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ABSTRACT. In a fuzzy topology on a set X, the limit of a prefilter (i.e. a filter in
the lattice [O,l]x) is calculated from the fuzzy closure. In this way convergence is
derived from a fuzzy topology. In ourpaper we start with any rule "lim" which to any
prefilter @ on X assignz a function limd € [O,l]X. We give necessary and sufficient
conditions for the function @ = 1lim ® in order that it can be derived from a fuzzy

topology.
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1. INTRODUCTION.

The notion of convergence is one of the basic notions in analysis. Convergence
can be described in any topological space, by means of nets or filters. In many con-
crete examples however, convergence is the primitive notion, and the topology, if such
exists, is defined only afterwards. From this situation the need has grown to have an
axiom system for convergence which makes it possible to recognize whether the conver-
gence is topological. For net convergence such an axiom system was given in 1937 by
Birkhoff [2], the crucial "topological" axiom being the iterated limit axiom. For
filter convergence it was only in 1954 that Kowalsky [7] found a workable counterpart
for this, the so-called diagonal condition for filter convergence. In the same paper
he shows that if this condition is fulfilled then closures of sets are closed. Later
one of the authors showed that then too adherences of filters are closed [8]. However
the condition need not imply that the convergence is topological. The first axiom
system completely describing topological convergence internally in terms of convergent

filters was given by Cook and Fisher in 1967 [5]. The diag:'.:! :~ndirion again played
a key role in the formulation of their solution. Since then this condition has proved

to be a very useful notion in convergence theory, especially in theory of extensions
(el, [71, [91, [19].
Since the introduction of the abstract notion of fuzzy topologies [10] in 1976

several concrete examples have shown that there too it is the notion of convergence
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which is paramount and which most clearly demonstrates the aim of fuzzy topology. See
e.g. fuzzy topologies on hyperspaces of fuzzy sets [12], [13], on metric spaces [17]
and on spaces of probability measures [15], [16]. In each of these cases the notion
of convergence in the fuzzy topology permits to "measure" a '"degree" with which a fil-
ter converges to a point, and in each case maximal degree of convergence is equivalent
to classical topological convergence in some associated topology. In the examples just
mentioned these are respectively the Hausdorff-Bourbaki hyperspace topology on closed
sets [18], the metric topology, and the topology of weak convergence [1].

In the context of fuzzy topologies it is therefore equally important to character-
ize fuzzy topological convergence internally. In this paper we solve this question and
give a set of 6 axioms which turn out to be necessary and sufficient for a fuzzy con-
vergence to be fuzzy topological.

With regard to these axioms a number of comments are in order.

First, it turned out that the diagonal condition of Kowalsky cannot be translated in a
straightforward manner. The classical condition of a filter being convergent to a
point has no meaning and its substitute i.e. the information of the degree with which
a filter converges to a point can only be handled analytically and thus has been in-
corporated as such in the diagonal condition. This "fuzzy" diagonal condition will
play a key role in the characterization of convergence in fuzzy topological spaces.
Second, the fundamental classical condition concerning the convergence of comparable
filters has to be replaced by two separate axioms.

The first axiom is analogous to the classical one with the exception that only filters
which in a certain sense are "horizontally" comparable may be considered. Due to the
fact however that prime filters are not necessarily maximal we also have a type of
"vertical” comparability for filters and we need a second axiom to deal with those.
Finally, yet another axiom concerning the "overall" degree of convergence of a filter
is required which is purely "fuzzy" in the sense that it has no classical meaning or
counterpart.

At the end of our paper we restrict our 6 axioms to prime filters and show that
these "prime versions'" too already fully characterize fuzzy convergence. These prime
versions are important because the convergence theory in fuzzy topological spaces is
founded in large part on the use of prime filters.

2. PRELIMINARIES.

We recall that I := [0,1] and that if X is a set IX denotes the set of all func-

tions X » I, i.e. all fuzzy sets on X, equipped with the usual lattice structure. As

such Ix is a complete and completely distributive lattice.
If X is a set and A C X then lA denotes the characteristic function of A and if A = {x}

then we write 1x for l{x}'

In order to discern between filters on X and a type of "fuzzy filters" we shall, for
the latter, simply use the term introduced by Bourbaki [3] in the framework of general
lattices.

