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ABSTRACT. Strong summability with respect to a triangular matrix has been defined
and applied to derived Fourier series yielding a result which extends some known
results under a general criterion.
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1. INTRODUCTION.
The triangular matrix A = [an k]’ n, k = 0,1,... and LI 0 for k >n is
9 H]

regular if
1im a =0,
nrw MoK
n
1 Ja k| <M, M is independent of n
k=0 "
and
n
Tlim [ a =1
e k=0 MoK
k

Denoting the sum u. by s, Fekete [1], defined that the series L up is

L
r=1
strongly summable to the sum s, provided

n

L s, -s| =o(n).

k=1
This type is now known as strong Cesaro summability of order unity with index 1 or
[C,1] summability.

The series & u. is said to be strongly summable by Cesaro means, with index g,

or summable [C,q], or summable Hc| to the sum s if

n
tls, - s]9=o0(n).
k=1 K

A special point of interest in the method of summability H_  lies in the fact
that it is given neither by Toeplitz matrix nor by a sequence to function transforma-
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tion. The relationship between summability H_ and some regular methods of summa-
tion given by A- niatrices has been investigated by Kuttner, [2], who proved that if
A is any regular Toeplitz method of summability then for any gq (0< q < 1) there is
a series which is not summable A but summable Hq.

In the present paper we shall define strong summability of series ¢ Uy with
the help of a matrix.

DEFINITION. The series U is said to be strongly summable by the regular
method A determined by the matrix [an,k] with index q(q > o) to the sum s if

2 q
kioa":k‘sk -s|V=0(1), as n > =,
For a = E%T“ k <n, weget (C,1) matrix.

2.  MAIN RESULTS.
Let f(x) be a periodic function with period 2r and integrable (L) over
(-m,n). Let

f(x) ~ % ag+ i (an cos nx + b sin nx) (2.1)

be the Fourier series of f(x) and

L n(bn cos nx - a sin nx) (2.2)

be the first derived series of (2.1} ottained by term by term differentiation.
Write
g(u) = f(x+u) - f(x-u) - 2uf'(x) , (2.3)
where f'(x) is the derivative of f(x),
+

G(t) = [ ldg(uw)] . (2.4)
(0]

Here we shall take q = 1,2. Since the ccse q = 1 is included in the strong
summability for q = 2, we omit the same. Precisely we prove the following:

THEOREM. Let g(u), G(t) be defined as in (2.3) and (2.4). If g(u) is a
continuous function of bounded variation over [0,7] and for some 8 2 1

6(t) = o [t 2A*(t)], astso, (2.5)
where Ae(t) is a positive function of t such that

AB(t)»0 as tso, (2.6)
it is monotonic in (n'l,é) (6 being small but fixed) and
§ 28
fl "—t(ﬂ dt = 0(1) (2.7)
n

then the derived series (2.2) is strongly summable to f'(x) by the matrix (C,1) with

index 2.

AZ t)
t

Note (2.7) 1is equivalent to e L(0,68).
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In order to prove the theorem we need the following Temma.
LEMMA. If G(t) = o(t) as t -+ o then for small but fixed &

é 8
() fl 5ol g¢ 1920 gy - o(n)

n -l
and

[ T
(ﬁ) f Igﬂéﬂl dt f |g_9§j£)_l du = o(n) .
-1 t -1
n n
PROOF. Since
ST O L )
P gy = [ u + j Y. du
;][-1 u vila oy

n

[
o(1) + / o(%) du, in view of (2.4) ,
-1
n

= o(log n) ,
Therefore
[y ( [
dg t! dgg )
/ ‘ t l dt f | uu du = o(log n)2 = o(n) .
-1 n-l
Again
F el g [ ldatw)l
Yl gt ul g
fosa [
* ag(0)] [eg )] ;
- t u ] G(u
n[1- ;g?_ C n-1+ r;-/;iﬂldw e

[
fl |i§§£“ {%ll + 0(1) + o(log n t)} dt
<
§
dg(t
= o(1) { f —g-g-z-)-log nt}
-1 t
n
§ [ [
G(t G(t G(t
= 0 1ognt] -f«%ldt+2f —lelogntdt}
{[{Tl RS O 21t

né né

= o(n) + o (/(l/uz) du) + o [fmog W) du]
1 1

= o(n).

