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ABSTRACT. Let (U,,n,,g) be a pseudo-Riemannian manifold of signature

(n+l,n). One defines on M an almost cosymplectic para f-structure and proves

that a manifold M endowed with such a structure is -Rlcci flat and is follated

by minimal hypersurfaces normal to , which are of Otsuki’s type. Further one

considers on M a 2(n-1)-dimensional involuttve distribution PJ" and a recurrent

vector field V. It is proved that the maximal integral manifold M of P has

V as the mean curvature vector (up to I/2(n-l)). If the complimentary orthogonal

distribution P of is also tnvolutive, then the whole manifold M is foliate.

Different other properties regarding the vector field V are discussed.

KEY WORDS AND PHRASES. Pseudo-Riemannian manifold, cosymplectic manifold, para

f-structure, minimal hypersurface.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 53C25.

I. INTRODUCTION.

Recently, many papers were devoted to f-structures or para f-structures
(Ishichara and Yano []]; Kiritchenko [2]; Yano and Kon [3]; Sinha [4]).

In this paper we consider a C -pseudo-Riemannian manifold (M,g) of dimension

2n+l and of inertia index n+l and such that the (l,l)-tensor field f coincides

with the para-complex operator U (Libermann [5]) of square +I. Furthermore we

suppose that M is equipped with a triple (,n,) where

is a canonical 2-form of rank 2n exchangeable with the para-Hermitian

component g of the metric tensor g;

2 is a canonical 1-form such that (A)nA # 0;

3. is the canonical vector field such that

() I, i 0, u 0,

d 0, (,Z’) ( ,,Z).

In (1.1) V is the covariant differential operator on M and Z, Z’ are any
vector fields on M.

If the above conditions are satisfied, we say that M is endowed with an

(1.1)
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almost cosymplectic para f-structure (abr. a.c.p, f-structure). In this case M

is called an a.c.p, f-manifold.

The differential distribution D {Z e TM,(Z) 0} on M is involutive

and is called horizontal.

It is proved that an a.c.p, f-manifold is always -Ricci flat and that it is

foliated by minimal hypersurfaces M tangent to D which are of Otsuki’s type

(Otsuki [63).
Suppose now that D and D are two complementary orthogonal differential

distributions in D and Z is a vector field in D. If one has

VW u X + (R) + (R) (I.2)

Dfor all X e D, and u,u ,v A (M), we say that D is contact covariant

decomposable (abr. c.c.d.). Let P be a c.c.d, hyperbolic 2-plane of D If

the dual forms of two null vector fields which define P form an exterior recurrent

pairing (Rosca [7]; Morvan and Rosca [8]), we say that the manifold M admits a

strict c.c.d, hyperbolic 2-plane.

With the paring (P,P) are associated a vector field V E P (called the

precurrence vector field) and two vector fields Xn,X2n E (called the distin-

guished vector fields ).

In the present paper the following properties are proved:

(i) The 2(n-l)-distribution P is always involutive and the mean curvature

vector field of its maximal integral manifold M is (up to a constant

factor) equal to the induced vector field of V.
p(ii) The simple unit form of is exterior recurrent and IYV is a

characteristic vector field of .
(iii) The necessary and sufficient condition for M to be quasi-minimalChen [9])

or be a null vector field and the necessary andis that X
n X2n

andsufficient condition for to be minimal is that both Xn X2n
be null vector fields.

(iv) If is minimal, then the distribution P is also involutive and the

integral surfaces of P are totally geodesic in M which in this case

is foliate.

and are U-geodesic directions onX2(v) Both vector fields Xn
2. MOST COSLECTIC P f-IFOLD M(U,.,,,g).

Let (M,g) be a C -pseudo-Riemannian nlfold of dimension 2n+l and of

inertia index n+l.

If M is equipped with a non-zero tensor field f of type (I,I) of

constant rank and such that

f(f2-1) 0 (2.1)

(I is the identity tensor), then f is called a para f-structure (Sinha [4]).
In the following we suppose that f coincides with the para-complex operator

U (Libermann [5]). In addition, we suppose that M is equipped with the triple

(,n,) where:
o

is a canonical 2-form of rank 2n exchangeable with the para-Hermitian
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component gn of the metric tensor g (Buchner and Rosca []0]).
2. is a canonical l-form such that (Afl)nA # 0 everywhere.

3. is the canonical vector field such that

If one has

() i, i 0; i: interior product.

U2-I -n U O,

(2.2)

(2.3)

d O, (2.4)

(V,’} g{V,,Z) {2.5)

where V is the covariant differential operator on M and Z, Z’ are vector fields

in M, we say that (U,D,n,,g) defines on M an almost cosympletic para f-struc-
ture (abr. a.c.p, f-structure) and M(U,,n,,g) is called an a.c.p, f-manlfold.