A prefilter (resp. prime prefilter) (on X) is a prefilter (resp. prime prefilter) in
the lattice IX. If u € I then we denote by 1 the principal prefilter {v|v=>u}.

The set P(X) of all prefilters on X is ordered by inclusion and fulfils analogous order
properties as the set F(X) of all filters on X. We use the same well-known notations

and terminology for both.
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3iven 3 € P(X), the set of all prime prefilters finer than ? was shown to have mini-
mal elements [11] and this latter collection is denoted Pm( 3). Given F € F(X) we
shall then denote the set of all filters (resp. ultrafilters) finer than F by F(F)
(resp. U(F)). The following maps shall be required very often [11],

1: P(X) > F(X) : O = {u’1]0,1]|u €31}
w: FX)>P(X): F>{ul3r€eF:pu> 1.}

c: P(X)>1I: 3~ inf sup u(x)
HED xEX

c : PX)>1: 3~ inf c(6)
(’SEPm(fb)

For any & € P(X) we now further define
Q(3) := {w(F) v |F D (D)}
PROPOSITION 2.1. The mapping
F(U(D )~ Qm(fb) : Forw(F) v3d

is an order isomorphism and a V-lattice isomorphism. The image of U(1( 3)) moreover
coincides with Pm( D).

PROOF. By construction the mapping is surjective and order preserving. Let
Fi €F(1(D)) i =1,2 and put 3)i = w(Fi) vd . Let D 12 52. If F, € F2 then
lF? € 332 and thus there exist p € D and F1 € Fl such that 1F2 > 11’2 A U. This im-

plies that F, o] F n u-l]O,l] which together with 1(J) C Fl shows that F,

at the same time shows that the mapping is injective and an order isomorphism.

Next let Fj € F(1(Jd)) for j € J then clearly

€ Fl' This

Y OF., > v . .
w(JGJ F]) vd & w(FJ) vd

Conversely if F; € Fj seeesF € Fj for some n €Ny and p € J then clearly
1 n

(;\j lr.) AU = K <1F. A u) € v w(Fj) vd.
i=1 i i=1" i j€J
The fact that the image of U(1( D)) is precisely Pm(fﬂS) is nothing else than the result
of Theorem 3.2 [11]. o

REMARKS. 1° In Theorem 3.2 [11] notation is slightly different. Note that (3 ,U)
there means w(U) v I here. Also in [11] B and U are called compatible precisely if
uswd).

2° The mapping of Proposition 2.1 is not a lattice isomorphism as is seen taking
X arbitrary but such that |X| = 2, F, = ix for all x € X and & := {u]inf p(x) > 0}.

Then it follows that x€X

w(xeAxe)ij = 3

whereas
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A w(Fx) vd = {pjux) >0 wvx € x}.
x€X
3° Without further mention and whenever convenient we shall use the fact that
P (D) = lul) vI |U ultra, U D U]
For the sake of completcness and because it shall frequently be used in the sequel
we recall the following result, however without proof.
It was proved implicitly in the proof of Theorem 6.2 [11] and explicitly as Lemmas 3.1
and 3.2 in [14].
PROPOSITION 2.2. The following hold :
1° If F is a filter on X and for each U € U(F) : Uy € U then there exists a finite
subset U, C U(F) such that u;] Uy € F.
0
2° If P is a prefilter and for each (5 € Pm(E) : u® € (5 then there exists a

finite subfamily P, C P (D) such that sup u,= € D.
0 m (G}
GepP,

PROPOSITION 2.3. The following hold :
1° 1 and w are respectively an isotone surjection and injection
° R < i
2° T ow 1d}‘(x)’ wol _1dP(X)
3¢ e(P) = sup c(B)

Ger (D)
m

4o D prime = (D) = c (D).

