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ABSTRACT. Various representations of finite Hankel transforms of generalized
functions are obtainec. One of the representations is shown to be the limit of a
certain iamily of regular generalized functions and this limit is interpreted as a
process of truncation for the generalized functions (distributions). An inversion
thecrem for the oceneralized finite Hankel transform is established (in the
distributional sense) which gives a Fourier-Bessel series representation of
gereralized functions.

KEY WORDS AND PHRASES. lHankel transjorms o) gereralized [urciions, Dest junction

spaces, Finite Hankel trunsforms.
1980 MATHEMATICS SUBJECT CLASSIFICATION CODE. 46F12, 44A20, 44A1S.

1. INTRODUCTION.

Zemanian [1] extended Hankel transformations to the distribution space H;. H;
is the dual of the space of testing functions Hu defined as follows: for each real
number , let
Hu ={¢ : (0,) »¢ | ¢ is smooth on (0,») and ¢ satisfies (1.1) }

o,k (#) = sup ™ (x71 )R [x ¥ 4(x)]] <=, for each mk = 0,1,2.... (1.1)
O0<X<w

H; consists of certain distributions of slow growth. Then later [2] he obtained a
more general result by removing the restriction on the slow growth of the
distributions. He defined the Hankel transformation of a distribution of rapid growth
in the space B;. B; is the dual of Bu’ the strict inductive limit of the testing
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function spaces Bu,b (defined in section 2) as b tends to infinity through a
monotonically increasing sequence of positive numbers.

We take advantage of the fact that functions in Bu,b are identically zero after
b, to define the finite Hankel transformation for the generalized functions in its
dual B; b This is done by generalizing Parseval's equation. We find that for
uz -, the finite Hankel transform hu maps Bﬁ,b isomorphically onto the
generalized function space Y;,b (defined in section 3). The aim of the present
paper is to obtain various representations of the generalized functions in L b and
to find an inversion formula for the generalized finite Hanke! transform whoch also
gives another representation of the members of B‘ b a2 Fourier-Bessel series.

We follow the notation and terminology of Schwartz [3] and Zemanian [4,5]. Here
I denotes the open interval (0,#). The letters x,y,t and w are used as real
variables on I. The kth derivative of an ordinary or generalized function f(x) s
usually denoted by Dk f(x) (though the symbol Dt f(x) is also used). ©O(I)
denotes the space of smooth functions that have compact support on I. The topology
of D(I) is that which makes its dual the space D'(I) of Schwartz's distributions
[3, vol. I, p.65].

2.  TESTING FUNCTION SPACES AND Y

l-lyb U,b.
Let b >0 be a fixed arbitrary real number. Then for u € R, where R is the

net of rea! numbers. we define

Bu b = {6 : T>¢ | z(x) is smooth, ¢(x) = 0 for x > b and ¢ satisties (2.1)}
vy (¢) = sup L o) (X772 6(x)]] < =, for each k = 0,1,2.... (2.1)
o<x<®

Bp,b is a linear space to which we assign the topology generated by the countable set
of semincrms YE. bu,b is a sequentially complete countably multi-normed space [2].

Classically, for u + 1 2 0, the finite Hankel transform of a testing function
¢ in Bu,b is defined as

200,) = P e(x) ATX I, O x)dx, 1e1,2,3,.0, (2.2a)
where as usual Ju derotes the Bessel function of the first kind of order . and Xn
(n=1,z,3,...) are positive roots of Ju (bz) = 0 (arranged in ascending order of
magnitude). However, ¢(An) can be extended to the analytic function of the complex
variable z = y+iw by

olz) = Ofb o(x) Vxz J, (xz)dx. (2.2)

Note that ¢(z) is ar analytic function on the finite z-plane except for a branch
point at z = 0 [4, p. 1457. Henceforth, the finite Hankel transform of a testing
function ¢ in Bu p shall be defined as the analytic function ¢(z) given in (2.2)
and denoted by hu¢ =

For a given real number b > 0, Yu b is the space of functions ¢(z) which

k]

satisfy:

-yl

27"7%¢(z) is an even entire function of z and for each non-negative integer
k, the quantity
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“E i (8) = sup Ie'b'"|22k'(“+*) ¢(z)| (2.3)
? z
is finite. The topology of Yu b is the one generated by wusing the °§ K
’ b
k =0,1,2,..., as seminorms. Yu b is a sequentially complete countably normed
space. For further properties of these spaces one can look into Zemanian [a4, 2].

