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ABSTRACT: This paper continues the work started in [1]; a second
continuous Jacobi transform is defined for suitable functions f(x).
Properties of the transform are studied. In particular, the first
continuous Jacobi transform in [1] and the second continuous Jacobi
transform are shown to be inverse to each other. The paper concludes with

an extension of Campbell's sampling theorem ([2].
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1. INTRODUCTION.

In this paper, the second continuous Jacobi transform, of a

Af(a,B) ,
function f(x) is developed along similar lines of Butzer, Stens, and
Wehrens ([3]. The results generalize the work in [3] as well as the work of
Debnath [4] on the discrete Jacobi transform. Basic properties of Af(a‘g)

will be derived including an inversion formula tersely given by
(‘f(a’a)(-))A(a’e)=f('). The results are then applied to an extended form of
Campbell's sampling theorem [2].

The paper is divided as follows. Section two includes basic notations
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and results obtained in [1] that will be used in the sequel. Section three
is devoted to the study of the second continuous Jacobi transform. In this
section, the first and the second continuous Jacobi transforms are shown to
be inverse to each other. Section four is devoted to a sampling theorem
based on Jacobi transforms and an estimate of a truncation error.
2. PRELIMINARIES.

In this section we recall all the necessary background material on
Jacobi functions and the first continuous Jacobi transform as studied in [1].
For the sake of completeness, we repeat some of the basic notions of hyper-
geometric functions.

For each a, b, ¢ real numbers with c#0,-1,-2,... the hypergeometric
function is given by
o
F(a,b;c;z)= § E;%%£;;5~zk, |z] <1

k=0 k

The above series converges absolutely and uniformly on each compact subset

of (-1,1). Also,

v ale sy Le)T(c-a-b)
iiT_F(a,b,c,z) F(a,b;c;1) T(c-a) F(c=b)

where the gamma function is always assumed to be a well-defined function of
its argument.

The Jacobi function is defined by

I'(A+a+l

(@.8) .
By = T TOWD

F(-X,x+a+8+1;a+1;l§§). xe(-1,1]

where a, 8>~1. The following are some of the properties of Piu’s)(x)

derived in [1] and will be used in the sequel. We refer the reader to (1]

for proofs.
LEMMA 2.1. [Lemma 2.2, (1], page 148]. For any xe(-1,1) and

a+E+1
2

A2 - , we have for

A 2
(0 -1<e50, |B{*® (o |TEIED k0, 8) Log (33

r(A+o+l

2
HFDTO+D ' (e,B) log(y

(ii) e20, (1—2":"—)6|1°§°"8)(x)lS T

where M(},a,f) and M'(A,a,B) are constants depending on A, a, and 8.
We will denote the weighted Lp(-l,l) (p21) space with weight

H(x)E(l—x)a(H-x)B by LS(-I,I). The norm on L:(-l,l) is given by
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1
] £l p’(_aiﬁﬂ I_lw(x) | £(x) | Pax) 1/P.
2

It was shown in [4] that

LEMMA 2.2. (Lemma 2.4, (1], p.150). B{*® (etP(-1,1) for all p21
and for all o and B such that ap+1>0 and -1/p<B<1/p.

Jacobi polynomials with A=neP, P is the set of all positive integers,
satisfy the following orthogonality relation
prcy Iilw(xﬂ’,(,a’s’(x)P,f,“’B)(me-{o e @.1)

$ n=m
n

where § = I'(nto+1) [(n+B+1)
n n!(2n+o+P+1) F(n+ot+P+1)

However, Jacobi functions do not satisfy such an orthogonality relation.
Instead, the following result holds:
LEMMA 2.3. (lemma 2.5, [1]), p.150). Let A and v both be greater

+
than - 9_%il’ A#v and A#-(vtat+3+l). For a, Be(-%,%), we have

1
1 (a,B) (8,a)
;E:EII J_IW(X)PX (x)P (-x)dx

- I(A+o+) T(viB+1) { sinmA sinmv
T(A=v) (A\+v+o+B+1) T(v+1) T(A+o+8+1) F(A+1)P(v+u+ﬂ+1)

We also recall the definition of the discrete Jacobi transform as studied

by Debnath in [4].

