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ABSTRACT. This paper is concerned with estimating the number of positive integers up

to some bound (which tends to infinity), such that they have a fixed number of prime

divisors, and lie in a given arithmetic progression. We obtain estimates which are

uniform in the number of prime divisors, and at the same time, in the modulus of the

arithmetic progression. These estimates take the form of a fixed but arbitrary number

of main terms, followed by an error term.

KEY WORDS AND PHRASES. Extensions of some formulae, formulae of A. C_’b’$
prime divisors.
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i. INTRODUCTION.

Let x > 3, choose B > 0, and let j B log logx be a positive integer. In

1954, A. Selberg (cf. [i], Theorem 3) showed, for example, that the number of positive

integers not exceeding x which have exactly j distinct prime divisors is

)I 0
i (z) (log x) z + (i I)(j-l) !logx kdzJ-I z=O B (logx)2

uniformly in j, where (z) is a certain entire function. We replace (z)(logx) z

by an expression of the form

M
(log x)z-z

(1.2)Z

replace the error te by 0N(X(loglogx)J(logx)-M/jl) Moreover, we obtainand

results of this strength for, e.g., the number of positive integers not ceeding x

ich lie in an arithmetic progression (say, h modk, ere (h,k) I) and ich

have precisely j distinct pre divisors (see eorem i, below). Our results are

unlfo in k not exceeding a fed power of log x, and in j H. Delange [2]

obtained comparable results for fed k. G.J. Rieger [3] obtained related results

for M 1, ich we will discuss in greater detail in Section 7. For a greater

account of the history of the problem, see Section 4 of Norton, [5].

In Splro [6], we apply our results to prove the following result: Let d(n)

denote the number of positive integers dividing the positive integer n, and let M

be any positive integer. Then there are computable constants RI, ,, with

R1
> 0, such that

M
#In&x: d(n) divides n+l] =x R(logx)- + 0s(X(logx)-M-%) (1.3)

=i
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2. NOTATION. THE PLAN OF THE PROOF.

Throughout this paper p denotes a prime, k, n, and N represent positive

integers, and s and z stand for complex numbers. We will let denote the real

part of s The expressions f(x) g(x) and f(x) O(g(x)) will have their usual

meanings, and we will also write f(x) < g(x) to mean that f(x) O(g(x)) By

either f(x) 0 (g(x)) or f(x) < ...g(x) we will signify that
a,b a,b

f(x) O(g(x)) where the implied constant possibly depends on a,b Similarly,

we will write [a,b ]-sufficiently large to indicate that how large is sufficient

will possibly depend upon a,b When only one variable is inside the curly

brackets, we will omit them, and write, e.g., a-sufficiently large. A product or sum

of the form H or respectively denotes a product or sum over primes; thus, for
P P

example, pn(l. + I/p) denotes the product of i + i/p, taken over all primes p

dividing n Similarly, a sum of the form is assumed to extend over allnx
positive integers n not exceeding x As is standard, we let (n) denote the

Mbius function of n, write (n) for the Euler phi-function of n, use n(x) for

the number of primes p x, denote the Riemann zeta-function by (s) and the gamma-

function by F(z) designate the Dirichlet L-function of s and by L(s,x) and

write [x] for the greatest integer not exceeding the real number x For simplicity,

we put L2x log log x and L3x log log x Finally, Co,Cl,... denote positive

absolute constants.

Let A > 0 be constant, and let be a nonnegatlve integer-valued additive

function such that

(n) Alogn for all n, (2.1)

(p) I for all p. (2.2)

Examples of functions satisfying (2.1) and (2.2) are (n) and (n) where (n)

is the number of distinct primes dividing n, and (n) is the number of primes

dividing n, counted with the multiplicities with which they occur. Also, designate

by wll the arithmetic function which takes the value (n)l(n)l at n. We will

let denote an arithmetic function which is either or II For any Dirlchlet

character , and for complex numbers s and z set

z(pm) -ms
f(x,z,x;) E X(pm) p

p m=0

E(s,z,x;I) 11 (I + X(p)zp-S)
P

(2.3)

(2.4)

g(s,z,x;) <pm=O x(pm) z(pm)p-mS)(l_x(p)p-S)Z (2.5)

g(s,z,x;ll) H(I + X(p)zp-S)(l-x(p)p-S) z (2.6)

P

wherever these products converge. Since II is not additive this notation should

cause no confusion. By the complete multiplicativity of X, we can expand the factor

--S Z
(i X(P)P by the Binomial Theorem and formally write

f(s z,x;) 7 a (n;)x(n)n
-s (2.7)

Z
n=l
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g(s,z,x;) 7. b (n;)x(n)n s
z

n=l
(2.8)

where the coefficients az(n;) and bz(n,) are independent of X

The plan of the proof will be to argue in the following manner: first, we will

show that the derivation of Hilfsatz 5 of Rieger [3] can be used to estimate the sum

Az(x,x;) Z az(n;)x(n) (2.9)
nx

We will establish Lemmas 3 and 4 of the next section for this purpose. If X X0 is

principal, more effort will be required. The estimate made in Rieger [5] in this case

relies on Hilfsatz 13 of Rieger [4]. This Hilfsatz implies that there is a constant

cO > 0 such that

-s
i- p

i + O([s- l[L2(4k))l-pelk
for Is-i[ log(2k) co In our Lemma 2, we replace the right side by an asymptotic

expansion in powers of (s-i) and this expansion leads to an asymptotic expansion
-iAfor x z(X’X0;) descending by powers of log x (see Lemma 7, below). After we

estimate Az(X,X; we argue in a manner similar to that of the proof of Theorem 3

of Selberg [6], to obtain our main result.

