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ABSTRACT: If T is the parallel map associated with a l-dimensional tessellation automaton,

then we say a configuration f is a weak Garden of Eden for T if f has no pre-image under

T other than a shift of itself. Let WG(T) the set of weak Gardens of Eden for T and

G(T) the set of Gardens of Eden (i.e., the set of configurations not in the range of

T). Typically members of WG(T) G(T) satisfy an equation of the form Tf smf where S
m

is the shift defined by (smf)(j) f(j+m). Subject to a mild restriction on m, the

equation Tf smf always has a solution f, and all such solutions are periodic. We

present a few other properties of weak Gardens of Eden and a characterization of WG(T)

for a class of parallel maps we call (0, l)-characteristic transformations in the case

where Lhere are at least three cell states.

KEY WORDS AND P,RASES: Cellular automata, tessellation automata, Gardens of
ara le maps.
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|. [NTRODUCI’()N.

A Garden of Eden configuration for a tessellation automaton is one which has no

predecessor under application of the local transition function; it must be a "given"

(-onfiguration, hence the colorful name. By a weak Garden of Eden we mean a configuration

which has no predecessor other than perhaps some shift of itself. To simplify matters, we

will consider only l-dimensional tessellation automata. We illustrate here a technique

which can often be used to manufacture periodic weak Gardens of Eden for parallel maps.

We also present a few simple results: For example, one-to-one parallel maps always have

weak Gardens of Eden. Finally we consider (0, l)-characteristic parallel maps. A (0,1)-

characteristic parallel map is defined in the following way: Let t be its local transi-

tion function. There must be a given word a such that for all words b having the same

length as a we have

t(b) if b a

0 otherwise

(We assume, of course, that O, 1, a, and b are made up of symbols from our set of states

for our tessellation automaton.) This set of characteristic parallel maps is ubiquitous

in the sense that all other parallel maps can be constructed from combinations of them.

We give a characterization of the Gardens of Eden of the (O,l)-characteristic parallel
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maps and then a characterization of those weak Gardens of Eden which are not Garden of

Eden for the same class of maps under the additional assumption that the cells of

the tessellation auto,mate have at least three possible states.

2. PRELIMINARI ES

Let A be a fixed, finite set which we think of as an alphabet or set of states or

"colors". We always assume 0 and are members of A. By a (l-dimensional) configuration

we mean a function f: Z A where Z is the set of integers. Let C be the set of all

configurations. By a string we mean a function f J A where J is an interval in Z.

If J [j + I, + mJ j + l, j + 2 j + ml., then we say the string has length

m; we do not in general demand that strings have finite length. If g is a configuration,

then the restriction of g to an interval in Z is called a string i_n_ g.

Note that we use the term string in a way which is not quite standard. Usually

"string" is taken to be synonomous with "word", and by a word over A one means a finite

sequence of elements of A. The differences between the two concepts are that strings

may have infinite lengths and that one specifies where a string is in Z (i.e., one gives

an interval in Z as its domain). We say more about this in section 4.

By a local map or local transition function we mean a function of the form

t A
n

A
n

A where is the n-fold cartesian product of A with itself. We can then define

C
n

C (note this is the same symbol as in the last sentence but a different function)

in pointwise faslion:

(t (fl’ f2"’’’’fn))(j) t(fl(J)’ f2 (j)’’’’’ fn(j))
where fl’ f2’’’" ’fn r, and Z. If Map (C, C) the set of functions from C to C,

then we can define yet a third t, this time

Map (C, C) Map (C,C)

by the standard pointwise extension technique:

(t(T l, T2 Tn))(f) t(Tl(f) T2(f) Tn(f))
where TI, T2’ Tn Map (C, C) and f C.

EXIPLE I. Let A {0, I, p I} and suppose we endow A with the algebraic

structure of Z/(p), the integers modulo p. Define t A2 A by t(x,y) x + y. Then

for fl’ f2 C and TI, T2 Map (C, C) we would write t(fl,f 2) fl + f2 and

t(T l, T2) T + T2.
By a shift (or translation) Sp, where p Z, we mean the function Sp C C defined

by (sP(f))(j) f(j + p) where f C and j Z. Now let W [j + I, + n J, a finite

A
n

interval in Z. If t A is a local map, then the parallel (or m_ or

window-transformation or W-transformation) T with window W defined by t is the function

T .- C. defined by T t(Sj+l sj+2 sJ+n
Ei,LE 2. Using t and A from Example and setting W {2,3, we obtain

T t(S,S 3) S + S 3. Then for f C and i e Z we have (Tf)(i) f(i + 2 )+ f(i + 3).

