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ABSTRACT. In a fuzzy topology on a set X, the limit of a prefilter (i.e. a filter in

the lattice [0,i] X) is calculated from the fuzzy closure. In this way convergence is

derived from a fuzzy topology. In our paper we start with any rule "lira" which to any

prefilter on X assigns, a function lira E [0,i] X. We give necessary and sufficient

conditions for the function lim in order that it can be derived from a fuzzy

topology.
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I. INTRODUCTION.

The notion of convergence is one of the basic notions in analysis. Convergence

can be described in any topological space, by means of nets or filters. In many con-

crete examples however, convergence is the primitive notion, and the topology, if such

exists, is defined only afterwards. From this situation the need has grown to have an

axiom system for convergence which makes it possible to recognize whether the conver-

gence is topological. For net convergence such an axiom system was given in 1937 by

Birkhoff [2], the crucial "topological" axiom being the iterated limit axiom. For

filter convergence it was only in 1954 that Kowalsky [7] found a workable counterpart

for this, the so-called diagonal condition for filter convergence. In the same paper

he shows that if this condition is fulfilled then closures of sets are closed. Later

one of the authors showed that then too adherences of filters are closed [8]. However

the condition need not imply that the convergence is topological. The first axiom

system completely describing topological convergence internally in terms of convergent

filters was given by Cook and Fisher in 1967 [5]. The diag’ I ’-.ndirion again played
a key role in the formulation of their solution. Since then this condition has proved

to be a very useful notion in convergence theory, especially in theory of extensions

[61, [7], [91, [191.

Since the introduction of the abstract notion of fuzzy topologies [i0] in 1976

several concrete examples have shown hat there too it is the noion of convergence
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which is paramount and which most clearly demonstrates the aim of fuzzy topology. See

e.g. fuzzy topologies on hyperspaces of fuzzy sets [12], [13], on metric spaces [17]

and on spaces of probability measures [15], [16]. In each of these cases the notion

of convergence in the fuzzy topology permits to "measure" a "degree" with which a fil-

ter converges to a point, and in each case maximal degree of convergence is equivalent

to classical topological convergence in some associated topology. In the examples jus

mentioned these are respectively the Hausdorff-Bourbaki hyperspace topology on closed

sets [18], the metric topology, and the topology of weak convergence [i].

In the context of fuzzy topologies it is therefore equally important to character-

ize fuzzy topological convergence internally. In this paper we solve this question and

give a set of 6 axioms which turn out to be necessary and sufficient for a fuzzy con-

vergence to be fuzzy topological.

With regard to these axioms a number of comments are in order.

First, it turned out that the diagonal condition of Kowalsky cannot be translated in a

straightforward manner. The classical condition of a filter being convergent to a

point has no meaning and its substitute i.e. the information of the degree with which

a filter converges to a point can only be handled analytically and thus has been in-

corporated as such in the diagonal condition. This "fuzzy" diagonal condition will

play a key role in the characterization of convergence in fuzzy topological spaces.

Second, the fundamental classical condition concerning the convergence of comparable

filters has to be replaced by two separate axioms.

The first axiom is analogous to the classical one with the exception that only filters

which in a certain sense are "horizontally" comparable may be considered. Due to the

fact however that prime filters are not necessarily maximal we also have a type of

"vertical" comparability for filters and we need a second axiom to deal with those.

Finally, yet another axiom concerning the "overall" degree of convergence of a filter

is required which is purely "fuzzy" in the sense that it has no classical meaning or

counterpart.

At the end of our paper we restrict our 6 axioms to prime filters and show that

these "prime versions" too already fully characterize fuzzy convergence. These prime

versions are important because the convergence theory in fuzzy topological spaces is

founded in large part on the use of prime filters.

2. PRELIMINARIES.

We recall that I :- [0,i] and that if X is a set IX denotes the set of all func-

tions X I, i.e. all fuzzy sets on X, equipped with the usual lattice structure. As
X

s,ch I is a complete and completely distributive lattice.
If X is a set and A C X then I

A
denotes the characteristic function of A and if A

then we write i for 1
x {x}"

In order to discern between filters on X and a type of "fuzzy filters" we shall, for

the latter, simply use the term introduced by Bourbaki [3] in the framework of general

lattices.