The differentiable distribution D on M defined by

D { e TM, O}(x)

is called horizontal.

It is worthwhile to note that equations (2.3), (2.4) and (2.5) show that on

M the triple (U,,) defines an almost paracontact structure (Slnha [4]), D

defines a (2n)-foliation, and E is a gradient.

Let W vect {ha,ha,,h0 ; a l,...,n, a a+n} be a local field of Witt

frames (Vranceanu and Rosca []]]).
One has (Libermann [5]):

Uha
h
a Uha, -ha,, U 0

and at each point ) e M one has the splitting

(Dn) S?* SP
where S and S are two self-orthogonal vector n-spaces spanned by {h

p p a
and {h ,} respectively.

and h , are normed, one may writeSince the null vector fields ha a

g(ha,hA) O, g(ha,,hB) O,

g(ha,ha,) I, g(,)

where A,B 0,1, 2n; A a B a.
A A C (Ce CNow let {A} be the dual basis of W and e
B YBCm (M)) be

the connection forms on M. Then the line element d of M (dp is a canonical

vectorial 1-form) and the connection equations are expressed by

d a@ h + a @ h , + @a a

and

% %B
VhA

e
A (R) h

B

where V is the covariant differentiation operator on M. By (2.8) and (2.10) one

finds

(2.6)

(2.7)

(2.8)

(2.9)
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e , a*
a a O, a

a O,

a b* a* b* %ae
b

+ Oa, O, eb + a O, eb, O, (2.11)

o + a 0 6 , + ea 0
a o a o

and the structure equations (E. Cartan) may be written in the following symbolic

form:

d -A (2.12)

and

de -eAe +
A

where B are the curvature 2-forms.

Further taking into account (2.4), we may set

o a o a*
Ca, -a

Now by means of (2.10), (2.11) and (2.14) one gets

a* aV h h ,.
a a

In addition it follows from (2.15) that,

V 0

which proves that is a geodes{c direction.

From (2.9) and (2.8) one gets

(2.13)

(2.14)

(2.15)

(2.16)

,
g <d,d> 2 a(R) + n (2.17)

a a*
a

where gn 2 . is the pca-Hert{c (Buchner and Rosca []0]) component

of the metric tensor g.

The 2-form which is exchangeable with g is then expressed by

I A (2.18/
a

gstng (2.15) we can ind the following expression of the quadratic

fo <V,V>

-g, (2.19)

Denote by

i 2nA...A m (2.20)

the simple unit form corresponding to D One may write the volume element o of

M as

o A n. (2.21)

means the Lie derivative in the direction Z, then by a simple argumentIf Lz
one can find

LE d (div ). (2.22)

Using (2.12) and (2.13), one gets d O, and this yields

div O. (2.23)

But on a Riemannian or pseudo-Riemannian manifold the following Yano integral
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formula holds (Yano and Kon [12]):

div(VZ) dlv(div Z)Z
(2.24)

Ric(Z) + g(VeAZ,eB)g(eA,VeBZ) (div Z)
A,B

In (2.24) Z, Ric and {eA} are arbitrary vector fields on M, the Riccl tensor of

M and a vectorial basis respectively.

Continuing the consideration, one finds (2.24) and (2.15) by means of (2.5).

Taking into account (2.8), a short computation gives Ric() 2n.

Hence M is Ricci constant in the direction of the structure vector (or

-Ricci constant).

On the other hand, by means of (2.19) and (2.4) one sees that is coclosed,

i.e. 0. Hence since d O, it follows that is harmonic. Then if we

denote by M the leaf of D it follows from the theorem of Tachibana []3] that

M is minimal. This property can also be verified by a direct computation.

Since the induced value IM of the almost sympletic form is also

almost symplectic, the submanifold M is an example of a minimal submanifold

having an almost symplectic structure .
If M is endowed with a para co-Kaehlerlan structure (Buchner and Rosca []0]),

then is a symplectic form.

Denote now by III the induced value on M of the quadratic differential form

then, as is known, III represents thegiven by (2 19) Since is normal to M,
third fundamental form of M

Thus according to (2 19) III is conformal to the metric of M Taking into

account of the para-Hermitian form of g and (2.15), it is easy to see that M
possesses principal curvatures equal to +1 and principal curvatures equal to -1.

Therefore referring to Otsuki [6], we may say that M is a minimal hypersurface of

Otsuki’s type.

THEOREM i. Let M(U,,,,g) be a pseudo-Riemannian manifold endowed with an

a.c.p, f-structure. Such a manifold is -Ricci constant and is foliated by minimal

hypersurfaces M of Otsuki’s type which are orthogonal to the structure vector

field $.