NOTE. In this example we wrote Tf instead of T(f), and we will continue this con-

vention throughout this paper.

For T a parallel map we say a configuration f is a Garden of Eden provided it is

not in the range of T. Information about Gardens of Eden can be found in [I] [2],
[3J, [4], J, and 6 J. We say f is a weak Garden of Eden of T provided that whenever
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Tg f, then g must be of the form skf for some k. Let G(T) the set of Gardens of Eden

ot T and WG(T) the set of weak Gardens of Eden. We see that G(T) WC(T).

3. ELEMENTARY PROPERTIES OF WEAK GARDENS OF EDEN

PROPOSITION I. If f is a weak Garden of Eden, but not a Garden of Eden for the

parallel maps T, the Tf SZf for some integer 4.

PROOF. Since f must be in the range of T, we can find g such that Tg f. But

g Skf for some integer k. As parallel maps commute with shifts, we have Tf s-kf .
Suppose the parallel map T is defined by T t(Sj+l, Sj+n) where t is a local

map. We say is permutive in the ith variable (or yperactive in the ith variable)

provided that whenever we chose a I, a2, a
n

bI, b2 bn from A with the pro-

perties that oi bi but a
k

b
k

for k i, then t(al,a2...,an) t(bl,b2,...bn).
We say T is ermutive (or hyperactive) in the ith variable if and only if t is.

If J is an interval in Z and r an integer and f and g are functions from J and

J + r respectively into A, we say g is a copy of f provided that g(j + r) f(j) for

every J. (Note: J + r {j + r j J}.)

PROPOSITION 2. Let T be a parallel map with window W. For every integer W,

the equation Tf S f has a solution f. Further, every solution is periodic.

PROOF. We may consider A to be {O,l,2,...,p-l} and endow it with the algebraic

structure of Z/(p). As pointed out before, this structure maybe lifted in a pointwise

fashion onto the configurations and then onto the set of maps of C into C. Then the

equation Tf SZf maybe rewritten (T S)f 0 (the constant 0 configuration). Since

4 W, it foltows that T S is permutive in its first or last variable. The fact that

there is a solution follows from Theorem 6.6 of [7] and the periodicity of f from Theorem

9.1 of [7] and the periodicity of the constant 0 configuration.

EXAMPLE 3. We illustrate how one may sometimes manufacture weak Gardens of Eden

by using the ideas in Propositions and 2. Let A {0, I} (which we identify with Z/(2))

and set T S (I + S (note that we are using both multiplication and addition mod 2).

Our window is W [0,i. Let us seek a weak Garden of Eden satisfying Tf S3f. Such

an f must satisfy f(+3) f(j+l) (i + f(j)) for every integer j. We start with a

"seed" string, for example 001, and use the recurrence relation on f to extend it inde-

finitely to the right. The result is 0010|010101... (The length of the "seed" one

starts with s readily determined from the length of W and the distance of from W;

the choice of the "seed" string is a matter of experimentation.) We see from this that

we. might try he .onfiguration given by 01010101 It is easily checked that

the only pre-image of f under T is a shift of f one unit to the right or left.

EXAMPLE 4. For any shift Sk, we have

G(Sk) and WG(Sk) C.

k
EXAMPLE 5. If t A A is a permutation of A and T t(S ), then every f satisfying

Tf Sf for k is a weak Garden of Eden. Such f’s are easily manufactured by starting

with a "seed" string and appealing to t(f(j + k)) f(j + ).

EXAMPLE 6. We give an example of a weak Garden of Eden which is not a Garden of

Eden and is not periodic. Let A {0,I} and T (I + S (I + S I) S 2 (I + $3).

let f be a configuration containing an infinite number of l’s such that any two successive

|’s are separated from one another by either two O’s or three O’s and f is not periodic.
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A portion of f might well look like this

..lOOlO00100100100100010001001

Because (rf)(j) only when f(j) f(j+l) f(j+3) 0 and f(j+2) I, it is easily

checked that the only pre-image of f is .q-2f. That means that Tf S2f so that

2 W [0, 3] and Proposition 2 does not apply.

PROPOSITION 3. Every weak Garden of Eden has at most a single pre-image.

PROOF: Let WG(T) G(T) and suppose Tg Th

S-and m such that g S f and h smf. Then T(S f) T(Smf) f so that f T(f) s-mf.
S
m-

S
m

S S
m-

SHence f f. Therefore h f o )f f g.