PROOF. 1° and 2° are analogous to similar statements in [11] and we shall leave
this to the reader.
3° Actually more can be said : there exists © € Pm(fﬁ) such that c((5) = (D). In-

deed consider the filter

F:= [{u-l]a,llla < (DN
then clearly F 2 1(D). Now let U be any ultrafilter finer than F then U € U(1(T))
and since for all a < c(P) and p € I : u-l]a,ll € U it follows that

clw(U) v D) = inf sup w(x) 2 «(P)
UEU x€U
1=

while the other inequality is trivial.
4° Immediate from the definitions. o
PROPOSITION 2.4. If 3 is a prefilter and 3 € @ (3P) then P3P (D).
PROOF. Indeed, by Proposition 2.1 we can choose H € F(1(J)) such that
3 = wH) v D and if € Pm(%) we can find U € U(1(31)) such that & = w(lU) v 3.
From U D 1(3{) = H we then have

G = wl) v 3
W) vwH) v B
wlt) v D

which together with the fact that U D 1(3{) D 1(3P) proves that & € Pm($). o
PROPOSITION 2.5. For any ultrafilter U, the fiber 1-1({U}) is a chain.
PROOF. Let 6, (5 € 1_1({U}) and suppose that there exist p € G\ G ' and

pu' € G'\ 6. Now let
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A iz {x|u(x) > u'(x)}
B := {x|u"(x) = n(x)}

and suppose for instance that A € U, then 1, € 6 ' and thus 1, Au'€ (B'. However
since u = 1A A u' this provides us with a contradiction. o

PROPOSITION 2.6. If (51)2:1 are prefilters then
A ¥
n i) c .
Pm(i:l“5 1) i=1 Pm(al)

n -
PROOF. If 5 € Pm(iol 51) and for all i = 1,...,n we have G2 C‘Di then we can

find vy €d i\ 6 i=1,...,n. Then however Srl.llp vy € (5 which is a contradiction.
Consequently there exist io € {1,...,n} such t}:c'nl: G > :‘bio. That (5 is minimal is
clear. =]

We shall now introduce the so-called diagonal prefilter, a concept which general-
izes the analogous notion introduced by Kowalsky [7].

DEFINITION 2.1. Given a collection of prefilters (35.)].GJ on X and a filter A on
J we define and denote the diagonal prefilter (of the family (Eﬁj)jeJ with respect to
A) as

@® (@j)jeJ,A) iz AZA ngCiSj

‘waving the easy verification that this is indeed a prefilter to the reader.

Since we shall often use this concept we now give some of its basic properties.

PROPOSITION 2.7. Let ($j)j€J be a family of prefilters on X and A a filter on J
then the following properties hold :

103, )GJ’A) = v n 3.
A€A jen )
20 If (A£)£€L is a family of filters on J such that A = 22 AI, then

DU e 50A) = zn DD, )]GJ,

30D = @((b )
38t (6955 cnp (D) et
j€J
4o If each P ., j € J is prime and A is an ultrafilter then QX (3. )]GJ’A) is prime.
PROOF. 1° If p € M((JP. )JGJ,A), 120-oA €Aand v, € N 35 3 i=1,...,n
i€A4
are such that \)l Ao A vn < | then putting A := A1 n,..n A it follows that py € N D . 5
JEA

2° One inclusion is trivial, to show the other one let us suppose

vVE N MDID.)..»A,). Then making use of 1° it follows that for all £ € L there
£EL 3seahe
exists Ate Af, such that vE€ N C‘b If we let A = U Ap then A € A and VE N 31'

j€A, feL Len
3° Again one inclusion is quite clear, to show the other one let v § @((& )

and for each j € J, if v § 3. choose (3 €EP (35 ) such that v ¢ (D whereas 1f
v € 3 choose (_7 € P (3 ) arbltramly. Now by supposition and upon once again ap-

g

plying 1°, for each A G A there is j € A such that v € D 5 and thus v & (Sj. Conse-
quently v € @(((JJ) GJ,A) and we are done.