A prefilter (resp. prime prefilter) (on X) is a prefilter (resp. prime prefilter) in
X X

the lattice If u then we denote by the principal prefilter

The set P(X) of all prefilters on X is ordered by inclusion and fulfils analogous order

properties as the set F(X) of all filters on X. We use the same well-known notations

and terminology for both.
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Given 6 P(X), the set of all prime prefilters finer than was shown to have mini-

mal elements [ii] and this latter collection is denoted P (). Given F 6 F(X) we
m

shall then denote the set of all filters (esp. ultrafilters) finer than

(resp. D(F)). The following maps shall be required very often [Ii],

P(x)-F(x) --’{u-1]0,1]lu e9
F(x)- P(x) F- {u[3FE F > IF

c P(X)- I inf sup (x)
x

c P(X) I inf c()
eP ()

m

For any 6 P(X) we now further define

() := {mCF) v [F

PROPOSITION 2.1. The mapping

F((D)) () Fm(F) v

is an order isomorphism and a V-lattice isomorphism. The image of U(I()) moreover

coincides with P ().
m

PROOF. By construction the mapping is surjective and order preserving. Let. 6 F(I()) i 1 2 and put := (F v Let
i
D 2 If F

2
6 F

2
then

i i

IF2 6 2 and thus there exist 6 and F
1
6 F1 such that IF2 > 1F ^ . This im-

2
plies that F

2
D F

1
-i]0,i] which together with I() C F1 shows that F

2
6 FI" This

at the same time shows that the mapping is injective and an order isomorphism.

Next let F. 6 F(()) for 6 J then clearly

(jj Fj)v D V (F.) v .
jej

Conversely if FI
e FJI’’’" ’Fn 6 Fjn for some n qO and y then clearly

^ U A i ^U v (F.) v.F
ii 1 i: 1 jJ

The fact that the image of U(I()) is precisely Pm() is nothing else than the result

of Theorem 3.2 [ii].

REMARKS. 1 In Theorem 3.2 [Ii] notation is slightly different. Note that (,)
the means () v here. Also in [ii] and are called compatible pcisely if

().

2 The mapping of Proposition 2.1 is not a lattice isomorphism as is seen taking
X arbitrary but such that [X[ > 2 :: [ for all x e X and :: {[inf (x) > O}

X X
Then it follows thal X

whereas
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^ (F v, {ulu(x) > o Vx x}.
xxX

3 Without further mention and whenever convenient we shall use the fact that

P () {CO(U) v IU ultra U D I()}
m

For the sake of completeness and because it shall frequently be used in the sequel

we recall the following result, however without proof.

It was proved implicitly in the proof of Theorem 6.2 [ii] and explicitly as Lemmas 3.1

and 3.2 in [14],

PROPOSITION 2.2. The following hold

i If F is a filter on X and for each U 6 U(F) Uu 6 U then there exists a finite

subset U
0
C U(F) such that U Uu 6 F.

0
2 If is a prefilter and for each 6 P () 6 ( then there exists a

m
finite subfamily 0 C Pm() such that sup (([5

6 .
0

PROPOSITION 2.3. The following hold

i and co are respectively an isotone surjection and injection

2 Oco idF(x), coot < idp(x)
3 c() sup c()

m

4 c]5 prime c() c-().
PROOF. i and 2 are analogous to similar statements in [ii] and we shall leave

this to the reader.

3 Actually more can be said there exists e Pm() such that c((5) c(). In-

deed consider the filter

F :: [{u-i],1]I < c()}]
*hen clearly F 3 (). Now le / be any ultrafflter ffner than F then

and since for all < c() and 6 e i] 6 U it follows that

c(CO(U) V inf sup (x) > c()
UU xU

while the other inequality is trivial.