EXAMPLE 7. Let A iO,l p-l} And treat it as Z/(p). Set T S S To say

that Tg f is to say that g(j + I)- g(j) f(j) for every integer j. One can see from

this that T is onto and that every f has exactly IA pre-images where IA the cardinality

of A. Then by Proposition 3, WG(T) .
We note also that information about parallel maps which are h-to-one can be found

in [73, [8], and [9] and that if h -> 2, then WG(T) G(T)

PROPOSITION 4. Every one-to-one parallel map has a weak Garden of Eden which is

not a Garden of Eden.

PROOF: Let T be a one-to-one parallel map, and let be an integer not in T’s
window. Then Tf f has a solution f. This means T(S-f) f. But f has a unique

pre-image, so it must be the desired configuration

PROPOSITION 5. If T and Q are parallel maps such that Q is one-to-one and we define
-Ithe parallel map R by R Q o T o Q, then Q(G(R)) G(T) and O(WG(R) G(R)) WG(T) G(T).

PROOF. Note that by I03 we known Q-I must be a parallel map, and hence so is R.

It is straightforward to show Q(G(R)) G(T), so we consider only the second half of

the conclusion. Let f WG(T) G(T). We need only show that Q-if WG(R) G(R).

Clearly Q-lf G(R) since f G(T). Suppose g is a configuration such that Rg Q-if.
fThen T(Qg) f and thus Qg S for some integer . Hence g S(Q-if) Therefore

WG(T) G(T) Q(WG(R) G(R))

-I
<its, o R o Q containment in the other direction also holds.

PROI’OSITI()N 6. For any parallel maps TI,T2,..., Tn we have

o oT ).WG(T I) n WG(Tn) WG(T
n

o o T )g f There is anPROOF Let f WG(T I) o... WG(Tn) and suppose (T
n

T)g or, equivalently, T g)integer such that (T2
o o SI f (T

2
o o S-’I f

n
SClearly we can continue this process to produce an integer such th g f.

4. CHARACTERISTIC PARALLEL MAPS.

Let a and b be distinct elements of A and (al,a2 ,a
n

a given ordered n-tuple

A
n

in A
n

We call t A the (a b)-characteristic local map for (a,,a,,...a) provided

t(b l,b2 bn) b if (b l,b 2
bn) (a l,a2 ,an
and

a otherwise

We then call T an (a,b)-characteristic parallel map for (al,a2,...,an) provided it is of

the form T t(Sj+l, S +2,...,Sj+n) for some integer j. We will consider only (0, I)-

clarJcteristic parallel maps anJ for brevity will refer to them as characteristic maps.
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We ,,t. ,hat all parallel maps can be built up from characteristic maps. Lt

A {0, I, p-l} and let us treat it as the integers mod p. Let s|, s2, s
N

be a11 the ordered n-tuples in A
n

and for each i let t. be the characteristic local
I

map for s If A
n

A is a local map and c
i

t (si) for every i then
I

C lt + +CNtN. Take a window W [j+l, j+n] in the integers and for each i let

be the characteristic map ti(sJ+l S
j+2

Sj+n)- If T is the parallel map definedT.
1

by t and having window W, then we can write T ClT + +CNTN-
In this section we give characterizations of G(T) and WG(T) G(T) for T a character-

istic map. In the case of WG(T) G(T) we assume A contains at least three elements.

Before beginning we need some terminology.

Recall that by a word over A we mean an ordered sequence (a|,a 2
a of elements
m

of A, but we use the symbolism ala2...am for it. If a ala2...am and b blb2...bn,
two words over A, then we can concatenate them to produce a single word

ab a|a2...amblb2...bn. We assume the existence of an empty word z such that az za a

for every word a. If a ala2"’’am where the a.1’s are elements of A, then the length of a

is lal m. If a,b, and c are words such that a bc, we say b is a left factor of a;

if c is not the empty word, we say b is proper left factor of a. Right factors and

proper right factors are defined in a similar fashion. If c A, then c c and
n+l n

c c c where n i, 2,

Clearly strings of finite length are almost the same thing as words. If we have a

string f J A where J [j + I, + mJ and f(j + i) a. for i 1,2 ,m, then we
1

say f is a copy of the word ala2,...a and we even permit ourselves to write (abusing
m

notation slightly) f ala2...am. If h is a configuration and J an interval in Z, then

we say h h_a__s a_ co of the word a at J provided hlJ considered as a string, is a copy

It is also useful to define what we mean by successive occurrences of symbols and

words in a configuration. Let f be a configuration. For an element b of A, we say that

distinct integers i and j mark successive occurrences of b in f provided f(i) f(j) b

and also provided that for all k strictly between i and j we have f(k) b. If a is a

word over A, we say f contains successive occurrences of a at the intervals J and r+J,

where r > O, provided that flJ and f l(r + J) are copies of a and provided that for every

s such that 0 s r we know f l(s + J) is not a copy of a.