We remark that we can obtain comparable estimates to the estimates which we

(x,x;) (see Lemma 7 below) for a wider class of arithmeticobtain for the sum Az
functions az(n;) than the class given by (2.7), (2.3), (2.4), and our restrictions

on We restrict ourselves to these examples here for simplicity of exposition.

3. PRELIMINARY RESULTS.

LEMMA i:
-i n n

i) 7. p (logp) (e2(3k)) if n i. (3.1)
p[k n

-i
ii) 7. p L3(8k) + CI (3.2)

[k

ili) (i- p-l)-i k < L2(3k) (3 3)
plk (k)

REMARK. The special case of i) when n I is done in Rieger [4] (see equation

(2.13)). The estimates ii) and iii) are well known.
thPROOF. The lemma is trivial if k 1 Otherwise, let q denote the (k)

prime. There are at most (log k)/log 2] primes dividing k, so that q is at
th

most the (log k)/log 2] prime. Therefore, it follows from the Chebyschev bounds

for n(x) that

q < (logk) L2(3K (3.4)

-i )nSince p (log p is a decreasing function of p if p is sufficiently large, we

can conclude that

-i n -i n7. p (log p) 7. p (log p)
plk n pq
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Hence, it follows from (3.4) and the Chebyschev estimate for u(x) that

-i n. p (logp) (logq) n (L2(3k))n
plk n n

(3.5)

This inequality gives i). If we repeat the argument with n 0, and replace our

second application of the Chebyschev estimate by the estimate

P
L2(3q) + 0(I)

Pq

we obtain il). Exponentiatlng ii) yields ill). //
i

LEMMA 2. Assume that [s-l[log p < for every prime p dividing k, and

that [s-l[e2(3k) C, for some fixed but arbitrary positive constant C. Then

for every fixed integer N > i, we have

H l_p-S N-I
i + Y. (s-llnPn(k) + 0N, CPlk 1-p

-1
n=l

(([s-l[L2(3k)) N) (3.6)

where the coefficients P (k) are real-valued, depend only on k and n, and
n

satisfy

P (k) 0 ((L2(3k))n) (3.7)n n

PROOF. From the Taylor expansion for e
u

about u 0, and our first hypothesis,

we can deduce that

-s
i e (l-s)log pl-p -I+

-i p-il-p

j=l J! + E(s,p,N) (3.8)

where

E(S,p,N) 0(([s-I logp)N p-l) (3.9)

and where

1 NI (log p) J (1- s) j 7
-I j!

+ E(s,p,N)[ IT (3.10)

By (3.9) and (3.10), we can take the logarithm of the right side of (3.8), and obtain

-sN-I
)m m

m
i)- <([s-l[lo8log 1-p 7. (s-i (logp) 7. em(p_ + ON p)N

l_p-1 m=l =i P
(3.11)

for appropriate constants em Accordingly,

l-p
-s

l_p
-s

exp log
pk l-p

-I Tkp l-p
-I

(3.12)

exp (s-l)m (l!PI) Qm((P_l)-l) + ON ([s-lllogp)N
m=l p P P

where Qm(U) Z:=I emu-I It now follows from Lemma i, part i) that the error

term in (3.12) is 0N((Is-IL2(Bk))N) Since Qm is a polynomial, we can also con-

clude from this Lema that
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y. _(logp)m__
((p i)-I

plk p-i m (e3(3k) (3.13)

If we combine this result with our second hypothesis, we find that the expression in

(3.12) in curly brackets is ON,C(1) Consequently, we can apply the Taylor expansion

of eu about u 0 to the right side of (3.12), and the first equation of our lemma

follows. To obtain the estimate for the coefficients in Pn(k) we observe that the

coefficient R (k) of (s-i)
m

in (3.12) is the quantity we estimated in (3 13)m
and that the coefficient Pn(k) is a finite linear combination of terms of the form

Rml(k)Rm2(k)...Rm.(k) with + + m.j n //

iLEMMA 3. If 1 > l >5 is fixed, then there is a real number B= B(Ol, ) > I

such that the following statements hold:

-s
i) . Ibz(n; )x(n)n (3.14)

n=l

converges uniformly in s, z, and X with o > i and Izl B

ii) for every o
2
> I,

-s" laz (n; )x(n)n (3.15)
n=l

converges uniformly in s, z, and X with o > 2’ and Izl B. If II or

, these results hold regardless of the choice of B, and B does not depend on

l If , then these results are valid for B < 2Ol For II we can
1

take any B < exp(oI )/A]
REMARK. It follows from (2.1) and (2.2) with n p 2 that i (2)Alog 2