4 Immediate from the definitions, m

PROPOSITION 2.4. If is a prefilter and 6 %() then P (3) C P ().
m m

PROOF. Indeed, by Proposition 2.1 we can choose H 6 F(I()) such that
Co(H) v and if 5 6 P () we can find U 6 [I(l()) such that (5 m(U) vm

From U D () H we then have

Co(U) v ,_:,
co(U) v co(H) v c

:co(U) vc
which together with the fact that U D I() D ( proves that ( e Pm(). a

PROPOSITION 2.5. For any ultrafilter U, the fiber l-l({u}) is a chain.

PROOF. Let , { E I-I({u}) and suppose that there exist p 6 ( {((j’ and

’ 6 {’ \ {. Now let
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A :: {xlu(x) > u’(x)}

B :: {xlu’(x) > u(x)}

and suppose for instance that A 6 U, then iA
6 / and thus iA ^ U’ 6 (’. However

since > iA ^ U’ this provides us with a contradiction,

)nPROPOSITION 2.6. If (i i:l
are prefilters then

Pm il i C ii Pm(i

PROOF. If Pm i 1
and for all i 1,...,n e have . then e can

n
find . X i 1, ..,n. Then however sup . hch is a contradiction.

a i i:l
Consequently theme exist i 6 {l,...,n} such that D . That is minimal is

0 10
clear.

We shall now inrmoduce the so-called diaEonal prefilrer, a concept which Eeneral-
izes the analoEous notion intmoduced by Kowalsky [7].

DEFINITION 2.1. Given a collection of prefiltems (j)j6j on X and a filrem A on

J we define and denote the diaEonal prefilrer (of the family

A) as

:-vin the easy vemificarion that this is indeed a prefilrer to the meader.

Since we shall often use his concept we now ive some of its basic pmopemries.

PROPOSITION 2.7. Let (j)j6j be a family of pmefilrers on X and A a filter on J

then the followinE pmoperries hold

A jeA
2 If (A)f6L is a family of filters on J such that A n A then

ZeL

3 (
jej

,A n (
jej

,A
(j)jej e P (.)

jej
m

o If each
j,

e j is pime and A is an ultafil/e then (j)j,A) is pi.
PROOF. 1 If e ((j)jej,A), AI,...,A e A and v. e i l,...,nn x

jeAi
are such that M1 A...A Mn n

j6A J"
2 One inclusion is tivial, to show the othe one let us suppose

e (( A) Then making use of i it follows that for all Z e L there
6L jej’

exists A
jeA

3 Again one inclusion is quite clear, to show the other one let ((j)j6j,A)
and for each 6 J, if 9 choose 6 Pm(j) such that 9 whereas if
6 choose 6 p (.) arbitrarily. Now by supposition and upon once again ap-m

plying i, for each A 6 A there is 6 A such that 9 . and thus Conse-

quently 9 ((j )jej,A) and we are done.

4 Let U v 9 6 ((j)j6j,A) and let A 6 A be such that v 6

jeA
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If we put

A I := {j e AIU 6 ..}

then f.i. A 6 A, U 6 ] and we are done.
i

JeAl ]

PROPOSITION 2.8. If ((jj)6jj is a family of prime prefillers, A is a filter on J

and we pu := (j)jj,A) then for any e () and for any the ex-

isls J such lhat

PROOF. Let F F(I()), F F and and suppose tha for all J we have

From Proposition 2.7.1 we oblain ha here exists A A such ha

3" for al . Snce (1Fa) v (1Fc ) t lotions from our hypohess

that 1Fc j for all and consequently that 1Fc . Since

@ C () v @ this contradicts the fact that 1
F

a ff () v @ and ue are done.

e shaZl no turn to some plminary sults conceding convergence in fuzzy to-

pological spaces.

W reca that one of the equivalent aya of introducing a fuzzy topology on a set X

by means of he so-called fuzzy closure operator [10]. fuzzy closure operator,

IX i
x

b) tefinition is a map fulfilling

(i) constant
X(2) > V e I

(3) v v , 6 Ix

(4) U e I
X

In this paper it is exclusively this definition of a fuzzy topology which we shall use.

Now if X is endowed with a fuzzy closure, i.e. is a fuzzy topological space, then con-

vergence of prefilters is defined in the following way [ii]. Adherence and limit are

defined spectively as the mappings P(X) IX determined by

adh inf

lira := inf adh

The idea being that adh and lira generalize respectively the set of adherence- and

limitpoints of a filter.

