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ABSTRACT. We show that tlm local energy of a smooth locallzed solution to a system

of coupled nonlinear SchrSdlnger equations in a certaln nonunlform medlum decays to

zero as the time approaches inflnlty.
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1980 MA]’IIF;MA2’ICS SUBJECT CLA,gSIFICA]’ION CODF;. 35Q$O

1. INTRODUCTION.

Conslder a system of m coupled nonlinear Schrdlnger equatlons in a nonuniform

meduum

t(O/Ot)O
n (c32/Ox2)Un + Fn (1112’ lUn 12 )Un + kn(X)Un 0 (1.1)

where n I, 2, m, k’s are real-valued functions of x only and F’s are
n n

real-valued functions. We will show that under certain condltlons o[F’s and k ’s0n n
namely,

n-I m

Fn(IU112 lUn 12’ IUml2)=CnlUn 12 + ’z Iuh 12 + z 1,11,12
h =1 h =n +l

with positive constant C for all n 1, 2 m, and
n

k (x) I/(I + a2x2) wlth 0 < a <_ (2/3)
n

for all n I, 2 m, the local energy Z r IUnI2 (x, t) dx for the smooth
n --1 -r

and localized solution (UI, Urn) decays to zero as t approaches Inflnlty.

Eq. (I.I) with one component and in a llnear type of nonunlform medlum was de-

rived by Chen and Llu [1-3] in the study of so]Irons In nonuniform medium. See

(1.2)

(1.3)

also Newell [4]. Gupta et al [5], Gupta [6] and upta and Ray [7] studied Eq. (I.I)

with one component and a parabollc type of nonunlformlty for Its exact solution and

the inverse scattering method. Eq. (1.1) with two components and k O, for all n,
n

was derived for envelope waves with different circular polarizations in an isotroplc

nonlinear medium by Berkhoer and Zakharov [8] and also used by Eiphlck [9] for the

quantum version of the one-component nonlinear Scltr6dinger model. Kaiser [I0] dis-

cussed the well-posedness of it for an Inltlal-value and boundary-value problem.

Our method in this work conslsts of nn exploration of the conservation laws

which Eq. (1.1) possesses and is a genera]izatlon of autltor’s previous work ill] for

the one-component nonlinear Scltrdlngpr equation, in tile loll’owing, we shall denote

(O/OX)Wn by w
n’ x’ etc. and the solution (U1, Um) will be assumed to be
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smooth and localized i.e., U and all its partial derivatives approach zero as ]x
approaches infinity, for each t and for all n 1, m.

2. HETIIOD.

Hultiplying Eq. (I.I) by V where V is the complex conjugate of U and takingn’ n n
the imaginary part, we get

(lu 12) i(v u u v
n t n, x n n, x n x (2.1)

Hence

IUnlZ(x, t) dx constant (2.2)

Next, multiplying Eq. (1.1) by Vn, t’ taking the real part of it, making the

use of (1.2) and integrating in x from- to -, we get

f z (Iu 12 + knlUnl 2 + </z)c.lo.l 4) dx < constant (2.3)
n i n X

where the constant on the right-hand side is independent of t.

Now, taking the real part of [(LnUn)xVn (L
n lln)Vn’ x

]’

where L U i U U + F ([U112 iN [2)U + k U and
n n n, n, xx n m n n n

making the use of (1.2), we get
m m m

(I/2i) Z (V U -U V (1/2) Z (lU 2 2)
x

n 1
n x n n x n t n )xxx + 2 Z (IU

n=l n =I n, x

m 4 t 2)+ </) z C (lUll) + </)(< [U) (/) <lUll )n
n x x

n = n=l x

m
k" 2

n [ n

Now, making the use of the assumption (1.3) on kn, multlplyiug (2.4) by

A(x) arctan (ax), where a is from the assumption on k integrating in x fromn’
to , using the technique of integrntion by part and makin the use of (2,2) and

(2.3), we get
m

ir z (fUn 12 + lun
2 + lU 14) dx dt <- (2.5)

0 -r n-l
,x n

Let r > 0 and B be soth such that B(x) 1 for lx r, B(x) 0 for lx 2r
and 0 B i. Multiplying (2.1) by B and integrating In x from -2r to 2r, we get

2r 2
dx b /2r (lUnlZ + iun 12) dx2r n(lunl )t

-2r x
for some positive constant b.

Let 0 <
1 < t, then

(t- tl) fr_r [Un[2 dx _< (t tl f2r_2r BUn2 dx

t f2r 2 t f2r B([Un[2 dx[ds"ft I -2r B[Un[ dxds + I (s- tl) _2r t

Let tI t I, ten
r

f r inn [2dx (b + 1) t 2r 2 2)
1 2r([Un[ + ]U dxdsnx

Hence, by (2.5) [U [2(x t)dx 0 as tn Q.E.D.
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