1 Cl -1/2
Consequently, we have exp[(cI -)/A] 2 so that the result for f is

superior to the result for an arbitrary choice of

PROOF. First, assume that II" Formally, it follows from the Binomial

Theorem and (2.2) that

-s)z (pm) -ms
(l- p Y- z p

m=O

I- --+Zzs + (-I)(Z) +
p =2 :0

z p-S z
(pm) -ms(_i)( 7. p

m=2

(3.16)

for every prime p Hence, from (3.16) and the definition of the coefficients

b (n;) we can conclude that
z - Ib (pJ-)p-S i + z I()I + i +

2
+

j=O
z

2 p

0 m:2

(3.17)

Denote the sum on the left of (3.17) by E(p,z,s;)
iLet B be strictly between I and exp{(oI -)/A} For zl B and o

I
we deduce from (2.1) and (3.17) that
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-2i - z -O1
E(p,z,s;) i + B2p + (l + Bp i) I()IP +

=2

( ! z
-o)i m(AlgB-Cl)

+ I( )IP " P
0 m=2

No. for zl B,

(3.18)

([B] + i) ( + I)LBjrl(z )i (3.19)
i=l

Hence, the last sum on in (3.18) is uniformly bounded in p and z, so that

(3.18) and (3.19) yield

-o1) OB(’BP- P-2TM

E(p,z,s;) & + (1 + Bp 1)+OB( E (3.20)
=2 m=2

>iwhere o
3

o
I -AlogB Now o

3 - by our choice of B, so that the final error

term in (3.20) is 0B(P-203) Moreover,

-2 -20 -o
B I i B

2
1

p p 7. ( + 2) (3.21)
=2 =0

It follows from (3.20) and this last inequality that

-201 -2o
2E(p,z,s;) 1 + OB(p + 0B(p (3.22)

iIn view of our notation, (3.22), and the fact that oI and o
3 both exceed - we

conclude that the product

7. Ibz(pj ;)x(pJ)p-Sl (3.23)
p j=O

converges uniformly in s, z, and X, with o ol, and Izl B. Accordingly, the

series in (3.14) is uniformly bounded in s, z, and X, with o > o
I and Izi B.

i iFor fixed B, there is a number o
4 E (5, l) such that B < exp[(o4- )/A] By

what we have just proved, the quantity in (3.14) is uniformly bounded in s, z, and

X, with o > 0
4 and z B But if oI and x i then we have

-04 @4-01Ib (n;)x(n)n-Sl < Y- Ib (n’)In x
z zn>x n>x

(3.24)

4-1 -04
x - __[bz(n;)ln

n=l

Consequently, as x tends to infinity, the sum on the left of (3.24) tends to zero,

uniformly in x, z, and X with o oI and Izl B. So, the sum in (3.14) con-

verges uniformly in s, z, and X, as asserted. To obtain the uniform convergences

of (3.15), in view of the derivation of (2.7) it is enough to show that

y:. [Xcpm)z(pm)p-ms[
p m=O

(3.25)

is uniformly convergent. By (2.1) and (2.2), we have
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. Ix(pm)z(pm)p-mS < i + p-O + 7. p-m(o A log B)

m=O m=2

i
By hypothesis, o

3
oI A log B > , and consequently

z(pTM) -20
3

-n
3IX(pm) p-mS < I + p-O + P 2

m=0 m=0

-2o
3

i + p-O + 0B,Ol(p

(3.26)

(3.27)

Accordingly, the quantity in (3.25) is uniformly convergent, as desired, and the lemma

is proved in this case.

In the event that , the uniform convergence of the quantity in (3.14) can

be derived from (3.17). In this case, the uniform convergence of the quantity in

(3.25), and hence, of the quantity in (3.15), follows from the fact that (pm) i

whenever m 1 These derivations are similar to the argument that we have just

made, and will therefore be left to the reader.

If we put into (3.17), the last sum in (3.17) is the geometric series
o -201=21 zlmp If we fix B 6 (1,2 I) then this series is OB(p uniformly

in z, p, and s, with o > oI and zl & B The rest of the proof of the result

for n is similar to the proof of the result for the case , given above,

and will be left to the reader. Finally, suppose that II As in the deri-

vation of (3.16), for every prime p we have

z z z -s1 z + z
i -- + + (2,)(-i) p

p 2
(3.28)

Hence, in view of our notation, we find that

]b (pJ;ll)p-Sl 1+ lzl2p-2I -l -ml
z

j=O =2
(3.29)

Again, the remainder of the proof in this case is similar to the proof for the case

in which I[ and we omit the details. //
i

For the remainder of this paper, we will assume that I > o
I >5 is given, and

that B B(Ol,) > i satisfies conclusions i) and ii) of Lemma 3. Furthermore,

we will take oI to be fixed. If a constant implied in an error term depends on o
1

only inasmuch as it depends on B, we will indicate the dependence on B, but not

the dependence upon oI
LEMMA 4: For i x < y and for z[ < B, there is an > O, possibly

depending on oI and B such that

E az(n;)x(n) 0B,o
Ix<n<y

B i-
((y x) (log y + y (3.30)

uniformly in z

PROOF: Since

f(s,z,x;) g(s,z,x;)((s))
z (3.31)
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it follows from (2.7), (2.8), and equation (i) of Rieger [3] that

a (n’{)= 7. d ()b
z
n.