We call the most important properties which we shall quire in the sequel, ferring

however to [II] for proofs.

PROPOSITION 2.9. If X is a fuzzy topological space then the following hold for all, e(x)

1 D adh adh

2 lira adh

3 adh c()

4 prime lira adh .
Because of its importance in our further considerations we display also the next

result.

PROPOSITION 2.10. If X is a fuzzy topological space then for any prefilter

adh sup adh
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PROOF. This was shown implicitly in the proof of Theorem 2.6 [Ii].

PROPOSITION 2.11. If X is a fuzzy topological space then for any prefilter

e P(x)

adh sup lim sup adh

PROOF. F’_,m Propositions 2.9 and 2.10 we obtain

adh sup lim

ePm()
< sup lim

sup adh

adh

We shall also require the following result.

PROPOSITION 2.12. If X is a fuzzy topological space and a prefilter on X then

for each x e X there exists Q e P () such that lim (x) adh (x).
m

PROOF. Suppose on the contrary that for each U 6 U(I()) we have

lim((U)v)(x) < adh (x),

then for each U 6 U(I()) we can find Ufl 6 U and U 6 such that

n
such that U U. 6 I().

i=l 1

and let

IUu ^u(x) < adh (x).

By Proposition 2.2 there exist l’’’’’Un 6 U(I()) and U
i

:= UU. 6 Ui’ i l,...,n
1Let li

:= l.l[/., i 1,...,n be the corresponding elements in

then we obtain

n
inf i
i=l

1

U U.
i=l 1

^ u(x)

n
sup IU. ^i(x)
i=l 1

n
sup IU. ^i(x)
i:l

< adh (x)

which from the obvious fact that i ^ 6 is a contradiction, u
n
u U.

1
i=l

As an immediate consequence remark that if 6 I
X

then for each x 6 X we can thus

find { e P (6) such that (x) lim (x).
m

Finally, we introduce also the following concept which shall be of crucial importance

in our considerations, since it is precisely the tool which permits to generalize

Kowalsky’s diagonal condition.

If (’ (Y))y6X is a family of prefilters indexed by X -called a selection of prefilters-

then we define @ as the map

@ X I x lira (x)(x).
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The function (or fuzzy set) P measures at each point the degree that (x) converge

tO X.

3. NECESSITY.

THEOREM 3.1 If X is a fuzzy topological space then the map P(X) I
X

lira

satisfies the following properties

(FI) For any prefilter lira c-()
(-2) For any prefilters

C , I() l() lim lim

(CI) For any e 6 I\O and x 6 X lime[ i
x x

(C2) For any prefilter , 6 %() lira lim

(Cc) For any collection of prefilters (j)j6J and any filter A on J

lim ((j)j6j,A) inf lira .
(Cd) For any prefilter and any selection of pPefilters ((Y))y6X

lim (((y))y6X, I()) > lim

and moreover the map
X Ix U sup lim coincides with the original closure

on X.

PROOF. (FI) In case is prime we have c-() c() and

lira inf

inf sup (x)
e ..-7) xex
c(,.,7))

such that p6

In case is arbitrary we deduce herefrom

lim inf lim
(ep ()

m
inf c()

(C5 ePm(
c-()

(F2) Let and , be as postulated then we have

lim inf lim (U) v
Ueu((3))

inf lim (U) v
Ue(( ))

lim

(CI) Since e{ is prime we have
x

lim (,[
x x

x

(C2) Let and 3 e %() be arbitrary then by Proposition 2.4 we immediately

obtain
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lim inf

inf
(((5 ep

m
lim

(Cc) In case each j, 6 J, is prime, using Proposition 2.8, and letting

9: @( (’ jej’A) we obtain

lim inf inf

m
inf inf
jeJ

inf lim
jeJ

In the general case, for each 6 J, let

P (.) {klk e K.}
m

where the collections K. are chosen to be pairwise disjoint. Fom A C J let

A’ :: U K.
jeA

then {A’IA E A} is a filterbase on J’. Let us denote the filter thus generated by A’
Then from the first part of the proof it follows that

lim -@’D (k)k6J’ ,A’

inf lim
kkEJ

inf lim .
jeJ

Following the straightforward verification that

)( jej’A) 3( k )keJ’ ,A’

we are done.