DEFINITION. Let a be a word over A. We define a set of natural numbers O(a) thus:

r e O(a) if and only if there exists a configuration f and an interval J such that f

contains successive occurrences of a at J and r + J.

EXAMPLE 8. Let A {0, I} and a lOlOl. We can have a configuration in which we

have "overlapping" occurrences of a like this,

I0101
lOl O1,

so that we muse have 2 O(a). If we try to set up successive "overlapping" occurrences

thus,

I0101
10101,
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we see we have introduced a third occurrence of a in this fashion,

I0101
I0101

i0101,

so that 4 O(a). On the other hand, if we write I0101 I0101, then we sue

that by filling in the blanks with l’s we introduce no third occurrence of a. Therefore

6, 7, 8 O(a). As a matter of fact 5 0(a) since I010110101 contains exactly

two occurrences of a. Hence O(a) {2} ,J [5,

LEMMA 2. Let A be a set containing 0 and I, and let a be a given, nonempty word

over A. If there exists a natural number m such that aoma contains a third occurrence

of a, then for every natural number the word alna contains no third occurrence of a.

PROOF. Suppose there are natural numbers m and n such that aoma and alna each

contain a third copy of a. We will produce a contradiction.

Note first that the third copy of a must contain symbols from 0
m

and
n

so that a

cannot be a constant word.

There are only certain ways the third occurrences of a could lie in aoma and alna,
and consideration of these ways gives rise to cases.

Case I. Suppose a b0 where b is a nonempty proper right factor of a and _< m.

We have a cb for some word c If Ib -< , then a cb b0 implies b is a constant word

made up of O’s and hence so is a. This is impossible, so b .. Again from a cb bO

it follows that b bl0 where b is a proper right factor of b. Then we must have
2,

a =cblO blO Note also that Ibll Ibl. As we argued above, we may show that

lhll and hence that a cb209 b20g where b2 is a proper right factor of b and

h 2’ ". Clearly we can construct an infinite sequence b l,b2,b3,... such that bn+l is

and Ibnl > Ibn+ll > for every n. Contradiction.a proper right factor of b
n

We also see from this proof that we cannot have a bl where b is right factor of

a and _< Z -< n, nor can we have a Ob or a IZb where b is a left factor of a and

-< . -< m or < . -< n respectively.

Case 2. We must be able to write a boOmc0 bllnCl where b
0

and b are nonempty

proper right factors of a and co and c are nonempty proper left factors of a. We may,

without loss of generality, suppose that ]bo] < ]b I].
We first show that for some natural number k we have a (boom)kc where c is a

left factor of boOm We know a cod for some word d. Suppose we can construct a sequence

such that c’i+ is a proper right factor of c’ forof words c’0, C’l,...,c’ i

i O, j-I and a (b0om)j+Ic’ =(boOm)Jc’.d. (Certainly this is true for j 0
m
j ]m

c
j (bo0m) cwith c 0 CO’) Suppose ]c j] -< ]boO [. From (boo)j+l J ’jd we see that

boom (boOm) J+Ic,c’j must be a left factor of If we set c c’j we see from a

that we are done. Suppose on the other hand that Ic’jl [b0Oml. From

(b0om)j+Ic (b0om)J d we see that c’ boOmc which makes c’j+l a proper right
j

c
j j+l’

J+2c (boOm c
j+l

d. As the lengths offactor of c’j, and we must have a (boOm ’j+l )j+l

the c.’s are decreasing, we must ultimately be able to find one which we can use as c.
i

We know from the fact that a (b0om)kc bllnc where c is a 0
m

left factor of b

that we can write b0
in the form b0 elnf. Since Ib01 <- Ibll and (b0Om) k Inc0c =bl
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it f,)Itcws there must be a j such that b (boOm)Je (boOm)j-lboOme (boOm)j-I elnfome.
It follows from this and the fact that b is a right factor of a that rome must be a right

f;ct,r of a. Recall that b
0

elnf is also a right factor of a Thus

one o[ the two words rome and elnf must be a right factor of the other. Suppose fome
is a right factor of elnf and for every word x let Z(x) the number of O’s in x. Then