z n z (’ )’ (3.32)

where - dz(n)n ((s))
n=l

We can conclude from equation (2) of Rieger [3] that

n and z with z B, so that (3.32)yields
Idz(n) d[B]+l (n)

laz(n;{) , d (n) lbz(n;g)]
n

[B]+I

We claim that it suffices to show that

(3.33)

for all

(3.34)

[B]. 7. d[B]+l(n)Ibz(n;)l= . x(logx)J+OB (xI-

nx n j=l
j,B,z ’i

(3.35)

for a constant (oI,B) > O, and constants j,B,z which are uniformly bounded

in z with Izl B. Indeed, from (3.34) and (3.35), we will be able to deduce

that

a
z
(n" )X(n)I’ & 7. ’, d

B +I (n) b
z (n; )y< n& x n

[B]

j=07. J’B’z[Y(lg y)J x(logx) j]+OB,Ol(yl-
(3.36)

The Mean Value Theorem implies that

y(logy)J x(logx) j
0j (y x) (log x) j-I

and combining this fact with (3.36) verifies the claim.

left side of (3.35) is

Z=

for j i, (3.37)

According to (3.34), the

7. [bz(n;)l dz () ZI +7.11+7.111nx x/n
(3.38)

where

7.1 7. lbz (n; )[ 7. d
n x & x/n z (3.39)

7.11 x< n& x/2 & x/n z
(3.40)

7.111 Z IbzCn;)
x/2<n&x

(3.41)

By equation (12.1.4) on p. 263 of Titchmarsh [7], we have

[B] i
7. d[B]+I() Z k x(logx) j + OB(X
x j=0

j,B

i
[B]+I

for certain constants kj, B
Substituting (3.42) into (3.41) yields

(log x) B) (3.42)
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EII E
B x< n&x/2

x< n.& x/2

x [B]Ibz(n; g)I (log x)

bz (n; ) ,--Xn (log x) B]( )i l

Hence, we can deduce from Lemma 3, part i) that

(i +c;i)/2 [B]
Eli 0B(x (logx)

Part i) of Lemma 3 also implies that

EIII X7" ..bz(n;)(
x/2<nx

cI< x
B

(3.43)

(3.44)

(3.45)

Finally, combining (3.42) with (3.39) gives

Ib (n;) [B] j
Z7"l= 7" E x(logX

n x n
j=O j B + OB 7.

nx
To bound the error term, we note that if

yields

X7" ]bz (n; )I(nNx

1
B+2X

bz (n ) [( (3.46)

11 B--$]zoI, then part i) of Lemma 3

B+2
0B (3.47)

Otherwise, we can apply Lemma 3, part i) to obtain

i
i

x B+2 x7. [bz(n; ) [( 7. [bz(n;) [(n n

1I ()Cl-l+B+--
0
B

12B--+
x /.

(3.48)

It remains to estimate the main term in (3.44). If we write

x j(log) x) j (i io$ n I j
(log o /

and apply the Binomial Theorem, we find that

(3.49)

[B] j [B]
7" k x(log x

j=O j B 7. x(logx) j

j=O j,B (3.50)

If we make the change of variable u j m, we can rewrite this expression as

[B] [B]
)u j-u j j-u7. x(log x 7. k (-I) (log n)

u=O j=u
j,B u

Hence, the main term of (3.46) is

[B] [B]
7. x(log x)

u 7. kj,B u
j

u=O j=u n

(-log n)J-U[bz(n, )

(3.51)

(3.52)

We want to write the sum on n as the sum from n i to , plus an error term.
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It follows from part i) of Lemma 3 that this remainder term is

’bz(n;) (llOg_ n) J-u ) < (l-l)/2)0 E OB, (logx) j-u

nz x l l J’Ul
x (3.53)

n n

u l-Ul
since the factor (log n) j- /n is a decreasing function of n. Hence, we can

combine whichever one of (3.47) or (3.48) applies to the error term in (3.46) with

(3.38), (3.44), (3.45), (3.52), and (3.53), to obtain

[B] [B] (-log n)J-Ulbz(n;) (xl_7. 7 x(log x)
u 51. k j E +OB,;

I
(3 54)

u=0 j=u
j,B u

n=l n

for some constant g (uI,B) > O. The claim now follows with

the sum on j in (3.54), since part i) of Lemma 3 implies that
j ,B,z equal to

(log n)J-Ulbz(n; )
(3.55)nn=l

is uniformly bounded in z for zl < B //

4. THE ESTIMATE FOR Az(x,X;)
Let c

2
be the constant c

6 from Rieger [3], put c(oI) min[c2,l-Ul] and

assume that 0 < 6 < C(Ul)(log(Sk))-i Cut the complex plane from 0 to along

the negative real axis. Then, we will define the contour S(k,) to be the union of
-Ithe following three paths: the straight line segment from i C(Ol)(log(Sk)) to

i along the negative real axis below the cut; the circle of radius and center

i, traversed once counterclockwise, beginning and ending at the point i (but
-i

not including this point); the straight line segment from I to l-C(Ol)(log(Sk)
along the negative real axis above the cut.