~ 1
() (ny=3(£(x))= J w2 (0 £(xrax
1

1
Qo+l
and under appropriate conditions

e CHO 1248 (. 2.2)

n=0

Now, for any f, geL:(-l,l) and for appropriate a,B8

1
1 I 2(@,B) 3 ~(a,B)
— | w(x) £(x) g(x)dx= 2 6 e (n)g (n) . (2.3)
a+€+1 n=o ™
From (2.3) and Lemma 2.3 together with the identity P(u B)( -x)=(- 1)n (8, u)( ),
we obtain
n  T(A+o+l)T(nH+1)sinm) An
. (D" T0n) (nta+B+D) n 1T (Aot +1) *
p{®B) ()= 2.9
A I (n+o+1) T (nB+1) xen

(2n+o+R+1) n!T (n+a+B+1)
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The following estimates on P;a’B) (x) for large X will be used.
+
LEMMA 2.4. (Lemma 2.6, [1], page 152). For A, v2 _____a;-B 1, a>-% and
-k<@<k, we have

(i) for each [a,b]c(-1,1), there holds for all xe(a,b]

12{28 (10|00 as row,

(a,B)

(a,B)
(i1) |p, Py

ool <l (01,2007% as A,

(iii) for each [c,dlc[- %’i,w), there exists a constant M>0 such

that for all A, ve[c,d]
Q
1288 0 -p{® (o] ] a-] -

The continuous Jacobi transform of the first kind is defined as in

[1] by

1
E(;)B)_ T‘-é_'!'—l‘ I w(x)Pia’B)(x)f(X)dx. (2‘5)
2 -1

for every feLw(—l,l) with a>-% and -%<B<%. We recall that if a=R=0, we
obtain the results of Butzer, Stens and Wehrens [3] and if A=neP, we obtain
the results of Debnath [4].

Again, it was shown in [1] that for any feLi(-l,l) we have

1£B) (0 [=007F)  as . (2.6)

and

(B _ °‘+8+1)ec (rHaP(rY), po2. (2.7)

The following Lemma will be essential for our work.

LEMMA 2.5. (Lemma 3.2, [1], page 155). Let F(x) be defined on

o+B+%

+
IR =[0,~) such that X F(X)eLl(TR+). Then the function

()= f FO0R® 0 (om0 rsnmiar
0 Ae——

belongs to C(-l,l)nL:(—l,l) where

I‘ O +u+B+1)

HOD = a-B+1

+l :
2

F(A+ )T (A +

From now on we will assume throughout the paper that o and Bsatisfy
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a+B=0, -k<a, B< . (2.8)

If a and B satisfy (2.8), then it was shown in [1] that

(2,8) [ aCa,B) (B,
2> o) ajopk A-0p"r Y (omg () rnianrar (2.9)
where
\) = r? O\ €(-1,1], keP
HoQ) =TogarnTOagr > X€(-1.1], keP.

The following is also true.
LEMVA 2.6. (Theorem 3.1, (1], page 158). Let feL:(-l,l) be such
that )\%f(a,B) ()\—%)CLI(IR-.'). Then for almost every xe(-1,1)
**(a,B 8
£x) =4 £Ba29p®® (yn_(A)rsinmada. (2.10)
0 A= 0
Moreover, if f(x) is continuous then (2.10) holds everywhere on (-1,1).

3. SECOND CONTINUOUS JACOBI TRANSFORM

In this section we define the second continuous Jacobi transform

,f(a,B) of a function f with a and B satisfying (2.8). We also show that

"f(a's) and f"(a’ 8) are inverse of each other.

For each f defined on m+, we associate the integral

® (B,@) I‘(x+-’5E
I(x) =l.I f(A)P T (=) AsinmwAd) .
0 A= F(A+B+X%)

Proposition 3.1. For each f defined on R+ with f and A’B“’

eeLl(m*),
we have I(x)eC(-1,1) nL:(-l,l). (Although the proof of Proposition 3.1 goes
along the same lines as Lemma 2.5, we present the proof with the proper
modification for the sake of self-containment.

PROOF of Proposition 3.1. We first show that I(x) is well defined. Observe
that, for large A, %—{i—% behaves like A-B (see [1]). Thus for any fixed

T>0, we have by Lemma 2.4 (ii) and the hypothesis that

T
(8,a) T (A+y)
[1(x)|<| 4IOf(A)PA_,5 (%) TOrsgdy Asinmidi|

"~ (8,) T (O+k)
""I"‘J.Tf(x)?)‘_;’ (—x) TOsss) AsinmAdA|

<c,*C, [ AR+ £ 00y | e
It
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where C1 and CZ are some positive constants. Hence I is well-defined.
We show that I(x)eC(-1,1). For any xe(-1,1), there exists a 61>0 such that

x*8 e(-l 1). By lemma 2.4 (i) and for all |y|<61, we have

(8,a) (B,a) T(A+k)
[1(x+y)-1(x)|s|4f £Q0) (py Ak (-x-y)-P, ;5 (= ))m AsinmAdA|

sac] A"o’“’lf(x)!dk°°
0

by hypothesis and C is some positive constant. Thus for XO sufficiently

large.