For a given testing function ¢ in Yu b? consider the function
’

e

— S .
o(x) = 7 elyl vxy J, (xy)dy = h " [#]. (2.4)

Then for 1w = -3, Zemanian [2, Theorem 1] has proved:
Thecrem 2.1. For w2 -}, hu is an isomorphism from Bu b onto Yu b
Here isomerphism means topological isomorphism. Henceforth, the symbol ¢ shall

be used to denote & testing function in Yu b whouse pre-image is a testing function
¢ in Bxb'
For a given ¢ in Yu b? the classical inverse of the finite Hankel transform
(2.2a) is a Fourier-Bessel series of the form, [6,7],
® J (xx))
Lox )t A0, (2.5)
b n=1 J¢ . (bx)
utl n

Since « satisfies (Z2.3), we have

e )] < K k= 0,1,2,..s 0 = 1,2,3,...,
A Zk'(u+%)
n
el
where AP is ccnstant. Also  (x/A )5 [J (xx_)/d5,,(bx )] is smocth and bounded on
b n u n uti n
0 « \nx < w, for u 2 -}, Consequently, the Fourier-Bessel series (2.5) converges
absolutely anc uniformly in x for ail »x > C. Let us write
L] J (xx_ )
!
vix) = Lo )t e ),
b* n=1 J4q(br))
ther.
© J (xA ) [ 2k+u-14 R
Lotk x B a0 = 2 | e ok ey Ol (2.6)
b® [n=1 Ju+l(bxn)

Since ¢()n) is of rapid descent as Ay > = and (xAn)"“'th+k(xxn) is smooth and
bounded on (0,x) for u 2> -}, it follows that the right-hand side of (2.6)
converges absolutely and uniformly fcr all x > 0 and for every k = 0,1,2.... Hence

the left-hand side is continuous and bounded on 0 < x < » for each k = 0,1,2,....

Hence
() <= k= 0,1,2,.. ..
k
Moreover, (x'lD)k(x'“'%w(x)) = x‘“'é[ako "%F *a,, —?%%T—+ cee A 9—%},
X X X

where the 2 denote constants ard [ = 37' So we see that the Fourier-Bessel

series defines an infinitely differentiable function vy(x) satisfying yE(W) < = for

each k = 0,1,2..... But ¥ may not be in Bu p 4s ¥ may not be zero for x > b.
’

But

¢(x) = !lg+ P ()¥(x) € B,
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where As(x) is defined as:
E(x/2), 0 < x < 2¢
1, 2¢ < X = b-2¢
A (x) = 1-5(51%§32), b -2 <x<b,
0, x> b, (2.7)
for O < e < b/4, and
Ofuexp(l/x(x-l))dx

E(u) = I . (2.8)
o exp(1/x(x-1))dx

Note that Ae(x) is a multiplier in Bu
$ < Bu,b’ we have

b for each 0 < ¢ < b/4 since, for any
t]

k
o) <1 () % (e S |0 Mg ()] -
n=o0

<X<

Now pick X such that 0 < X < 2¢. Then

sup | (x~ D)nl ( o< =,
X<x<b

and

sup | (x D)™ ()] < A sup | (x7 103" lexp (o xm
0<x<X 0<x<X

where A is a constant.
So we see that Yﬁ (A€¢) < ». Also xe(x) is smooth on (0,«). Hence N Bu
It is easy tc see that

Tim, A _(x)o(x) = ¢(x), for any ¢ in B

S*O u,b'
3.  GENERALIZED FUNCTION SPACES B' b AND YL b
The spaces B‘ ,b and Y b are the dual spaces of Bu b and Yu,b

respectively. We shal] use on]y the weak topology of B' ,b? that is, the topology
assigned to it by the seminorms

e Q(f) = |<f,>|, ¢ ¢ B feB

u,b’ u,b*
Since Bu,b is a sequentially complete countably normed space, B;,b is also
sequentially complete [4, Theorem 1.83]. Similarly, we equip Y;,b with the weak
topology generated by the seminorms L¢(F) = |<F,9>|, ¢ € Yu,b’ Fe Y;,b'
Yﬁ,b is a sequentially complete space.

We now construct a generalized function in B' b which is not in D'(I). Let
{Tn} be a monotone increasing sequence of posntlve numbers with limit b+l. For

every ¢ € Bu b the formula
<fo>= 1 e(r) (3.1)
n=1
is easily seen to define a gereralized function f in BL b On the other hand, if
¢ is an arbitrary testing function in D(I), then . ¢(rn) is in general an
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infinite sum and it need not be convergent.
Note that
(i) B;,b contains every regular distribution that corresponds to a function
which is Lebesgue integrable on 0 < x < b. In this case we have
<f 0> = P elx) dx, e B, b-
(ii) If f is a tempered distribution whose support is contained in [X, ) for
some X > 0, then f e B&,b'
(iii) Similarly, every regular distribution F, which can be defined by a locaily
integrable function F(y) through the equation
<Foe>= 7 F(y) e(y) dy
for every ¢ in Yu,b’ belongs to YL,b‘ Note that F(y) need not be integrable
over 0 < y < =, though typically it would be of slow growth, i.e., for some integer
N>O0, y_N F(y) >0 as y » =,
4,  FINITE HANKEL TRANSFORMATION OF B;,b’
Henceforth, we assume that u 2 -%. For f e Bﬂ,b’ ¢ € Bu,b and ¢ = o ¢ € Vu
we define the finite Hankel transform F = huf by
<F,0>=x<f,¢ >. (4.1)
The above equation also defines the inverse Hankel transform f = h;lF. From Theorem
2.1 one readily obtains:

»b’

Theorem 4.1. hu is an isomorphism from Bu,b onto Yu,b'

Example 1. The finite Hankel transform of the delta function &(x-k} is given by the
equation (4.1):

"

< hué(x-k), o(z) > < 6(x-k), ¢(X) >, for 0 < k < b,

< 8(x-k), Of“ o /Xy Ju(xy)dy >, (using (2.4))

ofw o(y) vky Ju(ky)dy < w.

