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TWO LARGE SUBSETS OF A FUNCTIONAL SPACE

F.S. CATER

Department of athematics
Portland State University
Portland, Oregon 97207 U.S.A.

(Received May 29, 1984)

ABSTRACT. Let PI denote the Banach space composed of all bounded derivatives f of

everywhere differentiable functions on [0,I] such that the set of points where f

vanishes is dense in [0,i]. Let DO consist of those functions in PI that are

unsigned on every interval, and let DI consist of those functions in PI that

vanish on dense subsets of measure zero. Then D
O

and DI are dense G6-subsets of

PI with void interior. Neither D
O

nor DI is a subset of the other.
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i. INTRODUCTION.

The real vector space D of all bounded derivatives of everywhere differentiable

functions on [0,i] is a Banach space [i] under the norm

II f II sup If(x) l.
0_<x_<l

(At the endpoints 0 and I we require that the one sided derivatives exist.) Tibor

Salat essentially proved [I] that the set

D
O

{f D: f is unsigned on any interval}

is a nowhere dense subset of D. To do this, he observed that

PI {f D: f 0 on a dense subset of [0,I]}

is a nowhere dense Banach subspace of D and DO PI" Since PI is a Banach space

in its own right, it is natural to study D
O as a subset of PI" Put

DI {f PI: f # 0 almost everywhere on [0,i]}.

In this note, we prove that DO and DI are "large" subsets of the Banach space PI"
THEOREM i. DO is a dense G6-set in PI with void interior.

THEOREM 2. DI is a dense C6-set in PI with void interior.
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Now put E {f PI: f is not almost everywhere discontinous}.

If f - PI’ then f must vanish at every point where f is continuous, and

E PI \ DI" We obtain from Theorem 2, a result of Clifford Weil [2].

COROLLARY i (C. Weil). E is a first category subset of PI"
Clifford Weil [3] proved most of Theorem i. Finally, we show that neither of the

sets D
O

or DI is a subset of the other, and we prove an analogue of Theorem 2 for

spaces of nonnegative derivatives. (I take this opportunity to thank the referee for

simplifying many of my arguments.)

Proof of Theorem i. The proof that DO is a dense G-set in PI is essentially

given in [3], so we leave it.

It remains to prove that DO has void interior. Let f PI and e > 0. It is

easy to find an interval [a,b] for which f(a) f(b) 0 and If(x) e for

x [a,b]. Now let g(x) f(x) if x [a,b], and g(x) 0 if x [a,b]. Clearly

g PI but g (D09 DI). Finally, II f-gll < e. Thus every open set in el
contains functions DO 3 Dl, so D0U DI has void interior in PI"

Proof of Theorem 2. For each positive integer n, define

En (f PI: m(x: f(x) O} > n-l}.

Then DI PI \)n En" We claim that each En is closed in PI"
f PI and limk_=ll fk-f II 0. Say

Let fk En and

{x: fk(x) O}

-I -i
and mA

k
n Then at each x A =Nj3k> A

k,
f(x) 0. But mA n so f En.

Thus E is closed in PI"n
It remains to prove that E is nowhere dense. Let f E and e O. Use

n n
[4] to get a function g DI such that 0 < g < i. But there is a number c > 0

-I
such that c e and m{x: 0 If(x) < c} n It follows that

-im{x: f(x) -cg(x)} < n

Finally,

m[x: f(x) + cg(x) 0} n
-I

and f + cg { E Moreover II (f + cg)-fll llcgll <- c e. Thus E is nowhere dense.
n n

In the proof of Theorem i we saw that D
O 13 DI, and hence DI, has void

interior. []

It follows from Theorems i and 2 that D
O

I- DI, the set of all functions in P1
that vanish on dense sets of measure zero and are unsigned in any interval, is a

dense C6-subset of PI" Next we show that the sets DO and DI are quite different.

Neither is a subset of the other.

THEOREM 3. The Sets D
O

\ DI and DI\ D
O

are nonvoid.

PROOF. Let h be a function in DO We construct a sequence of intervals

(a ,bn) with mutually disjoint closures, such that b -a 2
-n

and h(a h(bn) 0
n n n n

for each n and .n(an,hn) is dense n [0 I] Let hn h(an,bn where means
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characteristic function: for 0 -< x < I, hn(X) h(x) (an,bn
h P and the sequence (II hn If) is bounded Put
n I’

-n
f= In 2 h PI"n

(x). It follows that

Now f cannot be signed on any subinterval of an (an,bn), so f DO Clearly for

x [0,1]\Un(an,bn) hn(X) 0 for all n and f(x) O. But

m{[0 l]\hJn(an- bn)}_ i Z (b -a 0
n n n

Thus f e DO\ DI.
We use [4] to obtain a function in DI\ D

O
Now put

P2 {f PI: f is nonnegative},

D2 {f e P2: f 0 almost everywhere on [0,I]}.

Then P2 is a complete metric space in its own right. We conclude by showing that

D
2

is a "large" subset of P2"
THEOREM 4. D

2
is a dense G6-subset of P2 with void interior.

PROOF. Define E as in the proof of Theorem 2. Then E P2 is a closed subset
n n

(E C P2 is dense in P2 We use [4Jof P2" It remains to prove that D
2 P2\hJn n

to construct g e D
2

such that 0 -< g -< i. For any f P2 and any c > 0, we have

f + cg D
2

and II (f + cg) f ll II cgll -< c. So D
2

is a dense G-subset of e2.
That D

2
has void interior follows from the same proof (for Theorem I) that D

O
has void interior, so we leave this point.

Compare Theorem 4 to the work in [5]. There it is shown that the singular functions

form a dense G6-subset of the complete metric space of continuous nondecreasing

functions on [0,i] under the sup metric. When the primitives of the functions in P2
are taken, [5] suggests that D

2
is a "small" subset of P2" Of course the metric

used in [5] was different from the one used here.

REFERENCES

i. SALAT, TIBOR, On functions that are monotone on no interval, Amer. Math. Monthly
88 (1981) 754-755.

2. WEIL, CLIFFORD, The space of bounded derivative, Real Analysis Exchange
(1977-8) 38-41.

3. WEIL, CLIFFORD, On nowhere monotone functions, Proc. Amer. Math. Society 56
(1976) 388-398.

4. ZAHORSKI, Z., Sur la premiere derive, Transactions of the Amer. Math. Society,
Vol 69 (1950), 26, Lemma 11.

5. ZAMFIRESCU, TUDOR, Most monotone functions are singular, Amer. Math. Monthly
88 (1981) 47-49.