40 Let pvve€E ®(($J)J€J,A) and let A € A be such that u v Vv E N 3]..
J€A
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If we put
A

L {5ealpe d.}
Ay :={j € alv € Sbj}
then f.i. Ay €A, u€ .0 D i and we are done. O
€A,

PROPOSITION 2.8. If ((6]. )jEJ is a family of prime prefilters, A is a filter on J
and we put @ := @X(@j)jeJ,A) then for any P € Qm(GD) and for any u € J there ex-
ists j € J such that p € 5..

PROOF. Let F € F(1(M)), F € F and u € @ and suppose that for all j € J we have
1F AU ¢ (63.. From Proposition 2.7.1° we obtain that there exists A € A such that
u € ijj for all j € A. Since u = (lFAu) v (1 . Au) it follows from our hypothesis

that 1 . A p € (. for all j € A and consequently that lFC Ap€@. Since

c

@ C w(F) v @ this contradicts the fact that 1}_ A U € w(F) v @ and we are done. o
We shall now turn to some preliminary results concerning convergence in fuzzy to-

pological spaces.

We recall that one of the equivalent ways of introducing a fuzzy topology on a set X

i+ by means of the so-called fuzzy closure operator [10]. A fuzzy closure operator,

b, tefinition, is a map  : IX d IX fulfilling
(1) a=a ¥ o constant
(2) u>y vuer®
(3) pvv=puvyv Vu,\)EIX
(8) W= Vue€E =

In this paper it is exclusively this definition of a fuzzy topology which we shall use.
Now if X is endowed with a fuzzy closure, i.e. is a fuzzy topological space, then con-
vergence of prefilters is defined in the following way [11]. Adherence and limit are

defined respectively as the mappings P(X) - Ix determined by

adh B := inf p§
w€ed

lim 3 := inf adh &
EeP (D)

The idea being that adh D and 1im D generalize respectively the set of adherence- and
limitpoints of a filter.
We recall the most important properties which we shall require in the sequel, referring
however to [11] for proofs.

PROPOSITION 2.9. If X is a fuzzy topological space then the following hold for all
D,6 €Px):
1° 3206 = adn D <aan 6
2° 1im b < adh &
3° adh D < c(I)
4o P prime = 1im D zanD.

Because of its importance in our further considerations we display also the next
result.

PROPOSITION 2.10. If X is a fuzzy topological space then for any prefilter
D e px)

adh D = sup adh & .
QDEPm( D)
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PROOF. This was shown implicitly in the proof of Theorem 2.6 [11].
PROPOSITION 2.11. If X is a fuzzy topological space then for any prefilter
De Px)

adh b = sup 1im 3 = sup adh 3t
3o D oD

PROOF. Fr.m Propositions 2.9 and 2.10 we obtain
adh B = sup 1im &
Gep (3)
< sup lim 3
> D

< sup adh 3
A>3

<adhD. o
We shall also require the following result.

PROPOSITION 2.12. If X is a fuzzy topological space and B} a prefilter on X then
for each x € X there exists & € Pm(Eb) such that 1im G (x) = adh B (x).
PROOF. Suppose on the contrary that for each U € U(1(D)) we have

Lim(w(U)vD)(x) < adh B (%),
then for each U € U(1 (D)) we can find UU € U and Wy € P such that

IUuAuu(x) < adh I (x).

By Proposition 2.2 there exist Ul,...,Un € U(1(D)) and Ui iz UU. € Ui, i=1,...,n

n

such that ’Ul Ui € 1(D). Let My 2T Mg, i =1,...,n be the corresponding elements in
i= .

D and let o

n
Y := inf u,
j=1 1t
then we obtain
1, A u(x)
U u
i=1 1
n
< sup 1; Aug(x)
i=1 i
n —_—
= sup 1 Aui(x)
i=1 i
< adh P (x)
which from the obvious fact that 1 n AUE D is a contradiction. o
v u,
j=1 1

As an immediate consequence remark that if up € Ix then for each x € X we can thus
find G € Pm(ﬂ) such that p(x) = lim 6 (x).
Finally, we introduce also the following concept which shall be of crucial importance
in our considerations, since it is precisely the tool which permits to generalize
Kowalsky's diagonal condition.
If (59(y))y€x is a family of prefilters indexed by X -called a selection of prefilters-
then we define DS) as the map

X2 I x> 1in 5 (x)(x).