This defines a regular distribution F(z) = (kz)g Ju(kz) in Y;,b' Consequently,
B o(x-k) = (kz)*Ju(kz), for 0 < k < b.

Example 2. The finite Hankel transform of 4&(x-k) for k > b is the "Zero"
generalized function in Y;,b’ since <6(x-k), ¢(x)> = ¢(k) = 0 for all ¢ in Bu,b'
Example 3. The finite Hankel transform of the generalized function in B;,b defined
by (3.1) is the generalized function defined by the series

F =

W~ g

YT, Ju(yxn)
n=1
since, for ¢ ¢ Y b?
Hs

< F,0 > =n£10f o(y) Tty Ju(rny)dy

=1 olt,) =< f,e >

n=1 n
Example 4. Suppose f is a regular generalized function, corresponding to a Lebesgue
integrable function over (0,b), in B;,b' Than the ordinary finite Hankel transform
of f is given by

fb f(x) /7;; J (Anx)dx; n=1,2,3....

0 U
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Since f is integrable over (0,b), its finite Hankel transform may be extended to
the analytic function

F(z) = ofbf(x) /X 3 (2x)dx.

We show that F = hu(f)' Since f is a regular generalized function,

< huf,Q > =< f,¢>

= % f(x) olx)dx

= ofb f(x) (77 ely) /xy J,(xy)dy)dx (using (2.4)).

Since the integrand f(x)e(y) (xy)}Jh(xy) is absolutely integrable over the domain

0<x<b, C<y<=, the order ¢* integration may be changed, and we obtain
<hf0 o= 7y o(y) Pax f(x) (o)t o (xy)
uf o Yy W), Y17 oo xy
=< F,% >,

_ b i . .
Note that F(An) = of f(x) (Anx) Ju (Anx)dx, gives that |F(An)| is bounded.

u
EOF( e )

Hence, for any ¢ in Yp p» €quation (2.3) ensures that the series
’ n=1

converges. Furthermore, if a sequence (¢m] converges in Yu b then the sequence of
’

numbers {Z F(X )¢ (& )} also converges. Hence, the sum T F(A )¢(X ) defines a
5 n’mn 1 n n

continuous linear functional on Yﬂ,b'

Next we investigate a representation for the finite Hankel transform of a
generalized function in Bﬂ,b’ Let D(0,b) be the space of infinitely differentiable
functions on (0,b) with compact support contained in (0,b). The topology of
D(0,b) is that which makes its dual D'(0,b) of Schwartz's distribution. Then
D(0,b) C Bu,b and hu maps D(0,b) into a subspace of Yu,b' Let W be the
subspace of Yu,b onto which D(0,b) is mapped. Then we have
Theorem 4.2. For any generalized function f in Bﬁ,b’ there exists a continuous
function F(y) of slow growth such that the finite Hankel transform huf of f
restricted to W is equivalent, in the functional sense, to the regular generalized
function F in Y&,b‘

Proof. For a given generalized function f, there exists an integer r 2 0 and a
continuous function h(x) [5, Theorem 3.4.2] such that

< f,0>=<0D"h,0 >, for every ¢ in D(0,b).
We take h = 0 outside (0,b). Then using (2.4), we have, for ¢ € D(0,b),

<F,q>>=<huf’hu¢>=<f,¢>=<0rh,¢>

= (-1)" < n(x), D"e(x) >
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= (-1)" ® dx h(x) D"(x)

S )" P dkn(x) ST dy o) (VY
0 o dyely ;;;( xy J,(xy)) (4.2)

(-1)" ofb dx h(x) /% dy e(y)

r
i=

. [-1Ta, 0y %3y 0, ()]

n
&

(-1)*Ta (w) /2 e X TTROOL STy oly)y! AT I )] (4.3)

. +i
1=0 ¥

where ai(“) is a constant depending on 1, for each i. If 9 (x) = xi'rh(x){
then gi_r(x) is continuous on (0,=) and gi_r(x) = 0 outside (0,b). Since ¢(y)
is of rapid descent and (xy)% Ju+i(xy) is bounded on 0 < xy < =, the order of
integration in (4.3) may be interchanged. Therefore, (4.3) becomes

r itr o i r
< Fy0 > = i20(-1) a;(u) o/ dy elyly ', 0g (X)].

u+i
Denote hu+i[gi—r(x)] by Gi-r(y)’ then for ¢ ¢ W,
r . o
<Fe > =<1 (-1)Ma (wy's Ty, ely)> . (4.4)
i=o

Clearly, the continuous function

61 (y) = P gy 0w h (y)ax,

may be extended to an analytic function. Equation (4.4) gives

r - ..
my W=z DTGy e TN = FO).