Z(fome) Z(f) + m + Z(e) Z(elnf) Z(e) + Z(f). This is impossible. A similar argument

based on counting the number of 1’s in a word disposes of the possibility that elnf is

a right factor of fome.
This lemma gives us information about O(a); it tells us that as long as A has at

least two elements, at [east one of those elements, say I, can be inserted between two

copies of a as often as we wish without inadvertently producing a third copy of a, and

hence lal + n 0(a) for n I, 2, 3 Ths in turn says that when computing O(a),

we need check only 1,2 lal.
PROPOSITION 7. If A contains at least two elements and a is a given, nonempty word

over A, then the interval [la[ + I, ,,) in Z is contained in O(a).

This result gives significance to the following characterization of ran(T) and G(T)

when T is a characteristic parallel map:

PROPOSITION 8. Let T be a characteristic map for (al,a2 a ). We identifyn
(a l,a2,...an with the word a ala2...an. Then f ran(T) if and only if

(I) takes on only the values 0 and I, and

(2) if i and j mark successive occurrences of in f with
i j, then j i O(a).

in ,(’]’) is of course the set of cofi,ratons which fail to satisfy (l) or (2).
?ROOF. It is trival that members of ran(T) satisfy (I) and (2). Suppose f satinfi.

(1) and (2) and W is the window for T. We begin construction of a configuration g by

placing a copy of a on every interval k + W for which f(k) I. If two such intervals

k + W and k
2 + W happen to overlap, we know from the definition of O(a) that we shall

be able to contruct both copies simultaneously. If there are intervals between the copies

of a where g has been assigned no value, we know from Lemma 2 a constant value can be

assigned there which will not produce any extra copies of a word a. In this way we can

construct g in such a way that g has a copy of a at k + W if and only if f(k) I, and

thus Tg f.

PROPOSITION 9. Suppose A has at least three elements and T is a characteristic map

for the word a over A. Then f WG(T) G(T) if and only if

(I) Tf S’f for some integer ,
(2) f is not the constant 0 configuration,

(3) f has neither a first nor a last integer at which
it takes on the value l, and

(4) if i and j mark successive occurrences of in f,
then [i Jl la[

PROOF. Let W the window for T and assume 0, I, 2 A.

Suppose f e WG(T) G(T). Proposition implies (I). By Lemma 2 we may, without

loss of generality, assume the word alna contains no third occurrence of a for every

natural number n. This implies the constant configuration g of value contains no

copies of a, and hence Tg 0 (the constant configuration of value 0). Now if we examine

the proof of Lemma 2, we find the only property of 0 and used there was the fact that

they are distinct; we could just as easily have used 0 and 2. We deduce from this
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that there can be at most one element of A, say O, such that a word of the form

where m is a natural number, can have a third occurrence of a. So we can, without loss

of generality, also assume that for every natural number n the word a2na contains no

third occurrence of a. Thus the constant configuration of value 2, h, satisfies Th O.

Since the constant zero configuration has two pre-images, it cannot be a weak Garden of

Eden., so (2) holds. For the rest of this first half of the proof we continue to assume

every alna and a2na contains no third occurrence of a. Suppose j is the last integer

at which f(j) I. Let g S-f where Tf Sf; this means Tg f. We must have a

copy of a at + W in g. Suppose r is the largest integer in j + W. Define

gl(i) g(i) if i r

if r+l i

g2(i) g(i) if

2 if r+l i.

Then gl and g2 have copies of a at k + W if and only if g does, so Tg Tg2
Tg f.

So must have distinct pre-images, an impossibility, and we conclude there is no last

integer at which takes on the value I. Similarly there can be no such first integer.

lee (3 holds. I.et u continue with g as defined above and suppse integers

ma,k su’essive ,c(’urrences of in f where j > i and i > lal. This means g h.s

copies of a at + W and j + W and also that between these two intervals there is an

Interval J which overlaps no copy of a. By changing the values of g on J first to

and then to 2, we can construct two different pre-images for f. Since this is impossible,

(4} holds.

Now suppose f is a configuration satisfying (I) (4). We know from (I) that S-Zf
is a pre-image of f under T. Suppose Tg f. For every j such that f(j) I, we must

have a copy of a at j + W in g. Taking this fact in conjunction with (2) (4), we

see that g is covered by overlapping copies of a and hence is uniquely determined;

thus g S f. So f WG(T) G(T).
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