” ®,a) (8,a) LA+
|aIx f(A)(pH’ (-x-y) P, At )T(A_ﬂﬁ%ﬁ AsinmAdA|
0

can be made sufficiently small. Thus for €>0 given, there exists a XO
sufficiently large such that the above difference is less than €/2. Fix Ao.
By the continuity of P§€%a)(-x), we have for £€>0 that there exists a 62>0

such that

lP (¢ G)( —x-y)-P B!:)(.x”(e whenever |Y|<62-

Choose c=z€I OA-B+%|f(A)Id\ and §=min(6,,6,). With this choice.
0
| I(x+y)-1(x)|<c whenever |y|<§. Therefore I(x)eC(-1,1).

We finally show that I(x)eL:(-l,l).
2 1 2
III(X)IIZ-%J wix) |[1(x)]|“ax
-1

and by Hardy-Littlewood inequality (see [1], page 148) and Lemma 2.4 (ii),
we have

leol < A‘B**lf(x)ldx<af 100?128 (0 a0
0

s[ AEH () |d e
0

by hypothesis. Hence I(x)cC(-l,l)nL:(-l,l). This completes the proof of
Proposition 3.1.

We shall call I(x) the second continuous Jacobi transform and we

(o, B)

will denote this by “f Thus, we define

~g(a,8) (8,a) T (A+y)
(x)-bJ EOVR L (%) Fagmsly Asiamidi.
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From Proposition 3.1 we deduce that Af(u’B)EC(-l,l)nL:(-l,l) with =X<a, R<)
and a+£=0. In the next theorem, we will prove an inversion formula for
the transform Af(a’B) under appropriate choice of £f. The inversion formula
proof is analogous to the proof given in [3]. We will employ the Fourier

cosine transform of a function f which is given by
-
Fc(f)(t)= J%Jof(k)cosktd\.

THEOREM 3.1. Assume that feLl(IR+) is such that A_B+%f(X)€Ll(IR+)

and that
Fc(f)(:)so for all ms<t<w,

Then we have for almost all keIR+

1
I (\+)) ~e(0,B) (a,B)
g TOFot+k) J-lw(x) f (x)PX-% (x)dx=£(1). G-

Moreover, if fsC(IR+), then (3.1) holds for all XCIR+.

PROOF. By employing Fubini's theorem together with Lemma 2.3

(with o+£=0), we obtain
1 on
T(A+%) (B,a) T (t+%) (a,B)
X TOTotly [-1"(X){4f0f(t)Pt-% (=x) T(et6+%) tsimltdt}P)‘_li (x)dx

_rowy (7 reedy [t (@,8),_ .. (B,a)
el pevrens Jotf(t)sin"t W{J_IH(X)PAJ: ()P, (-x)dx}de

T(t+k)  T(\+ot+k) I(e+8+)
TCHBHE) 1022 P (el T O

[ (A+X)
T (A +atls)

0
=4 [ tf(t)sinmt
0

*{sinm(t-%) -sinm(\-}) }dt

2 2

=4J t£(t) sinme {S2SME=COSTAY 4o -0y,
0 T(A"-t7)

cosTt ~cosTA
(2 t?)

Set qt(x)’

We claim that Q(X)eLl(IR+). Indeed, an application of Fubini's theorem

1, +
together with the assumption that feL (IR ) implies that

J lQ(0) [ar<e=.
0

Now, by another application of Fubini's theorem, we obtain
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0o

FC[Q](S)= J%[OQ(A)cosAsdA

0

= Jgj (6[ tf(t)sinmtq, (A)dt)cosisd)
m 0 0 t

Q0

2 00
=4 \/;J[otf(t) sinﬂt(foqt()\)cos)\sd)\)dt

=4J tf(t)sinmtF_(q ) (s)dt.
9 c 't

We employ the result of [3] and proceed analogously and determine that

2L

T sin(m-s)t, O0<ssm, t>0.

Fc(qt)(5)=
Thus

FC(Q)(S)=2 ﬁ[of(t)smﬂt sin(m-s)tdt

Fo(Q) (8)=F((£) (5)-F () (2n-8)=F (£} (s), Osss.