°s
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The function (or fuzzy set) 05 measures at each point the degree that $(x) converges
to x.
3. NECESSITY.

THEOREM 3.1 If X is a fuzzy topological space then the map P(X) - Ix : D > 1im D
satisfies the following properties
(F1) For any prefilter D : 1im D < ¢ (D)
(F2) For any prefilters B, 3 :

D3, () =13 = 1in A <1in D

(C1) For any a € I\0 and x € X : limai > al
(C2) For any prefilter J :
IHeg(P) = 1in D < 1in 3t

(Cc) For any collection of prefilters (3j)j€J and any filter A on J :
A) > inf lim D .

je )
(Cd) For any prefilter D and any selection of prefilters (\S(y))yex such that DSG D:

Lin DS gy DN > 1in D

Lim ®((D,)se s

and moreover the map IX nd Ix HE Vg sup

Gep )

PROOF. (F1) In case J is prime we have ¢ (D) = (D) and

1im (5 coincides with the original closure

on X.

1im D = inf ¥
e d

< inf sup u(x)
e D x€x

= (D)

In case B is arbitrary we deduce herefrom

1im 3 < _ inf lim ©
Ger (D)
< inf_ ()
Gep (D)
=c (D
(F2) Let D and 3 be as postulated then we have
1im 3 = inf lim w(U) v 3t
ueu(1(3t))

< inf lim w() v D
usu( (D))

= 1im B
(C1) Since aix is prime we have
limal_ = &l
X X
2 al
X

(€2) Let B ana 3l € Qm(i) be arbitrary then by Proposition 2.4 we immediately

obtain



CONVERGENCE IN FUZZY TOPOLOGICAL SPACES

lim b = inf 1im ©
Gep (D)
< inf  1um 6
@DGPm(Jﬁ)
= 1lim 3¢

(Cc) In case each ij, j € J, is prime, using Proposition 2.8, and letting

m:= (D((Ebj )jGJ’A) we obtain
1im 2) = ~inf inf u
Gep (@) €6
2 inf inf W
i€ uefbj
inf lim B ..
j€J ]

In the general case, for each j € J, let
H 5 €
P ( Jjj) {6, |x Ky}
where the collections Kfl are chosen to be pairwise disjoint.

A' := U K,
jea !

For A C J let

505

then {A'|A € A} is a filterbase on J'. Let us denote the filter thus generated by A'

Then from the first part of the proof it follows that

Lim (6, ¢51A")

> inf 1imL6k
kE€J!

2 inf lin D,
je ’
Following the straightforward verification that

DUD ) seg0h) = DUG ey AD

kEJ'
we are done.

(cd) Ler B = DSy gy>1 (D).

ASSERTION. The result holds if all H(y), y € X and D are prime.
Indeed, let u € @ . Then by Proposition 2.7.1° there exists F € 1(3J) such that

LE N S(y). Let
yEF
@ := 1FAp5

then @ €. Further straightforward verification shows that

sup lim S(y) > o
yeo 10,1]
and consequently sup lim S(y) € 3I.
yeo 110,1]
Finally too by Proposition 2.9
u=adh N Sy
yEF
> adh n Sy)
y&o 110,11
> sup lim S(y)
yeo 110,1]
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which in turn implies u € 3.
Cbnsequently ¥ = ? > 1im D which by the arbitrariness of y € (D and by Proposition 2.9
shows that lim @) > 1im P .

ASSERTION. The result holds in general.
Let (fé(y))yex and D be arbitrary prefilters, such that Pg € D. First observe that
for any selection (R := (Ck(y))yeX € ygx Pm(fé(y)) we have

ps(y) = lim $(y)(y) < lim R(y)(y) = PR(Y)
and this for all y € X. Consequently DCR.G D and a fortiori PR € 5 for any
Ger (D).