3. PROOF OF THE THEOREM.
The kth partial sum ok(x) of the series (2.2) is given by [3],



370 K. N. MISHRA AND R. S. L. SRIVASTAVA

o (x) - F1(x) = E{j L(Eﬂﬁ)_d g(t) .

o s1n7t

Further, simplifying certain steps as given by [3] and [4] we have

5 (x) - F(x) = %f S0 KE gg(t) + o(1)
1
n
[ 1r
= %{ f + j} _—-—S"“tkt dg(t) + o(1) .
n 1 §
Therefore
s s
n 2 1 dg(t) n c¢g(u)
b {ok(x) - f'(x)} = i T { L sin kt sin ku } + o(n)
- u
k=1 T -1 -1 1
n n
8

[
. N
= —17 f %é-t—)-f Z {cos k (u-t) - cos k(u+t)} Qﬂéi)_ + o(n)
2m -1 - -1 1
n

8 6
- dg(t) sin(n+1/2)(u-t) 1
S Jq ,[1 2 sin %_ Tt u d9(u)
n
§
1 sin(n+1/2)(u-t) 1
Tl nfl .[ sin 1 U+t 7d9(u) + o(n) .

On simplifying and using the first part of the lemma we obtain
n ) [

' 2 1 dg(t) sin n(u-t
o ety [ MO ) wu
k=1 2 n-l n-l

8
1 dg(t s +1) d

Tl A ot -{1 m(3+(l)‘ L 2gh s otn)

n n

P1 + P2 + o(n), say.

Now, since
11,1 1
M AT
and
[ da(t) §
t sin -t d
4 { u@f% L dg(u) - f g(")f sin "(" tldg(t)
Therefore
§ t § §
! dg(t) sin n%u t) 1 dg(t) sin n(u-t)
Pl szl t .[1 u(u-t dg(u) + 2—"2' _[1 t .f u(u-t) dg(u)
n n n t
8 ) t
21 dg(t sin n(u-t
"7 [1 t fl St dgtu)

n
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[
= f Qﬂéﬂ f ) sin n(u-1) dg(u)
n

t

8 t t
2 [ ﬂ?—"‘%ﬂdgmwo[f sl { sy

n

._a

§

t
'%‘ "(1 dtét f1 Sin(u'jtu)-t dg(u) + o(n)
m - n

n

by virtue of the second part of the lemma.
Similarly it can be proved that P2 = o(n). Thus we get

§ t
n . 2 _ 1 ‘f dg(t) sin n{u-t)
K {o (x) - £1(x)}° = 2 ) ) 2 Jfl u(u-t)  99(u) +oln) .

Integration by parts gives
t
t

t
Jtl dg{u) Sl%a"t§” -t [S‘"(ﬂ-ﬁ%f‘) Jtl dg(u)] n-l
n n

t
_ fl [¢n c%s‘ zgu -t) sm(n (u); -t) } dg(u)] du .

Using (2.5) this is equal to

t
[ Sinale-t) o (¢ (3 - o [f_l n th (1)) SO ut) gy
n
t .
+o0 [ f ——-—-(—-2—145"(] L ;‘-t t 28(t)) du]
o (u-t
n

= ol ntAB(r) 7.
Therefore
[

g {o,(x) - £'(x)1% = o[n j‘ dg(t) 2%(g)1 + o(n)
k=1 K S

n

§
8
(n) [6(t) AB(t)1® dg(t) 4L gt
oln) [6(t) ()]n_1+o(n)[r_‘fl g(t)—&l ]
[

+o(n) [ j’ E%El {8 AB'I(t) A(t)} dt]
-1

n

[
2
= o(n) + o(n) [fx L;mdt]
J.

5
+o(n) [ jﬂl 8 28(t) A8 1(t) a'(t) dt]
).
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§
o) + o) [ f 3 G %0 e
n

o(n) by the hypothesis (2.7).
Since xB(t) is monotonic, hence its differential coefficient is of constant sign.

"

Thus we get
n 2
£ lo (x) = £1(x)]" = o(n)
k=1
and therefore
n . 2 \
kzl 3 lok(x, - £1(x)|° = o(n) .

This completes the proof of the theorem.

4. SPECIAL CASES.
By way of an application of our theorem, we take B8 =1, A(t) = 1/l0g (1/t) and

Ak " 1 then the following result follows, [4]:
THEOREM (Sharma). At a point for which f'(x) exists and
G(t) = o[ t/10g %J as t+o0 ,
then

n

kzllok(x) - f'(x)|2 = o(n loglog n) .
Since the above theorem is an extension of the result from [C, 1] summability to the
case of [C, 2] summability, (Prasad and Singh [3]), our theorem further extends that
result under a general type of criterion.
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