(Cd) Let ’J :: -)((,(y))y6X,I()).
ASSERTION. The result holds if all (y), y 6 X and . are pmime.

Indeed, let 6 OJ. Then by Proposition 2.7.1 theme exists F 6 I() such that

e n (y). Let

%0 :: IF^O
then %0 6 . Further straightforward verification shows that

sup lira (y) > %0

and consequently sup lim (y) e .
yo- 1o, 1]

Finally too by Proposition 2.9

" adh n .(y)
yer

a n

sup
-1 1o,1

lim (y)
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which in turn implies e .
Cnsequently lim which by the arbitrariness of e - and by Proposition 2.9

shows that lim lim

ASSERTION. The result holds in general.

Let ((Y))y6X and be arbitrary pefilters, such that 0 5 E . First observe that

for any selection := ((Y))y6X e P ((y)) we have
yex m

p(y) lim (y)(y)4 lira d(y)(y)

and this for all y X. Consequently D e and a fortiori p. for any

From the first assertion we then already obtain that

lim -3(((y))y6X,l(t)) lira (3.1)

Next observe that by Proposition 2.7.2 and 3 we have

@D( ((y) )yeX, ()
n D ((y))yex,@e n P (,(y))

ye m

n @D( (OR(y))yex, ()(,)e( n P ((y)))xp ()
y6X m m

Now applying (Cc) on the collection of prime prfilters

"yex
and the trivial filter on the indexset we obtain

lira (((y))yX,())
inf

(, )e( n ((y)))Xm()
y6X m

lira D(((y))yX,()) (3.2)

Combining (3.1) and (3.2) we now obtain

lim ’( ((y) )yX, ())

inf lim (5

m

lira ,,_.
Finally that sup. lim j is an immediate consequence of Pmoposition 2.10.

eP (j)
m

4. SUFFICIENCY.

THEOREM . i. If P(X) X
lim is a map which satisfies the poperties

(FI), (F2), (CI), (C2), (Cc) and (Cd) then there exists a unique fuzzy topology on X
such that for each P(X) its limit coincides with lira .

PROOF. We define the following map

i
x

i
x

U := sup. lim 5. (W.I)
eP (u)

m
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If is a constant fuzzy set then by.(Fl) we have

If U6 1
x

then by (CI) we have

sup
ultra

lim w(U) v ( C.

sup. lim re(U) v 6

> sup lim U(x)
-i

x
xe ]0,1]

> sup U(x)l
X

-ixe ]0,1]

If ,) 6 IX U then by (F2) we have

sup. lim (U) v
gu(1(u))

sup. lim (U) v
[u(())

sup. lim (U) v
U((v))

Further if p,v 6 1
x

then from this last relation it already follows that

On the other hand by Proposition 2.6 we obtain

U v sup. lim
(C)ep (v)

sup lim v
(C)ep ()

m

U VV.

XGlobally this shows that for any U, 6 1

Before showing that the map

determined by

lim’

sup
eP (v)

Uvv Uvv

is idempotent we now first define

X
lim’ P(X) I

(4.2)

inf if is prime

inf lim’
(C)ep ()

otherwise

If

obtain

ASSERTION. If v is prime then lim’ lim .
then clearly m(l(,)) v C . Since both are prime, applying (F2) we

lira lira m(()) v

< sup. lim 0(U) v ]
[u(1())

and consequently Jim lim’
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Conversely,

lim’ inf

inf sup. lim (U) v
e (i())

sup inf lim 0(qO()) v

Now let us fix N U(I ()), and conside lhe family of pmime pmefille

On he indexse we lake he fillem A genemaed by he basis

where A := {v e IV < }.