From the first assertion we then already obtain that
1im®((@(y))yex,1(©))> lim 65 . (3.1)
Next observe that by Proposition 2.7.2° and 3° we have

DS () gy o 1D

DURY)) gy>1 (D))

]
Ren P (S(y)) ye

yEX

- n @((@(y))yex,l((’j))
@,6ECN P (S(y)))xP (I)
yEX

Now applying (Cc) on the collection of prime prefilters
{@((@uyny&x,l(6))1(@,«5)&(;){ ACIONERE N

and the trivial filter on the indexset we obtain

Lim @ ((5(y)) > (D))

¥E

> inf 1lim @ ((CR(y))_ gy 51 ((B)) (3.2)
(R, GIECT P (S(y))P (D) ye&X
yEX

Combining (3.1) and (3.2) we now obtain
Lim D ((5(y)) gys1 (D))
>  inf lim (5
Gep (P)
m

>1n D .

Finally that u = ~sup . 1lim (5 is an immediate consequence of Proposition 2.10.
GEP_(u)
m

4, SUFFICIENCY.

THEOREM 4.1, If P(X) = IX : D> 1in D is a map which satisfies the properties
(F1), (F2), (C1), (C2), (Cc) and (Cd) then there exists a unique fuzzy topology on X
such that for each ® € P(X) its limit coincides with 1im 3.

PROOF. We define the following map

I">1" :u~>u:=  sup, 1m5. (4.1)
Ger ()
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If a is a constant fuzzy set then by (F1) we have

@ = sup limw(l) va<a.
% U ultra
If p € I” then by (Cl) we have
U= sup, lim w(U) v 1.1
usu((u))
= sup lim u(x)i
_l X
*€p 710,11
> sup u(x)1
_l x
x€u 710,11
=M

If u,v € Ix, U < Vv then by (F2) we have

u = sup, lim w(U) v u
(i (p))

< sup, lim w(U) v v
ueu(i(u))

< sup, lim w(lU) v v
ueu((v))

=V
Further if y,v € IX then from this last relation it already follows that uvv > U v V.

On the other hand by Proposition 2.6 we obtain

HVvoV = sup, lim &
GEP (uw)
m
< suwp, 1imG v sy, 1im 6
Gep (n) Gepr (v)
m m
ERTIRVARE

Globally this shows that for any u,v € IX

HVV =QHVV (4.2)

Before showing that the map T s idempotent we now first define

lim' : P(X) —» IX

determined by

inf W if D is prime
D

.y ~ )

lim' 3 = _ inf lim' 5 otherwise
Gep (I)

ASSERTION. If 3 is prime then lim' D = 1im D.
If p € D then clearly w(1(D)) v nc P, Since both are prime, applying (F2) we

obtain

1im B < lim w(1(P)) v 1

< sup, 1im w(U) v
uu(i(u))

and consequently lim ® < 1im'3® .
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Conversely,
lim' d = inf §
e d
= inf sup, lim w(U) v ﬁ
uE D Usu(1(u))
= sup inf lim w(@()) v 1 (4.3)

©E N U(1(R) €D
€3

Now let us fix @ € T U(1(}1)), and consider the family of prime prefilters

e d .
{w(@(u))vuip € D}

On the indexset D we take the filter A generated by the basis
Alued
{a,lu }
where Au iz (ved|v<ul.
It is easily seen that now
c .
N ®((w(w(u))vu)u63),A)
By respectively (F2) and (Cc) we then obtain
. > 3 .
1im D > 1lim GD((“’((D(“))V“)LEE}S’A)

> inf lim w(@(n)) v 1 (b.1)
wed
By the arbitrariness of @, it now follows from (4.3) and (4.4) that lim' D < lim D
ASSERTION. For any prefilter D we have lim' D = 1lim .
Applying (Cc) on the family of prefilters Pm(‘:b) and taking hereon the trivial

filter we already obtain

1im 3 >  inf 1im O .