3. CONTACT COVARIANT DECOMPOSABLE DISTRIBUTIONS ON M(U,,g).
Referring to the definition given by Rosca [7], we give now the following

DEFINITION. Let M be an odd-dimensional C -Riemannian (resp. C -pseudo-

Riemannian) manifold equipped with an almost contact (resp. almost para contact)

structure defined by a structure l-form and a structure vector field $. Let

D D and V be the horizontal distribution defined by n O, a differentiable

distribution of D and the covariant differentiation operator on M. Let Dm be

the complementary orthogonal distribution of D in D and W be a vector field

of D. Then if one has

VW u(R) X+ u (R) X- + v(R) E
z Awhere X e D, e D and u,u ,v e (M), we say that the distribution D is

(3.1)

contact covariant decomposable (abr. c.c.d.).

As is known, the null vectorial basis {h ha,} of D admits the orthogonal
a N
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decomposition

Dn PI ’’’ Pa ’" " Pn (3.2)

where Pa (ha,ha,) is a hyperbolic 2-plane.
We say that the a.c.p, f-manifold M(U,,n,,g) defined in Section 2, carries

a strict contact covariant decomposable hyperbolic plane P (abr. s.c.c.d, hyper-

bolic plane) if:

the distribution P is contact convariant decomposable;

2 the dual forms of the null vectors which define P form an exteor
recurrent pairing (in the sense of Rosca [7]).

Without loss of generalit one may suppose that P is defined by h and
n

hn, h2n.
In the first place, using (2.10) and (3.1), one finds

n Xn Wn
n X2n 2n

where , e A (M); e C (M) and e {i,i* i*
n 2n Xn’X2n i 1,. ,n; i-I’}.

Denote by px the complementary orthogonal distribution of P in D

Obviously one has P {h } and we set
a

hX2n X2n e P
n 2nSecondly, according to Rosca [7]; Morvan and Rosca [8], the dual forms m ,m

corresponding to P (hn,h2n) define an exterior recurrent pairing if one has

dn n n 2n 2n ]=y A + A

dn n 2n n=v An+ A
n 2n n 2n

where y ,y ,v ,v e A ().

(3.5)

Denote now by

where we have set

n= 2nY n 2n (3.8)

n 2nA (3.9)

the simple unit form which corresponds to P. It follows from (3.7) that

d 0. (3. I0)

Since dim(Ker ) # 0, we may also say that is a presympZectic form (Souriau []4]).

(3.3)

(3.4)

As a consequence of (3.5), using (2.12), (2.11), (2.14), and (3.3), we find:

?n(Z Xnmn
% 2n= 3 (3.6)%(It %(]t
2n ( X2na

where n’2n e C’() vanish nowhere on M. Therefore (3.5) become of the form

dn %n
m A + A 2 (3 7)d2n 2n

=-m A+An
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Further taking the exterior derivative of equations (3.7) and referring to (2.4), one

gets by an easy argument that

dy y ’’; ’ E: C=({). (3.11)

It follows from (3.11) that

dy (d/)A y (3.12)

i.e. is exterior recurrent and has the exact form d/ as the reorence l-form.

Denote now by (P) { A() w annihilates P} the ideal in A() of

the distribution P. Obviously belongs to this ideal and by means of (3.10)

we may say that I(P) is a differentiable ideal (dI(P) l(P)).
It follows as is known, that the distribution P is involutive (this can be

also checked by a direct computation with the help of (3.3) and (3.6)).

Let us now denote

I I* n*-i+ uo A...A n- A A...A (3.13)

the simple unit form corresponding to the distribution P. Then by means of (2.12),

(2.11), (2.14), (3.3), (3.4) and (3.6), a straightforward calculation gives

d@ (f g(Xn,Xn) + f2ng(X2n,X2n)On

Hence the 2(n-I) form is eteior rCaunt and has the form

a fng(Xn,Xn)
n + f2ng(X2n,X2n)m

as a meu_Penoe form (Datta []]).
In the following we will call the vector field

V fng(Xn,Xn)h2n + f2ng(X2n,X2n)hn (3.16)

the memmmeme eor ie on M ((V) g(V,V)) and Xn,X2n the iiniBhe
ueoms (abr. d.v.) of the distribution P.

By means of (2.6) one has

UV f2ng(X2n X2n)hn ng(Xn,Xn)h2n (3.17)

and according to (2.8) this implies

=(UV) 0. (3.18)

Since UV e P, we have from (3.13), (3.14), and (3.18)

(3. 19)
id 0

and the above equations proved that UV is a olzraotestio veotor fieZd of

Moreover, if X e P is any vector field of e, one gets instantly t (X), i.e.