0

Finally since, | G;tﬁ (y) | <=, it is obvious that F(y) is of slow growth.
Example 5. From Example 1, we know that hué(x-k) = (kz)*Ju(kz), for 0 <k <b.
On the other hand, if we define

0, for x 2 k,
h(x) =
x-k, for x > k,

~N

we obtain from Theorem 4.
hué(x-k)

It is easily seen that
2,(n) =% - 4y 3y () = 2(641), and ay(u) = 1.

Fly) = a ()6, (y) - a,(u)y 6431y) + a, (uyZel2(y).

Also
68,00 = PG - kD) )k (xy)ex,
3y = - How, wax,
and
62 2y) = Pk )N, (xy)dx.

Hence (4.4) gives
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Fiy) = (v0R (yK) - 31 + Do)} 9 (k) + (1 - Piy(yp)tar (vb).

This is another representation of hua(x-k). It can be shown that this representation
is equivalent to the one given in example 1, since

<-b (14 %)(yb)*du(yb), o> = -3(1+ %) o/ ely) (yb)*Ju(yb)dy, s p
- -1+ §) a(b) = 0.

Note. ¢(b) = 0 follows from the continuity property.
Thus (1 - &) <y(yp)? 0! (yb), @ > = (1= §) /7y o(y) (yb)a! (yb)ay.
From (2.4) we have
8'(x) = g5 of” o) ()} Owddy + 17y o) )P (xy) (ay).
Therefore,
S””m¢%w%¢%mwmumwmﬂwmmm“mwx

(1 -8 < yon)tor (by), 0 >

(1-§) [o'(b) - 75 ()] = 0.
Hence
<Foo> =<y} Ju(yk), o(y) >.

Thus we get the same result as derived in Example 1.
Example 6. We have shown in Example 2 that huc(x-k) =0 for k > b. This also
follows from Theorem 4.2. Take r = 2 and define h(x) = 0 for x < k and
h(x) = x-k for x > k. It is easily seen that Gﬂz(y) = GEIl(y) = Gg+2(y) =0,
hence F(y) = 0.
Corollary 4.3. For any generalized function f in B;,b with r, h(x) and F(y)
defined as in the proof of Theorem 4.2, we have

Fiy) = < D" h(x), 2 () (o)t 9 (xy) >, as e » 0", (4.5)
Proof. Theorem 4.2 gives

i+r inity .-
(-1)"a;(wy'6; (y), for feB'

0 b

1
"o -s

R fl, = Fly) =
Wy = FO) -

r . .
(-n7 P o : (-1)7a; (X" 0w) o) o (xy)

(1" 2 [T 3 (xy)] hix) dx
0 " U

(-l)rofb A (x) 32; [Vxy Ju(xy)] h(x) dx as e » 0

9X
r

= ()T hx), ) A LAY ()] > as e+ 0.
X

; - +
But since Ac(x) =1lon (0,b) as e~ 0" (and h(x) = 0 outside (0,b)), the
order of differentiation may be interchanged in the preceding equation to give

Fy) = (-D" < hx), O D (0 0x0)? 3 (x)] > as ¢ » 07,
= < D: h(x), Ae(x) (xy)édu(xy) >, as e » 0,

(from the definition of distributional differentiation).
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Example 7. While calculating the finite Hankel transform of &(x-k), 0 < k < b
(Example 5) using the method of Theorem 4.2, it was necessary to evaluate certain
integrals to find F(y). This may be avoided by using the above Corollary. From the
definition of h(x), we see that

0, 0<x <k,
D h(x) =
1, x> k,
and
02 h(x) = s(x-k).

Hence, (4.7) gives

Fly) = Tim, < s(x=k), A _(x) (xy)d (xy) »
c»O € L4

= vim, x_(K) (ky)}0. (ky)
e*o H

= (ky)*au(ky), since A (k) = 1as 0"

5. SOME STKUCTURE THEGREMS
In this section we shall obtain representations for members of Bu b B; b and
E]

Y;,b under suitable conditions. Note that the structure formula given by Theo;em 4.2
is valid only when F ¢ YL,b is restricted to W, a subspace of Yu,b’ Here we will
obtain a more general result, viz., a structure formula shall be established for
F e Y' ,b restricted to a larger subspace than W of Y b This section is very
s1m|1ar to section 3.4 of Zemanian [5, p. 86-93], consequently the corresponding
results will be stated without proof or, perhaps, with only an indication of the
proof. To begin with, we define certain spaces associated with B b

Definition 5.1. We define the spaces B u,b? C0 b and B(lg by

Bﬁ,b ={¢cB o= o(x**}) as x-0' 3, (5.1)

Cg p=19:(0,) »¢ | g iscontinuous on (0,=), g =0 for x >b

g(x) = o(x**¥) as x » 0"}, (5.2)
and

(1) ={éoeB o= o(x”+3/2) as x » 0%y, (5.3)

Bﬁ b carries the natural topology induced on it by Bu,b'
Note that

¢ € Bu b * ¢ o(x“+*), as x » 0.

sup X" o(x) | < .
0<x<b

This is true because Y: (¢)

We prove an |nterest1ng property of functions in B0 ,b in
Lemma 5.2. Let ¢ ¢ B Then

u,b*
= o(xu+5/2) as x »~ 0", (5.4)

Proof. Let ¢ ¢ B® b Now
e = o - ey 5. (5.5)
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Write n(t) = :— - (u +3) % . Clearly n(t) is a smooth function on (0,) and
t

n(t) =0, for t>b. Also, v, () = v, (0) <=, foreach k=0,1,2,....

