has nontrivial solutions (y,X) near (0,n’).
REMARK 5.1. The upper semicontinuity of F can be relaxed to
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and

(i) F(t,’,’,’) is upper semicontinuous for almost every t e [0,]

(ii) F(’,%,y,z,) is measurable for all (%,y,z) e R Rn Rn

(iii) F is closed convex valued

(iv) for each (%,y,z) e R Rn Rn

there exists f:[O,] Rn measurable such that

f(t) e F(t,%,y,z)

for all t e [0,] and there exists fixed q L1 such that

IIf(t) II _< q(t)

for almost every t [0,].

Note. The permanent address of the first author is: Department of Mathematics,

University of Queensland, St. Lucia, Queensland, Australia, 4067.
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