X is an infinitesimal conformal transformation of . Next the Rioci 2-form
corresponding to P is @nn ( -W2n)2n’’ and it can be found by means of (2.14), (3.3)
and (3.12):

A =&nn + + g(Xn’X2n 2n A n. (3.20)

(3.14)

(3.15)
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Hence equations (3.12) and (3.10) show that the necessary and sufficient condition

and are orthogonalfor to be closed is that the vector fields X
n X2n

Using now (3.11) and (3.9),one gets

(n 2n (n X2n) <XnAX2n,nA2n> (3.21)

Therefore, if Xn and X2n are orthogonal, then (n,X2n) vanishes.

Denote now by M the maximal connected integral manifold of P and let

be the mean curvature (2n-3)-fo of M. Then G is defined by

= (-l)i-l A A i A A n-IAl* n*-IA...A (R) hi,
i

i*-ll n-IAl* (3.22)
+ (-I) A...A A...A I* A...A n*-l(R) hii

(the roofs indicate the missing terms and we denote the induced elements on M by

supressing ). Since is the volume element of M, one has (see Chen [9])
V0 2(n-l) H (3.23)d

where H is the mean aurvature vector field of M, IM +/-, and dV is the
exterior covariant differentiation with respect to V VIM+/- (Poor [18]). Using (2.10),

(2.12) and taking into account (2.14), (3.3), (3.6), and (3.16), one finds after

some calculations

H 2(n-l) V; V VIM (3.24)

Hence the mean curvature vector is, up to the factor 2(n-l)’ equal to the induced

value of the recurrence vector field V in M. Using the definition given by Rosca

[16], [i?], we obtain the following results:. The necessary and sufficient condition for M to be quasi-minimaZ

i.e., H be a null vector field, is that one of the d.v. of the distri-

bution P be a null vector.

2. The necessary and sufficient condition for M to be minimal is that

both d.v. of P be null vectors.

We shall now make the following consideration. According to (2.21), (3.9) and

(3.13) the volume element of the hypersurface M defined by 0 may be written

as:

o # A (3.25)

In (3.25) and @ are the restrictions of and @ on M

It follows from (3.10) that if one has g(Xn,Xn) g(X2n,X2n) 0, one may

write A 0 where A d= + =d is the harmonic operator. Therefore we are

in the situation of Tashibana’s theorem (Tashibana []3]) and M is covered by

two families of minimal submanifolds, M and M, tangent to and P respectively.

Equations (2.6) shows that UP P and UP P. Hence we may say that if both

and are null vectors, then M is foliated by two families of in-d.v. X
n X2n

variant submanifolds tangent to P and P, and therefore the whole manifold is

foliate. Moreover, if we consider the immersion of M in M then the 1-forms

n’
a a2n given by (3.3) define the normal vector quadratic form II (it is known

that II is independent of the normal connection). But by means of (3.6) we can see
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that II vanishes and therefore M is totally geodesic in M

We shall give now the following

DEFINITION. Let M be an invariant submanifold of a manifold endowed

with a para f-structure and II be the normal vector quadratic form of M. Then

any tangent vector field X of M such that II(X,fX) 0 is called an

f-geodesic direction on M.

Let us consider now the immersion x: M. Denote by <dp,Vh > and
n n

2n <dp’Vh2n> the second quadratic forms associated with x.

By means of (2.9), (2.10), (3.3), and (3.6) one finds after some calculation

}n -- n f (I Xna2)
n n

n

f2n(
2

X2n2n f_---2n 2n
2n

Therefore the normal vector quadratic form II e (TT*) (R) (TM) is given by

n 2n 2n

Referring now to (2.4),one gets by means of (2.26) and (2.27)

(3.26)

(3.27)

II(Xn,UXn) O, II(X2n,UX2n) 0

Therefore the d.v. fields on M are both U-geodesic.

THEOREM 2. Let M(U,,,,g) be an a.c.p, f-manifold admitting a strict

contact covariant decomposable hyperbolic plane P and P be the orthogonal

component of P in the horizontal distribution D Further let V e P and

Xn,X2n E P be the recurrence vector field and the distinguished vector fields

associated with the pairing (P,P).
Then the following properties hold:

(i) The distribution P is always involutive and the mean curvature vector

field of the maximal integral manifold of P is (up to a constant

factor) equal to the induced vector field of V.

(ii) The simple unit form of P is exterior recurrent and UV is a

characteristic vector field of .
(iii) The necessary and sufficient condition for M to be quasi-minimal is

that one of the d.v. fields of M be a null vector and the necessary

and sufficient condition for M to be minimal is that both d.v. fields

of M be null vectors.

(iv) If M is minimal, then the distribution P is also involutive and the

integral surfaces of P are totally geodesic in M which in this case

is foliate.

(v) Both d.v. fields on M are U-geodesic directions on M.
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