Hence, n(t) € Bu,b' Therefore, n(t) = o(t“+i), as t 0",
Hence
%; (™ de(t)) = o(t), as t o0 (5.6)
Integrating (5.6), we obtain
t™4e(t) = 0(t?), as t -0, (5.7)
proving Lemma 5.2.
We assign a norm to the space C° ,b by
I JII = sup Ix’“'%g(x)l, for each g e C° . (5.8)
xe(0,b) usb

Thus C° ,b becomes a topological vector space. We need the following lemma which is
stated w1thout proof since the proof is identical to the proof of [5, Lemma 1, p. 88].
Lemma 5.3. Bg,b is a dense subset of Cu b

The followirg proposition gives an nntegral representation for the functions in

g0
u,b*
Progos1tion 5.4. Let ¢ ¢ Bg b Then ¢ satisifies the integral equation
o(x) = #* ut ) (€7D (e He(e))at, (5.9)
where
u(x,t) = x“'*u*(x,t), (5.10)
and
S22
537 t(t°-b%), for 0<xstsb,

3
u*(x,t) = -57 x(xz-bz), for 0<ts<x<sb,
2b

0 , elsewhere, (5.11)

for 0 <x <o, 0<t <o,
Proof. Trivial.

Next we prove that generalized functions in Bﬂ,b are distributional derivatives
of certain continuous functions.

We start with the following boundedness property of f € B' ,b*
For each f ¢ B' ,b? there exists a non-negative integer r and a positive constant
A such that for all ¢ B b

|<f.65] = A max v (9) = op (o) (say). (5.12)
o<ksr
Suppose f € B; b is such that (5.12) is satisfied with r = 0. Then
|<f.ool <A sup [x*7F (0] (5.13)
0<x<b

We now extend f, satisfying the inequality (5.13), continuously and uniquely onto
the space Cg b Let g in C b be arbitrary. Then by Lemma 5.3, there exists a

sequence {¢n} of testing functlons in B b such that ¢, converges to g in
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CO

u,b* We define <f,g> by

<f,g> = Tim <f,¢ >. (5.14)

n->c
This defines a continuous linear functional on Cg,b satisfying the inequality
(5.13).
Clearly u(x,t) e Cg’b, hence the following definition makes sense for f e B;,b
satisfying (5.13).
Definition 5.5. For f ¢ BL b satisfying the inequality (5.13), define

h(t) = < f(x), u(x,t) >. (5.15)
Note: (i) h(t) =0 for t=Db, asu(x,t) =0 fortzb
(i) |h(t) - h(x)] < 3Ab%|t-1], 0 <t b, 0 <t <b. (5.16)

Lemma 5.6. For ¢ ¢ B ., (% Dt)z[t'“'%¢(t)] is uniformly continuous on (0,b].
Proof. Let
_(ld\2r -u-d
n(t) = (¢ gp)[t7 "e(t)], ¢ e B .

Then, n(t) = 0(1) as t»0", and |n'(t)| < =, proving the Lemma 5.6.
Theorem 5.7. For f ¢ B; b satisfying the condition

<f,¢>] < A sup |x-“_% o(x)|, ¥ ¢ ¢ B be
0<x<b o

we have
<fae> = 2 n(e) (¢ 1D ) 2T He(t) Jat (5.17)
for every ¢ ¢ BS p- Here, h(t) s the continuous function defined by equation

(5.15). If Dt[t'lDt(t'lh(t))] is Lebesgue integrable over (0,b), (5.17) can be
written as
<fog> = <t (¢7h (1 7Th(1)), o(t), (5.18)

for every ¢ ¢ BS,b'
Procf. The proof of (5.17) is very similar to the proof of [5, equation (9),
p. 90-91] and (5.18) follows easily from (5.17).