LEMMA 5. Let k < e
lgx

and let X be a character modulo k The following

results are uniform in z and k with Izl B:

-c
3log x

i) If X is nonreal, then Az(X,X;) 0B(xe (4.1)

ii) If X is real but nonprincipal, then we have

-c3/log x xB(k c4BAz(X,X;) OB(Xe + OB ((k)--(lg 2k) (4.2)

where 8(k) max[o:L(o,k =0]
iii) If X X0 is principal, then we have

where

-c
3
/ log x

Az(X,X;) Lz(X,k) + OB(Xe (4.3)

L (x,k) i s

z f(x,Z,Xo; x__ as (4 4)
S(k,6) s

PROOF. As we indicated at the end of Section 2, we replace (L(s,x)) z
by
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f(s,z,X;) g(s,z,X;)(L(s,X)) z

in the proof of Hilfsatz 5 of Rieger [3]. To insure that Lemma 3 is applicable to

g(s,z,X;) on the paths of integration occurring in the proof of Hilfsatz 5, we

replace the constant c
6 in the equation following (6) of Rieger [3] by our constant

c(oI) Now part i) of Lemma 3 implies that g(s,z,x;) is uniformly bounded in

o oI and Izl B, so that g(s,z,x;)=OB(1) on each of these paths of

integration. Hence (4.4) yields

If(s’z’x;)l B i(e(s’x) Izl (4.6)

Furthermore in place of the estimate

I
B+2OB((y- x) (log y)B + Y (4 7)d (n)X(n)

Zx<ny

uniformly for Izl B and for I x < y (see line 19 on p. 185 of Rieger [3]), we

have Lemma 4. We leave the details to the reader. //

Set Q(k) n p.
Plk

LEMMA 6. Choose u > 0, assume that k < exp]logx and that Q(k) (logx)U
let X be a nonprincipal character modulo k and suppose that z B Then

-c
3
] log x

A (x,X;) 0B (xe (4 8)z u

uniformly in k and z

PROOF. If X is nonreal, the result follows from Lemma 5, part i), afortiori.

If X is real then we can conclude from Hilfsatz i of Walfisz [8] that X is also

a character modulo Q, for at least one element Q of [Q(k),2Q(k),4Q(K)]
According to a theorem of C. L. Siegel (cf. Estermann [2], Theorem 48), if e > 0 is

given and n is e-sufficiently large then 8(n) is less than I (n/4)-Consequently if Q(k) is -sufficiently large we can deduce from Lemma 5, part ii),

with k replaced by Q that

C4B-c3log x l-(log x)
-u (log x) (4.9)

Az(X,X;) 0B(xe + x

Thus, we can take i/(3u) to obtain the desired result. Now there are only

finitely many values of k for which Q(k) fails to be C-sufficiently large for

i/(3u) In each such case (Q(k)) (2Q(k)) and (4Q(k)) are all less

than i, so that our lemma also follows from part il) of Lemma 5. //

LEMMA 7. Select u > 0, assume that k < exp iogx and that Q(k) (log x) u,
and suppose that zl B Let X0 denote the principal character modulo k, and

let N be a fixed but arbitrary positive integer. Then we have

N
A (X,Xo;) x 7. z(k) (log x)Z-
z =i

+ 0B,N,u(X(logx)Re z-N-I(L2(3k))N k) )Re z) (4.10)

uniformly in k, N, and z where
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%z(k) (-i) !r(z-+l) ks----i s--i
(4.11)

Furthermore,

IE(z- + l)z(k)l ,B (L2 (3k))
uniformly in k and z

PROOF. First, we rewrite (4.4) as

X S-i -Z { (s-l)zf(s’z’xO;)!L (x,k) 2 x (s-l)
z S(k,6) s

ds

(4.12)

(4.13)

By (4.5),

(s-1)Zf(s,z,)O;)
(4.14)

where

h(s,z k;) s
-Ig(s,z,x0;g) ((s 1) (s))

We can conclude from (3.8), (3.10), and Lemma 2 that

Z

(4.15)

-s N- i
l-p

i=
plk l-p

-I
n I

(s-l)nPn(k) + 0N((Is- llL2(3k)) N)

has magnitude less than 7/10, where

Pn(k) On((L2(3k))n)
depends only on k and n Hence, the Binomial Theorem implies that

(4.16)

(4.17)

Z

plk l-p
-I

j 0 J
E

n;1
(s-l)nPn(k) + 0n((Is-llL2 (3k))N+l)) j

=I+

+ 0B,N(IS- IIN(L2(3k)) N) (4.18)