It is easily seen that now

} c D(((e(u))v)ue$,A

(4.3)

By respectively (F2) and (Cc) we then obtain

lim > lim -((0(qo(U))v)
> inf lim (qo()) v

By the arbitrariness of qo, it now follows from (4.3) and (4.4) that lira’ g lim ,
ASSERTION. For any prefilter we have lim’ lim .
Applying (Cc) on the family of prefilters P () and taking hereon the trivialm

filter we already obtain

lim > inf lim

ePm(
On the other hand by (C2) we have

inf lim inf lim re(U) v

> inf lim (I()) v
eu(())

lira

(4.4)

Consequently by the first assertion

lim’ inf

m

inf

m

lim.

lim’

From these three assertions we thus conclude that lim satisfies

lim

inf

inf

ePm(

if is prime

lim otherwise (4.5)
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To conclude the proof of the theorem we shall now show that the map is idempo-

tent. Let 6 IX and 6 Pm() be fixed.

Now remark that the proof of Proposition 2.12 only uses the fact that closure and limit

in a fuzzy topological space fulfil (4.1), (4.2) and (4.5). Since we have already

shown that indeed fulfils (4.1), (4.2) and (4.5), by means of a perfectly analogous

proof, we can now ascertain that for each y e X there exists (y) 6 Pro(6) such that

lira (y)(y) (y).
Consider this selection ((y))y6X, then clearly O and so O 6 6. Apply-

ing (ca) we now obtain for -0 := (((y))y6X,l()) that

which together with the facts that 6 -b -which is obvious since 6 (y) for each

y X- that . is prime -by Proposition 2.7.4- and upon applying (5) implies that

By the arbitrariness of P () we thus obtain
m

sup. lim .
(C)e ()

m

In all we have thus shown that is the fuzzy closure operator associated with a fuzzy

topology. That the limit in this fuzzy topology coincides with the map lim is nothing

else than (5) while uniqueness of the fuzzy topology is evident by construction.

5. PRIME VERSION.

Both in Theorem 3.1 and Theorem 4.1 prime prefilters play a crucial role in

proofs. The question therefore poses itself whether it is not sufficient to consider

(FI), (F2), (C2), (Cc), (Cd) restricted to prime prefilters, i.e. to consider what we

shall call prime versions of these properties. Remark that obviously (CI) is its own

prime version. In order to answer this question we now define the following set of

axioms.

(FIr) For any prime prefilter lim c()
(F2p) For any prime prefilters C lim lim

(C2p) For any prefilter ( () lim lim (
m

(Ccp) For any collection of prime prefilters (j)jj and any filter A on J

limO((j)jej,A) inf lim
jj

(Cdp) For any prime prefilter and any selection of prime prefilters ((Y))y6X
such that O lim )((5(y)y6X,l()) lim ,

PROPOSITION. The following implications hold

1 (C2p) implies (FI) (FIr)
2 (C2p) +(Ccp) implies (F2) (F2p)

3 (Ccp) implies (C2) (C2p)

4 (C2p) imp lies (Cc) (Ccp)

5 (C2p) + (Ccp) implies (Cd)= (Cdp).

PROOF. This goes the same as the proof of (FI) in Theorem 3.1.

2 Let be any prefilter. Since we obtain by (Ccp) applied to

the trivial filter on F () that m
m

lim inf lim

Pro
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and consequently together with (C2p) that

lira inf lira (5 (5.i)

6Pm(
The rest of the proof now consists of repeating verbatim the demonstration of (F2) in

Theorem 3.1.

3 Let 5 and 6 %() be arbitrary. First by repeating the first part of the

Second by (5.1) and Proposition 2.4 we obtain

lim

proof of 2 we note that (5.1) holds.

lira inf
5 ePm(

< inf lim

m

lim

4 This is completely analogous to the proof of the general case of (Cc) in Theo-

rem 3. i.

5 This in turn is completely analogous to the proof of the second assertion in

the proof of (Cd) also in Theorem 3.1.

From this proposition and Theorem 4.1 we now immediately obtain the following

strengthening of the latter.

THEOREM 5.1. If P(X) I
X

lim is a map which satisfies the properties

(Flp), (F2p), (CI}, (C2p), (Ccp) and (Cdp) then there exists a unique fuzzy topology

on X such that for each 6 P(X) its limit coincides with lira 9.
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