We now generalize Theorem 5.7 for the case when |<f,¢>| < p$(¢), r > 0. For
this we need the following:

Definition 5.8. For each non-negative integer n, we define the spaces Bﬁng, Hﬁ"b,

B:,b, and H:’b by
Bﬁ?& ={eeB ¢ oM(x) = o(x**¥2) as x » 04}, (5.19)
where ¢(")(x) = D"(x) for n#0 and ¢(0)(x) = ¢(x),

©

Bu p=loce Bu b ¢(k)(x) = o(x“+*), as x » 0+, for each k = 0,1,2,....},(5.21)

and



336 0. P. SINGH AND R. S. PATHAK
(1) 0 o _ (o) o
Note that Hu,b C Bu,b and Bu,b = Bu,b' Let ¢, ¢ Bu,b be such that
b  -u+i -
of t ¢o(t)dt = 1. (5.23)

In the subsequent development we shall need the following lemma, whose proof is
omitted since it is similar to that of [5, Lemma 1, p.68].
Lemma 5.9. Let ¢  be a fixed testing function in Bg,b satisfying (5.23). Then any
testing function ¢ in Bz,b may be decomposed uniquely according to

¢ = Koy *+n (5.24)
where n is in Hslg and the constant K is given by

K = ofb t7 g (t)dt. (5.25)

Suppose f is a regular generalized function in B' b generated by a differentiable
function f such that f is Lebesgue integrable over (0,b) and f' is bounded on
(0,bY. Then for n ¢ Hﬁlg we have
N R
<fyn> = Of f{x) n (x)dx
1 Jb u-% d [ -u-} (1)
SO X f(x) I [x $(x)]Jdx (for some ¢ € B u,b)

u+d

U“g ]
- - E%? ojb ORI 4(x)dx,
X

since ¢(b) = 0 and 2£5l = o(x“+3/2) as x » 0+,

Therefore 1 .
<fon> = =3 oM ipyHd f(x), -¢(x)>. (5.26)
But
= xu_-%. [)x-u-é ¢(x)
n n+3 s
therefore,
<f(x), xid Dx-u';¢(x)> L f(x), -¢(x)>. (5.27)
Let
L, = DL Pl (5.28)
and .
T o= xHhpeet s . (5.29)

(1) v
Then for any ¢ € Bu,b’

o ot -1 -u-31 0
L =x (x™* D)(x #(x)) € B, b
and
u _ M
Yk (LU¢) = Yk+1 (¢)-
We write the above as

Lemma 5.10. The operation ¢ - Lu® is a continuous linear mapping of Bﬁig into
B .
LILE ) o (1)

For an arbitrary f in Bu,b and any ¢ in Bu,b’ set
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<T Fip > =< e A R AL (5.30)
From (5.30) we see that Tuf is a linear functional on Bilg. Write
xEpt g - g.
We then have formally,
px* 7k f =yt g.
Now define,
- 1 -
NUE I PULE NS (G2 DI (5.31)
With this notation (5.26) suggests that
< x-u+% [Xu+% f}(-l)’ n> = ui& < f,-¢ >. (5.32)

Equation (5.32) defines a linear functional on Hﬁ g. This can be extended to all of

Bg b by using Lemma 5.9. Assign

. —

< xutt [x“+% f]('l), 0 > = Ko (arbitrary). (5.33)
Then for any ¢ ¢ Bg b we have from Lemma 5.9,
9

¢ = K¢o + .

Hence the operator x **% [x#*! f]('l) is defined for all of Bg be
Proposition 5.11. Suppose f € B; b satisfies

|< fs¢ >| < A sup yk (¢), r=z21 (5.34)
os<ksr
for all ¢ in Bg b Then
[ L 001N, w0 > s sup v (e, (5.35)
osksr-1

[0}
for all ¢ ¢ Bu,b

Proof. Using (5.32), the proof follows trivially for members of Hﬁlg. Now use Lemma
5.9 to complete the proof.

Proposition 5.12. For f e BL b satisfying
[< foo>| <A sup v} (8), ¥oeB,
osks1 K usb
we have

< fa > = -ofb h(t) (t'lut)3(t‘“’* ¢o(t))dt, (5.36)

for each ¢ in 8(1) and where h is a continuous function.

Proof. We know that the theorem is true for r = 0. For ¢ ¢ Bﬁlb,

< Fo4 > = -(utd) < xWHE [ f](-l), n> ne Hﬁlg (equation (5.32))
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= -(ut) P ) (e )8 H A ())at,
by Theorem (5.7), since

-u+ -
| < xHpet oo | < Ay} (n), (see Proposition (5.11))

and
n(x) = O(Xu+§), as x » O+,
Therefore,

Wb

u+
uti

<60 = () B (enlo)fre e B L)) at

-2 n(e) (710, )3 (17 e (1))t

0 (1) o (1) °
If we replace both Bu,b and Bu,b by Bu,b and H”,b by Hu,b‘ Lemmas 5.9,
5.10 and Propositions 5.11, 5.12 are still true. Hence by induction on r, we get
Thecrem 5.13. For f ¢ B; p Satisfying
t]

< f, > A sup v (¢), (¥4 eB
| ¢ oskzr k ) . b)

for some non-negative integer r, we have
< .65 = (<17 (o) (¢715,) e e (1) 10t (5.37)

for each ¢ ¢ B where h is a continuous function.
The above structure theorem helps us to say more about the finite Hankel
transform of elements in B' ,b*
Let ¢ € B:,b and F ¢ be the finite Hankel transforms of f ¢ B&,b and ¢
respectively. Then
<F,0>=<f,¢p >

= (D72 00 e $0 (M, (o) dyee (5.38)

X dx

(using equations (2.4) and (5.37).