N-I
R. (Q)(s-1) j + 0B,N((Is-llL2(3k)) N)

j=l 3z

uniformly in z and k where the coefficients Rjz(k of (s- i) j
satisfy

Rjz(k) OB,j((L2(3k))J) (4.19)

Now (s-l)(s) is analytic and bounded away from zero on Is: Is-11 =1/2]. Further-

more, part i) of Lemma 3 implies that g(s,z,X;) OB(1) uniformly in k, s, and

z with Izl B and o l and that g(s,z,X;) is analytic in > l provided

that Izl B Hence, it follows from (4.15) and Cauchy’s inequality for the

coefficients of a power series that

h(s,z,k;) 7. T (k) (s-l) j

j=O z,j (4.20)
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with coefficients T (k) which satisfy
z,j

Thus,

IT (k) <Bz,j ,oI pl k

j=N
z, j B’I j=N I-O1 ) B’OI

uniformly in k, s, and z with zl B and

any point

so that

Is- iI N (4.22)

iIs- i - (i-oI) By construction,
i

s along the path of integration S(k,$) satisfies Is-ll 5(1-Ol)

N-I Re zN+I(k))h(s,z,k;) j=O rz,j(k)(s-l,J + OB,Ol (s-- ii k---- (4.23)

along this path. So, we can conclude from (4.14), (4.18), (4.19), (4.21), and (4.23)

that

(s-l)Zf (s, Z,Xo; ) N-I

s
j=0

where the coefficients . (k) satisfy
3z

Since power series representations are unique, we must have

We can conclude from (4.4) and (4.24) that

(4.24)

(4.25)

(4.26)

N-I
L (x k) . a. (k)xl(x,z-j k) +z

j=O 3z

N #(k) z [(s- I)N-z[O-l[dsl) (4.27)(x (L2 (3Q)) (---)Re+ OB,oI,N S(k,6)

where

il(x,w,k) -i (s- l)-WxS-lds (4.28)
S(k,6)

Let C(b) denote the contour which goes from to C(Ol) along the negative real

axis below the cut, traverses S(k,) and then returns to along the negative

real axis, above the cut. Since k < /logx,

(s-l)-WxS-lds + 0B,OI,N (4.29)l(x,w,k) SC(b
uniformly in w and k with lwl B + N If we let -(s-l)logx= u, and recall

the Hankel integral representation for the gamma-functlon (cf. the last equation on

p. 245 of Whittacker and Watson [i0]), we find that
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l(x,w,k) (logx)W-l+ OB,oI’Nle (4.30)

To bound the remainder term in (4.27), we separate S(k,6)

K(6) and the union H(k,) of the two horizontal strips of
-i6 (logx) Then

into the circular part

S(k,6) Choose

7 }(s- l)N-Z[xO- llds[ < (logx)
Re z-N-i

(4.31)
k(6)

Now, it certainly suffices to prove this lemma when N > B In that case, we have

(4.32)

Upon making the change of variable t (i-o) log x, we arrive at

,[ (s- l)N-ZxO-ldsl B,NII(N Re z) (log x) Re
z-N-I

H(6)

B,N(IOg x)
Re z-N-i

Thus, the error term in (4.27) is

N (k)((L2(3Q)) Q--)OB,oI,N
Re z

x(log x)
Re z-N-i

(4.33)

(4.34)

Furthermore, by (4.15), the main term in (4.27) is

N-IE F(z-j)l jz(k)x(lgx)Z-J + 0B,oI,N (xe-c5lgxj=O
(4.35)

The lemma now follows from (4.26), (4.27), and part ill) of Lemma 5. //

5. THE STATEMENT AND PROOF OF THE MAIN RESULT

Let h, j, and k be integers with j z O, k m i, and with (h,k) i

.(x,k,h;) #In x:(n) J, n h(modk)]

Set

(5.1)

j(x,x;) x(n)
n& x,(n) j

(5.2)

THEOREM i. Choose u > 0, and let N be a fixed but arbitrary positive integer.

Let h, j, k be integers with i j < BL2x, (h,k) i i k < exp]lgx and

Q(k) (log x)
u

Then we have

N

),. (,u,.) x / - z z-z()(og x)Z-
(k) (j-) \zj-

uniformly in h, j,

PROOF.

z=0

(5.3)

i (x(L2x)j )+ 0B,N,u (k) j!
(logx)

-N-I (e2(3Q(k)))N
and k, where the coefficients z(k) are given by (4.11).

In view of our notation, the orthogonality relations for characters yield
1

w’3(x’k’h’)’ () xmod7 kX(h) wj(x,x;) (5.3)
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Since any character modulo k is completely multiplicative, (n) is additive, and

i(n) is additive when restricted to squarefree n, it follows from (2.3), (2.4),

(2.7) and our definition of A (x,x;) that
z

Az(X,X; 7. u.(x,x;)zj (5.4)
j=O J

This sum is actually finite. If C is any circle of radius less than B with

center O, traversed once counterclockwise, then Cauchy’s Residue Theorem implies that

1
j(x’x;) 2- 7 Az (x’x;)z-j-ldz (5 5)

C

Now after the proof of Lemma 3, we declared that B would exceed i for the remainder

of this paper. So, for nonprincipal X we can let C have radius i and apply

Lemma 6 to obtain

u(X -c3i0g x )Uj(x,x;) OB, e (5.6)

If x XO is principal, then 0 is also the principal character modulo Q(k)

Hence, we can estimate Az(x,x;) by Lemma 7, with k replaced by Q(k) In (4.11),
we can view 0 as either the principal character modulo k or modulo Q(k) so

that e%z(k) ez(Q(k)) Thus, if we put Q Q(k) we have

N
i -i z- z-Tj(X,Xo ;) x 7.