Gep (B)
On the other hand by (C2) we have
_inf limG = inf  limeW) v D
G €eP_(D) ueu(1( )
> inf limw(U(DN v I
usu(L (D))
= 1in P .
Consequently by the first assertion
1im' 3 = _ inf lim'
Ger (D)
m
= inf_ 1im 6
Oer (I
= 1um D.
From these three assertions we thus conclude that lim satisfies
inf U if D is prime
L D
lim D = . . - .
inf 1im O otherwise (4.5)

-
Ger ()
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To conclude the proof of 1.:he theorem we shall now show that the map T is idempo-
tent. Let U € X and G € Pm(ﬁ) be fixed.
Now remark that the proof of Proposition 2.12 only uses the fact that closure and limit
in a fuzzy topological space fulfil (4.1), (4.2) and (4.5). Since we have already
shown that = indeed fulfils (4.1), (4.2) and (4.5), by means of a perfectly analogous
proof, we can now ascertain that for each y € X there exists S(y) € Pm(ltl) such that
lim 5 (y)(y) = u(y).

Consider this selection (5(y)) gy» then clearly pg = U and so pec € 6. Apply-
ing (Cd) we now obtain for @ := ®((5(y))yex,1((6)) that

1im @ 2 1im ©

which together with the facts that u € @ -which is obvious since p € S(y) for each
y € X- that @) is prime -by Proposition 2.7.4°- and upon applying (5) implies that

U= 1lim B
By the arbitrariness of & € Pm(ﬁ) we thus obtain

u= _ Sup.e 1im © =:.

In all we have thus shown that = is the fuzzy closure operator associated with a fuzzy
topology. That the limit in this fuzzy topology coincides with the map lim is nothing
else than (5) while uniqueness of the fuzzy topology is evident by construction. o
5. PRIME VERSION.

Both in Theorem 3.1 and Theorem 4.1 prime prefilters play a crucial role in
proofs. The question therefore poses itself whether it is not sufficient to consider
(F1), (F2), (C2), (Cc), (Cd) restricted to prime prefilters, i.e. to consider what we
shall call prime versions of these properties. Remark that obviously (Cl) is its own
prime version. In order to answer this question we now define the following set of
axioms.

(Flp) For any prime prefilter D 1ind < (D)

(F2p) For any prime prefilters » ,3¢: Jc A= 1in A< 150 I

(C2p) For any prefilter B : B € Pm(\:b) =1in D < 1im 6

(Ccp) For any collection of prime prefilters (5]. )je and any filter A on J :

J

lim @((ﬁj)jeJ,A) = ;gg 1im35j
(Cdp) For any prime prefilter D and any selection of prime prefilters (f»(y))yex
such that Pe € D : 1im @((5(y)y€x,1($)) > 1im P
PROPOSITION. The following implications hold :
1° (C2p) implies (F1) <« (Flp)
2° (C2p) + (Ccp) implies (F2) < (F2p)
3° (Ccp) implies (C2) < (C2p)
4o (C2p) implies (Cc) < (Ccp)
59 (C2p) + (Ccp) implies (Cd) « (Cdp).
PROOF. 1° This goes the same as the proof of (F1) in Theorem 3.1.
2° Let D be any prefilter. Since D = N (5 we obtain by (Ccp) applied to

Ger (D)

the trivial filter on Pm(\%) that

lim D > inf 1im &
Gep (D)
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and consequently together with (C2p) that

1im D = inf_ 12im 6 (5.1)
bep (D)
The rest of the proof now consists of repeating verbatim the demonstration of (F2) in
Theorem 3.1.
3° Let & and I € Qm(éb) be arbitrary. First by repeating the first part of the
proof of 2° we note that (5.1) holds. Second by (5.1) and Proposition 2.4 we obtain :

1lim D inf 1im &
BeP (D)
m
< inf 1im &
Gep (30

1im 3

4° This is completely analogous to the proof of the general case of (Cc) in Theo-
rem 3.1.

5° This in turn is completely analogous to the proof of the second assertion in
the proof of (Cd) also in Theorem 3.1.

From this proposition and Theorem 4.1 we now immediately obtain the following
strengthening of the latter.

THEOREM 5.1. If P(X) - Ix

: D> 1nD is a map which satisfies the properties
(F1p), (F2p), (Cl), (C2p), (Ccp) and (Cdp) then there exists a unique fuzzy topology
on X such that for each P € P(X) its limit coincides with lim 3&.
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