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ABSTRACT. We show that the local energy of a smooth localized solution to a system
of coupled nonlinear Schrbdinger equations in a certain nonuniform medium decays to

zero as the time approaches infinity.
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1. INTRODUCTION.
Consider a system of m coupled nonlinear Schrbdinger equations in a nonuniform

meduum
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wheren=1, 2, . . ., m, kn's are real-valued functions of x only and Fn's are

real-valued functions. We will show that under certain conditions of Fn's and kn's.

namely,
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with positive constant Cn. for alln=1,2, .. ., m, and
1
k () = 1/(1 + a’x?) with 0 < a < (2/3)" (1.3)
m
for alln=1, 2, . . ., m, the local energy % [S¥ IUnlz(x, t) dx for the smooth
n=1 -r

and localized solution (Ul’ e e ey Um) decays to zero as t approaches infinity.

Eq. (1.1) with one component and in a linear type of nonuniform medium was de-
rived by Chen and Liu [1-3] in the study of solitons in a nonuniform medium. See
also Newell [4]. Gupta et al [5], Gupta [6] and Gupta and Ray [7) studied Eq. (1.1)
with one component and a parabolic type of nonuniformity for its exact solution and
the inverse scattering method. Eq. (1.1) with two components and kn = 0, for all n,
was derived for envelope waves with different circular polarizations in an isotropic
nonlinear medium by Berkhoer and Zakharov [8] and also used by Elphick [9] for the
quantum version of the one-component nonlinear Schrédinger ﬁodel. Kaiser [10] dis-
cussed the well-posedness of it for an initial-value and boundary-value problem.

Our method in this work consists of an exploration of the conservation laws
which Eq. (1.1) possesses and is a generalization of author's previous work [11] for
the one-component nonlinear Schrédinger equation. In the following, we shall denote

(a/ax)wn by W oy etce, and the solution (Ul' .+« ., U) will be assumed to be
» m
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smooth and localized, 1i.e., Un and all its partial derivatives approach zero as Ix]
approaches infinity, for each t and for alln=1, . . ., m.
2. METHOD.

Multiplying Eq. (1.1) by Vn, where Vn is the complex conjugate of Un’ and taking
the imaginary part, we get

2
(Iunl )t 1(vn,xun - l"n, xvn)x (2.1)

Hence

jm IUnIZ(x, t) dx = constant (2.2)

Next, multiplying Eq. (1.1) by Vn N

»
use of (1.2) and integrating in x from -~ to =, we get
I (Ju

- n=1
where the constant on the right-hand side is independent of t.

, taking the real part of it, making the

2 2 4
+ knlunl + (1/2)Cn|UnI ) dx < constant (2.3)
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Now, taking the real part of [(LnUn)xVn - (Ln U")Vn, x]’

2 2
= - R +
vhere LU =4V . -U .+ Fn(lull , » JU 1)U+ k U and

making the use of (1.2), we get
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Now, making the use of the assumption (1.3) on kn’ multiplying (2.4) by
A(x) = arctan (ax), where a is from the assumption on kn' integrating in x from -=
to =, using the technique of integration by part and making the use of (2.2) and
(2.3), we get

(2.5)

A
]
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Let r > 0 and B be smooth such that B(x) = 1 for lx] < r, B(x) = 0 for lxl > 2r
and 0 = B = 1. Multiplying (2.1) by B and integrating in x from -2r to 2r, we get
|12 By, 1D, ax| = b{:: A2+ Ju, 1% ax
for some positive constant b.
Let 0 < tl < t, then

B r 2 2r 2

(t - t)) I fu |“ax = (¢ - 6 1o Blu |© dx
t 2t 2 t 2r 2

= _rtl Iy, BlU |” dxds + ft1 (s - t)) | £, BUY D) dx]ds.
Let t, = t - 1, then

r 2, t 2r
L lu |%ax = b + 1) {2, 15,

2 2
o, 1% + Ju, %) dxds
Hence, by (2.5), jf;lunlz(x, t)dx +> 0 as t » =, Q.E.D.
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