2-- f z .6z(k)(lgx) dz +
=i C (5.7), (0) x)Re z

+ OB,N, u(x(lgx)-N-I (e2 (3Q))N 7clZ-J-ll\--- log Idzl
-i

By (4.12), z z(k) is analytic at z= O, and consequently Cauchy’s Residue Theorem

yields

2i 7 z z(k) (logx) z-3dz + (j-l)
z z(k) (logx) (5.8)

C bzj
-i

z=O

If we substitute (5.8) into (5.7), and then substitute (5.6) and (5.7) into (5.3),

we find that it suffices to prove that the remainder term in (5.7) is

Since j < BL2x, we can let the circle C in (5.7) have radius J/L2x Thus, the

integral in the error term is

I 2
.j

U exp[ (j cos 0) (e2x)
-I

(e
2
(--Q) log x)]d0

3 \0

Since Q k < exp/log x we can conclude from part iii) of Lemma 1 that

(5.10)

0 < L2(Q(-Q) log x) s L2x (5.ii)

Hence, since cos8 0 for 0 & & /2 and cosS 0 for u/2 & 8 , we can
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bound the integrand by I for /2 < , and by ej cos
for 0 /2.

Thus,

I (e2x)Jj-J(7/2 e
j cos d + i) (5.12)

0

It is well known that /2eJ cos d O(eJj -I/2) (in fact, we have
0

ej cos d I0(j) where I
0

is the Oth Bessel function of purely imaginary
0

argument). If we combine this result with (5.12), and apply Stirling’s formula for

j! we find that

I (L2x)Jej(j!)-I (5.13)

Since I is the integral in the error term in (5.7), that error is (5.9), and the

theorem follows. //

REMARK. Upon performing the differentiation indicated in our theorem, we find

that we can replace the main term of our estimate for j(x,k,h;) by

N

-j. (log x) ,,k(L2x) (5.14)
=i

Where gj,,k(U) is a polynomial in u of degree j I

REMARK. From Lemma 3, we can deduce that Theorem i is valid for the functions

mu and m for any value of B > i, and that Theorem I holds for

provided that i < B < 2 Furthermore, in view of the statement of Theorem i, the

requirement that B exceed i can be replaced by the assumption that B be positive.

6. AN ANALOG OF THE SATHE-SELBERG FORMULAE

THEOREM 2. Fix B’ with 0 < B’ < B Select u > 0, and let h, j, k be

integers with i j B’L2x, (h,k) i, I k < explogx and Q(k) (logx)
u

Then we have

.(x,k,h’)
x (L2x) 2x X0;) L2x +

3 (k) logx (j-l)! F(I (j-I /LzX) (6.1)

( J (L3(16k))2)]+ OB,B’,u (L2x)’2
uniformly in h, j, and k where XO denotes the principal character modulo k.

REMARK. According to Lemma 3, we can take B to be large enough so that our

theorem is valid for any choice of B’ > 0 if or for any selection of

B’ with 0 < B’ 2 if m fl and for any choice of B’ satisfying

1 /A] provided that mi Here A is the constant mentioned0 B’ exp[(ol -)
in (1).

PROOF. We can conclude from (44) and Theorem 1 with N 1, that

_z;_l
[ (k) (log x)Z-i

z=O
+

i x(L2x)J
(6.2)

-2L2+ 0 k) j!
log x) (3Q(k))
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where

lz (k) Fz)(--k))Zg(l’z’Xo;)
By the functional equation for the gamma-function, we have

iz (k) F(z+l) g(l’z’Xo;)
For j I, the theorem follows from (6.2) and (6.4). If j > I, set

(6.3)

(6.4)

(z) k(z,k;) iz(k) (6.5)

Since part i) of Lemma 3 implies that g(l,z,Xo;) is bounded uniformly in z with

z < B, and in k, and since B’ < B, we can deduce from Cauchy’s inequality for

the derivative of an analytic function that g’(l,zo,Xo;) and g"(l,z,Xo;) are

bounded uniformly in z and k with Iz[ N B’ Furthermore, i/F(z + i) is

entire, so that its first two derivatives are uniformly bounded in z with [z[ N B’

Hence, it follows from (6.5), (6.4), and part iii) of Lemma i that

[i"(z)[ <B,B \ (log (3k/(k))) 2 <B,B’ J (L3(16k))2 (6.6)

uniformly in k and z with Izl B’ From (6.2), (6.5), and Cauchy’s Residue

Theorem, we can conclude that

n.(x,k h;)
1 x 1

3 (k) logx 2hi f (z)(logx)Zdz +
C (6.7)

< i x(L2x)J L2(3Q (K)))+ OB’u (log x)(k) j! 2

where C denotes the contour [z (j l)/L2x traversed once counterclockwise.