Since
SIUEES TR, 000) =y ), (5.39)
then
<Fo> = P 7 ey XN (e )dydx
_ oo sb h(x
=Y ¢(y) _37¥%F xJu+r(xy)dxdy. (5.40)
= _h(x)
Now let gr(x) N L
Since
Y e (xy) oy ) HFTH

as x » 0+
xu+%+r Xu+%+r ?



DISTRIBUTIONAL FINITE HANKEL TRANSFORM 339

so that

6" (y) = 7% g0 )k

0 (xy)dx

+
is well defined. H

Thus (5.40) becomes
< F,% >

@ .r utr
of v ely) G (y)dy

+
<y e (y), ely) >
Consequently,

F = yr G$+r(y) (in the functional sense)

is of slow growth since |G$+r(y)| < o, We list the above as

Thecrem 5.14. For any F ¢ YL p» there exists a continuous function G(y)

(= yrG$+r(y)) of slow growth such that FlY mb is equivalent to G(y), i.e.,
U,

< F,¢ > = < Gly),e(y) >,
for ¢ ¢ Yu,b’ where Yu,b = hu [Bu'bj.
Furthermore, G(y) may be extended to an analytic function.

6.  FURTHER PROPERTIES OF THE FINITE HANKEL TRANSFORM

N A
Notation: Let us write f = f|,» , for any f e B' ., and likewise F = F|
—— Bu b u,b Yu b
t] t]

for any F € YL b Also write @ to denote the members of B: b and ) for the
w ’
members of Yu b

N
For any f, we have for some integer r 2 2,

AN b 1d -u-
<88 = (D" P0G T e0)dx,
where h(x) is a continuous function.
Definition 6.1. We define a new space H:(I) by

H(1) = (o e W : oK) = o(x**3/2) a5 x » 0%, for k = 0,1,2,...), (6.1)

where I = (0,=).

Now define hb(x) to be the periodic extension of period b of h(x) on
(0,b]. Then for any x € R+, hb(x) = h(x-nb) for some positive integer n such
that 0 < x-nb < b. Associated with hb(x) is the regular distribution in H:'(I)
having the value

<y (x), 6(x) > = 1 P h(x) alxenb)ex, (6.2)
n=o0

for any ¢ € H:(I).
The right-hand side of (6.2) converges, since ¢ is of rapid descent as x » =. Now
define a functional fb on H:(I) by
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<t > = (D)7 7 0 D) (x7F He(x))dx

n
[T ]

(-1 h(x=nb) (5 D,)" + (x™Ho(x))dx]

n=o

ot (-1)rnbf("“)b h(x-nb)(% Dx)r(x‘”'*o(x))dx. (6.3)
n=0

©

This defines a linear continuous functional on H:(I). Also for % in Bu pe  we

have
< £,,8 > = (D)7 200G ) (xF He(x))dx, (since @ =0 for x > b)
=< £,8 .
So we see that fb 1s a periodic extension of f.
Theorem 6.2. Every ? in BL p My be extended to a periodic linear functional,
- © ’
with period b, on Hu(I) which is continuous in the topology of H -
Theorem 6.3. For every ¢ in (0,b/4), and each f in B; b? the tunction

Foly) = < €00, A (x) (x)? 3,(xy) >, (6.4)

where A_(x) is defined by (2.7), is a smooth function of slow growth and defines a
regular generalized function in Yﬁ,b'

Proof. The proof of the above theorem is similar to the proof of [1, Lemma 12] given
by Zemanian.

Theorem 6.4. The finite Hankel transform, huf, of a generalized function f in
BL,b is the limit, as ¢ ~ 0, of the family Fe(z) of regular generalized functions
defined in Theorem 6.3.

Proof. Since Fe(z) is a regular functional in Y; b it is sufficient to show that
< huf,o > = < Fe,¢ >

for each ¢ in Y as € > 0. For each ¢ in Yu

u,b? ,b there exists a unique ¢

in B, given by Equation (2.4). As e~>0+, 2 (x) =1 on (0,b).

Now we have

< Fe,¢ > = << f(x), xe(x)(xy)édu(xy) >, o(y) >

o7 < T4 A (00 (xy) > elyday

< f(x), a_(x) /7 ¢(y)(xy)*du(xy)dy > (by [8, Corollary 5.3.2b, p. 121])

< f(x), Ae(x) #(x) >

<f(x),¢(x) >, as e » 0+,

¥
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Consequently, < Fe,¢ > » < f(x), ¢(x) > = < hu f, ¢ >, as ¢ » 0+, for each

e Yl-‘9b.
Since Ae(x)(xy)%du(xy) > x(o’b)(x)(xy)idu(xz), as ¢ » 0+, (where X(0,b) is

the characteristic function of the interval (0,b)) and the latter is not a testing
function in Bu,b’ it is not true, in general, that the limit of Fe(z), as ¢ » 0,
exists as an ordinary function. Where the limit does exist as an ordinary function,
it will be denoted by Fo(z).