Moreover, FC(Q)(s)=0 for m<s<®, The assumption Fc(f)(s)=0 for m<s<w
together with the uniqueness of the Fourier-cosine transform implies that

Q(X)=£()) for almost every AEIR+. Thus
1
_ F(A‘HJ."'):! ~e(a,B) (Q';B)
f(A)=% TO+g) f-IW(X) f (x)PA_5 (x) dx.

+
The continuity of f will imply that (3.1) holds for all AeIR .

From Theorem 3.1 and Lemma 2.6 we deduce that

e (0,B) 3~ (%B) )y o [(A+ath)

CETT N M=2 oy~ FO. (3.2)
and

a PO a(a,B) 1\ (0,B)

Govary £ NP (0=£0). (3.3)

Equations (3.2) and (3.3) reduce to the formulas obtained in [3 ] whenever a=B=0.

4, A SAMPLING THEOREM

In this section we give a proof of a sampling Theorem of Campbell [2] by
employing results on the continuous Jacobi transform of the first and second
kinds. Moreover, we will obtain an error estimate for a function

f that is band-limited in the sense of the Fourier-cosine transform.
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THEOREM 4.1. If FeC(IR') is given by

1
F(A)=5J w(x) f(x)P(a 6)(x) dx (4.1)
-1

for some p>0 and feL:(-l,l), then one obtains for all AeIR+ that

> (2n+1)r<n+1>r(ux+a+s)F(“**
FO)=§ sinm(Ap-(n+%)) (4.2)
n=0 n(l u -(n+k) )F(n+m+1)r(ku+%)

PROOF. From (4.1), (2.3) and (2.4), we obtain (with a+$=0)

_ n! 2o+ I(ntl)  2(a,B) (a B)
F<A)'nzo T(o+otD) [ (n+B+1) (MFHL ™

. § (-1)"n1(20+1) I(nt+1) r(xu+a+a)r(n+ﬁ+1)sinn(xp h) FB)
n=o (DTl (52,2 (i 2y nar Q)

(HA-%¥n)

n
(-1%423nﬂ 1‘2@+1) [ (Ap+at+ly) sinm(Ap=k) F(g:i)
n=0 (A" " =(n+Y%) ") T(n+a+l) T (Au+y)

or

§ (2n+1)r(n+1)r(xu+a+5)s1nn(xp -(n+k)) n+5)

FO)= 7 2
0=0 1 2u2-(n+) 2) T (nhat] ) T (Apl)

REMARK 4.1. Theorem 3.1 when applied to the above situation yields
+ - +
the series representation (4.2) for FeLl(IR ), A B"’l"l-‘eL]'(l:R ) and

FC(F)(s)-O for s>mu for some p>0.

Let Sn uF denote the n-th partial sum of the series in (4.2). We give
k]

below an error estimate for approximating F. In particular, we show that
THEOREM 4.2. Let F satisfy hypotheses of Theorem 4.1 for some fixed

u>»0. Then there exists a constant C>0 such that
!
[FQO=(s D) [scO+1) E (£)
where
En(f);12£ ﬂf-Pnuz
n n

Pn is the set of all algebraic polynomials of degree m.

PROOF. Denote by Snf the n-th partial sum of

fo= T 57118 () p (8 ()

n=0 "



354 E. Y. DEEBA AND E. L. KOH

1. _an%@ent))

where § "= Finvatl) T(ndBFD) °
Thus
g (2k+1) T (k+1) T (Ap+ats) ~(a,B) 5 (a,B)
(s, M=} (s_£)" P (k)
n,u k=0 1(A%u2=(k+) 2) T (ko 1) T(Aptl) P Au-h

By Cauchy-Schwartz inequality and Lemma 2.4, we have

1
[FQ)-=(s_ UF)<A>|2=|%J w(x) (£(x)=(S_) (x))P
’ -1 n

sy (ax?

1 (a,8)

1
2 2
S%J_lw(x)|f(x)-(snf)(X)| dx-%J 1W(X)IP)‘U_5 (x)]|“dx

(G,B)nz

2
Ap=y "2 .

2
< f-SnfﬂzlP ux-suz

sc2(o)lp

Thus,

|F(X)-(Sn’uF)(X)|SCEn(f)(A+])-5 for some constant C.

REMARK 4.2 The estimate obtained in Theorem 4.2 shows that the
error becomes smaller for large A.
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