Put r (j l)/L2x Then the integral in (6.7) is

X(r) 1
z dz-i- f (log x}Zz-Jdz + 7 [k(z} k(r) k(r)(z- r}] (log x} z -j

C C

If rz denotes the straight line segment from r to z, then we have

(6.8)

(z)-7(r)- (z- r)’(r) __(z-w)h"(w)dw
rz

for Iz[ B’ So, it follows from (6.6) and the Triangle Inequality that

(6.9)

Re z
lk(z)-(r)-(z-r)’(r) <B,B,(L3(16k))2(k(-k--)) lr-zl 2 (6.10)

again uniformly in k and z with [z < B’ We now apply this estimate to the

second integral in (6.8). At the same time, we evaluate the first integral in (6.8)

by Cauchy’s Residue Theorem. Since the quantity in (6.8) is the integral in (6.7),

we obtain

(e2x)J-i
7 (z) (logx)Zdz (r) +
c (j-l)

r z ,)+ OB,B, L3(16K))27 ir- z -----log x Iz-Jldz
(6.11)
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By our choice of C we can rewrite the integral in (6.11) as

4r3-j f (i- cos 0)e(J-l)cos 0(k__c.)-r cosd (6.12)
0

On the interval [0,i/i-] the integrand is O(j-lej) For i/I-N/2, the

integrand is at most (sin)/sin(i/I/ ). Finally by part ill) of Lemma i, the

integrand is O(L2(8k))r) on the interval [/2, ]. Thus the integral in (6.11) is

4r3-Jo(eJj -3/2) + O(exp[(j-l)(L2(8k))/e2x]) (6.13)

We will show that the second error in (6.13) can be absorbed into the first one.

Indeed, if j 1 (L2x)/L3x then

exp[(j-I)L2(8k))/L2x] e eJ-lj -3/2 (6.14)

since k x. Furthermore, if j-1 > (L2x)/L3x, then

exp[(j-l)L2(8k))/L2x exp[BL2(8k)] u (L2x)B B eJ-lj-3/2 (6 15)
U

since k (log x)
u

In either case, we have shown that the integral in (6.11) is

0B,u(r3-JeJj-3/2) Therefore, if we substitute (6.11) into (6.7) we find that

j-I

(r) + u-1 x (L2x)
0B

1
x (L2x) J L2 (3Q (k))

j (x,k,h;) (k) logx (j-l) (k) j’ 2 +
(log x) (6.16)

( x 3-jeJj-3/2+OB,B’,u (k) hogx r (L3(16k))

By applying Stirling’s formula for j! to the second error term using the fact that

Q(k) N (logx)
u

to estimate the first error term, and recalling (6.4), (6.5) and the

definition of r we can now deduce the asserted result. H
7. AN APPLICATION TO THE STRENGTHENING OF SOME RESULTS OF G. J. RIEGER

By using Lemmas 6 and 7, we can improve Stze 2 through 7 of Rieger [3] by re-

placing each estimate by x times an asymptotic expansion descending by powers of

log x We illustrate the idea with an example:

THEOREM 3. (cf. Satz 2 of Rieger [3]): Select u > O, suppose that

k < explog x and that Q(k) (log x)
u

and assume that [z[ B Let be any

integer relatively prime to k, and let N be a fixed but arbitrary positive integer.

Then we have
N

x z-
(n;) " z(k) (log x) +E az -- inNx

n =- (mod k)

+ OB,N,u-r-r’’k@m) (logx)
Re z-N-i

(7.1)

uniformly in k, , N, and z, where the coefficients z(k) are given by (4.11)

and satisfy (4.12).
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PROOF. According to the orthogonality relations for characters, we have

i. a (n;) X(2’) A (x,x;) (7 2)(k) zn-x xmod k
n 2’ (rood k)

This theorem is now an immediate consequence of Lemmas 6 and 7. //

Furthermore, if we replace f(s,z,x,) by (L(s,x)) z
we can argue as in Lemma 5

to obtain an estimate for Y- d (n)x(n) of the same form as the expression on the
Z

riSE

right side of (4.10). Then, we can reason as in the proof of Theorem 3, but using

Hilfsatz 5 of Rieger [3] in place of Lemma 6, to arrive at the following result:

THEOREM 4. (cf. Satz i of Rieger [3]): Under the hypotheses of Theorem 3, we

have

N
X .--2’. d (n) = 2’z(k) (log x) +

n x
z ’(k) 2’ i

n 2’ (mod k) (7.3)

+ OB,N,u x (log x) Re z-N-I(L2(3k))N( ]

uniformly in k, 2’, N, and z, where the coefficients 2’z(k) are given by

(7.4)Y2,z (k) (2,-1)!F(z-2’+l) k-0--l s=l

Furthermore,

Iz2’z (k) <,B (L2(3k))2’’ (7.5)

uniformly in k and z
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