Corollary 6.5. If f is a regular generalized function in B;,b’ then the limiting
function Fo(z) exists and is equivalent to the finite Hankel transform of f.

Proof. If f is regular, then for each ¢ in (0, b/4),

F(2) = oPFxa () n)? 0 (x2)ex,

As ¢ » 0OF, we obtain
Fo(z) = or” £0x) ()0 (xz)dx, (6.5)

and from Example 4, we see that Fo(z) is equivalent to huf'
Using the function X(0 b)(x), (6.5) can be written as

Fo(z) =< X(O,b)(x)f(x)’ A(x) (xz)idu(xz) >,

where A(x) s a testing function in D(R) such that A(x) =1 on (0,b]. 1In this
case, to calculate the finite Hankel transform we merely truncate the regular
distribution in BL,b at x = b, as would be expected. In a similar way one might
interpret the limit as ¢ » 0+ of the family of the functions Fe(z) as a process of
truncation for distributions in general, for one is replacing f(x) by the
distributional limit Ae(x) f(x) as ¢ » 0+,

Corollary 6.6. If the generalized function f ¢ Bﬁ,b has support in (0,b], then
the function Fo(z) exists and is equivalent to the finite Hankel transform of f.
Proof. Let A(x) be a testing function in D(I) such that A(x) = 1 on a
neighborhood of the support of f. Then

Folz) = < £(x), A (x) A(x) (x2)%, (x2) >

such that,

lim F_(z)
e+0+ €

since Ae(x) =1 on the support of f as e » O+. But Zemanian [1, Theorem 2] has
proved that

Fo(z) = < £(x), A (x2)dy (x2) >,

Rt =< 0, A ()t (xa) >,
for every functional in H; having compact support.

i i i - 6.4 btain
Example 8. For the distribution §(x-k), from ( 2 we obtai
F(2) = < 6(x-k), A_(x)(x2)"J (xz) >

= 2 (k) (kz).
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But for 0 < k < b, Ae(k) =1 as €+ 0+. And for k 2 b, Ae(k) = 0.
Therefore,

vkz J (kz), for 0 < k < b
u
Fol2)

0, for k 2 b,
= hu [8(x-k)].

7. THE FOURIER-BESSEL SERIES
Classically the inverse finite HKankel transform is considered to be the

Fourier-Bessel series

& 1t ) Ce(r,), (7.1)
n=1 Ju+1 xn)
where
e() = Pt () dx, (7.2)

is the finite Hankel transform [7] of some function ¢.
In section 2, we showed that for any ¢ € Bu b and O(Xn) given by (7.2), we

have
2 *© N 3 Ju(x)\n)
b(x) =5 = x€<x,(r) C 5t e(r), ase 0. (7.3)
b~ n=1 n J u+l(bkn)

We obtain an inversion theorem similar to (7.1) for generalized finite Harkel
transforms of members in Bd,b’
Theorem 7.1 (inversion). Let f be an arbitrary generalized function in Bﬂ,b’
where u 2 -}, Let F = hu(f)’ be the finite Hankel transform. Then in the sense of
convergence in Bﬁ,b’ we have :

© 4
L2 2
f(x) = 1lim N nzﬂ(i‘ﬂ) (9,0 )79 1 (B DIF(A ). (7.4)

Proof. Let X(x) be an arbitrary testing function in Bu b We wish to prove that
i)

In

<

N 3 J (xx)
z (f—) S —T—F(A ), ¢(x) > > < f(x), 0(x) >, as N> =,
n=\'n/ 2, (B1)

N

b

Since (x)% Ju(xkn) is locally integrable over (O0,b),

N P J ()
< _% b (;—> ——2“ “n F(A )y (x) >
b® n=1\"n Ju+1(bkn) o
N F(x 3
= o'rbg? L _Z—H—(XX_> ' Ju(x)‘n) ¢ (x)dx
b" n=1 Ju+1(bkn) n
N F(x)
-2 5 N e, (from (2.2))
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) i >
;? -——f‘—ﬂ—_;) 2:8+ < flx), xe(x)(xks) J“(XA")

(from Theorem 6.4)
+ < f(x), ¢(x) >, as N+ =,

We verify this inversion Theorem by means of a numerical example.
Example 9. For 0 < k < b, 8(x-k) e E*(I)C Hﬁ C %:,b' The finite Hankel transform
of §(k-x) is,

78 (x-k) = (kz)*au(kz) F(z).

Hence,

Now

- :
Fiv) = () 9 (), no= 1,2,3,....

\2

A )
N (a)E g (k) 6 (x)
1 "n Juﬂ(b)\n
Nd ()
-2 nont ) sPe )t a)e (x)dx
ORI R L
N J (kxn)
z
b7 =1 )7, (b )
¢ (k)
< 5(x-k), ¢(x) >.

(k) o (xp)

This also yields

N3k (ag)
B Jenbag)

.2
s(x-k) = 1lim
Nowo ;7 n=1

in the sense of convergence in B; b
H]
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